/usr/share/julia/base/range.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## 1-dimensional ranges ##
typealias Dims Tuple{Vararg{Int}}
abstract Range{T} <: AbstractArray{T,1}
## ordinal ranges
abstract OrdinalRange{T,S} <: Range{T}
immutable StepRange{T,S} <: OrdinalRange{T,S}
start::T
step::S
stop::T
function StepRange(start::T, step::S, stop::T)
new(start, step, steprange_last(start,step,stop))
end
end
# to make StepRange constructor inlineable, so optimizer can see `step` value
function steprange_last{T}(start::T, step, stop)
if isa(start,AbstractFloