This file is indexed.

/usr/share/julia/base/reduce.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# This file is a part of Julia. License is MIT: http://julialang.org/license

## reductions ##

###### Generic (map)reduce functions ######

if Int === Int32
typealias SmallSigned Union{Int8,Int16}
typealias SmallUnsigned Union{UInt8,UInt16}
else
typealias SmallSigned Union{Int8,Int16,Int32}
typealias SmallUnsigned Union{UInt8,UInt16,UInt32}
end

typealias CommonReduceResult Union{UInt64,UInt128,Int64,Int128,Float32,Float64}
typealias WidenReduceResult Union{SmallSigned, SmallUnsigned, Float16}

# r_promote: promote x to the type of reduce(op, [x])
r_promote(op, x::WidenReduceResult) = widen(x)
r_promote(op, x) = x
r_promote(::AddFun, x::WidenReduceResult) = widen(x)
r_promote(::MulFun, x::WidenReduceResult) = widen(x)
r_promote(::AddFun, x::Number) = oftype(x + zero(x), x)
r_promote(::MulFun, x::Number) = oftype(x * one(x), x)
r_promote(::AddFun, x) = x
r_promote(::MulFun, x) = x
r_promote(::MaxFun, x::WidenReduceResult) = x
r_promote(::MinFun, x::WidenReduceResult) = x
r_promote(::MaxFun, x) = x
r_promote(::MinFun, x) = x


## foldl && mapfoldl

function mapfoldl_impl(f, op, v0, itr, i)
    # Unroll the while loop once; if v0 is known, the call to op may
    # be evaluated at compile time
    if done(itr, i)
        return r_promote(op, v0)
    else
        (x, i) = next(itr, i)
        v = op(r_promote(op, v0), f(x))
        while !done(itr, i)
            (x, i) = next(itr, i)
            v = op(v, f(x))
        end
        return v
    end
end

mapfoldl(f, op, v0, itr) = mapfoldl_impl(f, op, v0, itr, start(itr))

mapfoldl(f, op::Function, v0, itr) = mapfoldl_impl(f, specialized_binary(op), v0, itr, start(itr))

function mapfoldl(f, op, itr)
    i = start(itr)
    if done(itr, i)
        return Base.mr_empty(f, op, eltype(itr))
    end
    (x, i) = next(itr, i)
    v0 = f(x)
    mapfoldl_impl(f, op, v0, itr, i)
end

foldl(op, v0, itr) = mapfoldl(IdFun(), op, v0, itr)
foldl(op, itr) = mapfoldl(IdFun(), op, itr)

## foldr & mapfoldr

function mapfoldr_impl(f, op, v0, itr, i::Integer)
    # Unroll the while loop once; if v0 is known, the call to op may
    # be evaluated at compile time
    if i == 0
        return r_promote(op, v0)
    else
        x = itr[i]
        v  = op(f(x), r_promote(op, v0))
        while i > 1
            x = itr[i -= 1]
            v = op(f(x), v)
        end
        return v
    end
end

mapfoldr(f, op, v0, itr) = mapfoldr_impl(f, op, v0, itr, endof(itr))
mapfoldr(f, op, itr) = (i = endof(itr); mapfoldr_impl(f, op, f(itr[i]), itr, i-1))

foldr(op, v0, itr) = mapfoldr(IdFun(), op, v0, itr)
foldr(op, itr) = mapfoldr(IdFun(), op, itr)

## reduce & mapreduce

# mapreduce_***_impl require ifirst < ilast
function mapreduce_seq_impl(f, op, A::AbstractArray, ifirst::Int, ilast::Int)
    @inbounds fx1 = r_promote(op, f(A[ifirst]))
    @inbounds fx2 = f(A[ifirst+=1])
    @inbounds v = op(fx1, fx2)
    while ifirst < ilast
        @inbounds fx = f(A[ifirst+=1])
        v = op(v, fx)
    end
    return v
end

function mapreduce_pairwise_impl(f, op, A::AbstractArray, ifirst::Int, ilast::Int, blksize::Int)
    if ifirst + blksize > ilast
        return mapreduce_seq_impl(f, op, A, ifirst, ilast)
    else
        imid = (ifirst + ilast) >>> 1
        v1 = mapreduce_pairwise_impl(f, op, A, ifirst, imid, blksize)
        v2 = mapreduce_pairwise_impl(f, op, A, imid+1, ilast, blksize)
        return op(v1, v2)
    end
end

mapreduce(f, op, itr) = mapfoldl(f, op, itr)
mapreduce(f, op, v0, itr) = mapfoldl(f, op, v0, itr)
mapreduce_impl(f, op, A::AbstractArray, ifirst::Int, ilast::Int) =
    mapreduce_pairwise_impl(f, op, A, ifirst, ilast, 1024)

# handling empty arrays
mr_empty(f, op, T) = throw(ArgumentError("reducing over an empty collection is not allowed"))
# use zero(T)::T to improve type information when zero(T) is not defined
mr_empty(::IdFun, op::AddFun, T) = r_promote(op, zero(T)::T)
mr_empty(::AbsFun, op::AddFun, T) = r_promote(op, abs(zero(T)::T))
mr_empty(::Abs2Fun, op::AddFun, T) = r_promote(op, abs2(zero(T)::T))
mr_empty(::IdFun, op::MulFun, T) = r_promote(op, one(T)::T)
mr_empty(::AbsFun, op::MaxFun, T) = abs(zero(T)::T)
mr_empty(::Abs2Fun, op::MaxFun, T) = abs2(zero(T)::T)
mr_empty(f, op::AndFun, T) = true
mr_empty(f, op::OrFun, T) = false

_mapreduce(f, op, A::AbstractArray) = _mapreduce(f, op, linearindexing(A), A)

function _mapreduce{T}(f, op, ::LinearFast, A::AbstractArray{T})
    n = Int(length(A))
    if n == 0
        return mr_empty(f, op, T)
    elseif n == 1
        return r_promote(op, f(A[1]))
    elseif n < 16
        @inbounds fx1 = r_promote(op, f(A[1]))
        @inbounds fx2 = r_promote(op, f(A[2]))
        s = op(fx1, fx2)
        i = 2
        while i < n
            @inbounds fx = f(A[i+=1])
            s = op(s, fx)
        end
        return s
    else
        return mapreduce_impl(f, op, A, 1, n)
    end
end

_mapreduce{T}(f, op, ::LinearSlow, A::AbstractArray{T}) = mapfoldl(f, op, A)

mapreduce(f, op, A::AbstractArray) = _mapreduce(f, op, linearindexing(A), A)
mapreduce(f, op, a::Number) = f(a)

mapreduce(f, op::Function, A::AbstractArray) = mapreduce(f, specialized_binary(op), A)

reduce(op, v0, itr) = mapreduce(IdFun(), op, v0, itr)
reduce(op, itr) = mapreduce(IdFun(), op, itr)
reduce(op, a::Number) = a

### short-circuiting specializations of mapreduce

## conditions and results of short-circuiting

const ShortCircuiting = Union{AndFun, OrFun}
const ReturnsBool     = Union{EqX, Predicate}

shortcircuits(::AndFun, x::Bool) = !x
shortcircuits(::OrFun,  x::Bool) =  x

shorted(::AndFun) = false
shorted(::OrFun)  = true

sc_finish(::AndFun) = true
sc_finish(::OrFun)  = false

## short-circuiting (sc) mapreduce definitions

function mapreduce_sc_impl(f, op, itr::AbstractArray)
    @inbounds for x in itr
        shortcircuits(op, f(x)) && return shorted(op)
    end
    return sc_finish(op)
end

function mapreduce_sc_impl(f, op, itr)
    for x in itr
        shortcircuits(op, f(x)) && return shorted(op)
    end
    return sc_finish(op)
end

# mapreduce_sc tests if short-circuiting is safe;
# if so, mapreduce_sc_impl is called. If it's not
# safe, call mapreduce_no_sc, which redirects to
# non-short-circuiting definitions.

mapreduce_no_sc(f, op, itr::Any)           =  mapfoldl(f, op, itr)
mapreduce_no_sc(f, op, itr::AbstractArray) = _mapreduce(f, op, itr)

mapreduce_sc(f::Function,    op, itr) = mapreduce_sc(specialized_unary(f), op, itr)
mapreduce_sc(f::ReturnsBool, op, itr) = mapreduce_sc_impl(f, op, itr)
mapreduce_sc(f::Func{1},     op, itr) = mapreduce_no_sc(f, op, itr)

mapreduce_sc(f::IdFun, op, itr) =
    eltype(itr) <: Bool ?
        mapreduce_sc_impl(f, op, itr) :
        mapreduce_no_sc(f, op, itr)

mapreduce(f, op::ShortCircuiting, n::Number) = n
mapreduce(f, op::ShortCircuiting, itr::AbstractArray) = mapreduce_sc(f,op,itr)
mapreduce(f, op::ShortCircuiting, itr::Any)           = mapreduce_sc(f,op,itr)


###### Specific reduction functions ######

## sum

function mapreduce_seq_impl(f, op::AddFun, a::AbstractArray, ifirst::Int, ilast::Int)
    @inbounds begin
        s = r_promote(op, f(a[ifirst])) + f(a[ifirst+1])
        @simd for i = ifirst+2:ilast
            s += f(a[i])
        end
    end
    s
end

# Note: sum_seq usually uses four or more accumulators after partial
# unrolling, so each accumulator gets at most 256 numbers
sum_pairwise_blocksize(f) = 1024

# This appears to show a benefit from a larger block size
sum_pairwise_blocksize(::Abs2Fun) = 4096

mapreduce_impl(f, op::AddFun, A::AbstractArray, ifirst::Int, ilast::Int) =
    mapreduce_pairwise_impl(f, op, A, ifirst, ilast, sum_pairwise_blocksize(f))

sum(f::Union{Callable,Func{1}}, a) = mapreduce(f, AddFun(), a)
sum(a) = mapreduce(IdFun(), AddFun(), a)
sum(a::AbstractArray{Bool}) = countnz(a)
sumabs(a) = mapreduce(AbsFun(), AddFun(), a)
sumabs2(a) = mapreduce(Abs2Fun(), AddFun(), a)

# Kahan (compensated) summation: O(1) error growth, at the expense
# of a considerable increase in computational expense.
function sum_kbn{T<:AbstractFloat}(A::AbstractArray{T})
    n = length(A)
    c = r_promote(AddFun(), zero(T)::T)
    if n == 0
        return c
    end
    s = A[1] + c
    for i in 2:n
        @inbounds Ai = A[i]
        t = s + Ai
        if abs(s) >= abs(Ai)
            c += ((s-t) + Ai)
        else
            c += ((Ai-t) + s)
        end
        s = t
    end
    s + c
end


## prod

prod(f::Union{Callable,Func{1}}, a) = mapreduce(f, MulFun(), a)
prod(a) = mapreduce(IdFun(), MulFun(), a)

prod(A::AbstractArray{Bool}) =
    error("use all() instead of prod() for boolean arrays")

## maximum & minimum

function mapreduce_impl(f, op::MaxFun, A::AbstractArray, first::Int, last::Int)
    # locate the first non NaN number
    v = f(A[first])
    i = first + 1
    while v != v && i <= last
        @inbounds v = f(A[i])
        i += 1
    end
    while i <= last
        @inbounds x = f(A[i])
        if x > v
            v = x
        end
        i += 1
    end
    v
end

function mapreduce_impl(f, op::MinFun, A::AbstractArray, first::Int, last::Int)
    # locate the first non NaN number
    v = f(A[first])
    i = first + 1
    while v != v && i <= last
        @inbounds v = f(A[i])
        i += 1
    end
    while i <= last
        @inbounds x = f(A[i])
        if x < v
            v = x
        end
        i += 1
    end
    v
end

maximum(f::Union{Callable,Func{1}}, a) = mapreduce(f, MaxFun(), a)
minimum(f::Union{Callable,Func{1}}, a) = mapreduce(f, MinFun(), a)

maximum(a) = mapreduce(IdFun(), MaxFun(), a)
minimum(a) = mapreduce(IdFun(), MinFun(), a)

maxabs(a) = mapreduce(AbsFun(), MaxFun(), a)
minabs(a) = mapreduce(AbsFun(), MinFun(), a)

## extrema

extrema(r::Range) = (minimum(r), maximum(r))
extrema(x::Real) = (x, x)

function extrema(itr)
    s = start(itr)
    done(itr, s) && throw(ArgumentError("collection must be non-empty"))
    (v, s) = next(itr, s)
    while v != v && !done(itr, s)
        (x, s) = next(itr, s)
        v = x
    end
    vmin = v
    vmax = v
    while !done(itr, s)
        (x, s) = next(itr, s)
        if x > vmax
            vmax = x
        elseif x < vmin
            vmin = x
        end
    end
    return (vmin, vmax)
end

## all & any

any(itr) = any(IdFun(), itr)
all(itr) = all(IdFun(), itr)

any(f::Any,       itr) = any(Predicate(f), itr)
any(f::Predicate, itr) = mapreduce_sc_impl(f, OrFun(), itr)
any(f::IdFun,     itr) =
    eltype(itr) <: Bool ?
        mapreduce_sc_impl(f, OrFun(), itr) :
        nonboolean_any(itr)

all(f::Any,       itr) = all(Predicate(f), itr)
all(f::Predicate, itr) = mapreduce_sc_impl(f, AndFun(), itr)
all(f::IdFun,     itr) =
    eltype(itr) <: Bool ?
        mapreduce_sc_impl(f, AndFun(), itr) :
        nonboolean_all(itr)

## in & contains

in(x, itr) = any(EqX(x), itr)

const ∈ = in
∉(x, itr)=!∈(x, itr)
∋(itr, x)= ∈(x, itr)
∌(itr, x)=!∋(itr, x)

function contains(eq::Function, itr, x)
    for y in itr
        eq(y, x) && return true
    end
    return false
end


## countnz & count

function count(pred, itr)
    n = 0
    for x in itr
        pred(x) && (n += 1)
    end
    return n
end

function count(pred, A::AbstractArray)
    n = 0
    @inbounds for a in A
        pred(a) && (n += 1)
    end
    return n
end

immutable NotEqZero <: Func{1} end
call(::NotEqZero, x) = x != 0

"""
    countnz(A)

Counts the number of nonzero values in array `A` (dense or sparse). Note that this is not a constant-time operation.
For sparse matrices, one should usually use `nnz`, which returns the number of stored values.
"""
countnz(a) = count(NotEqZero(), a)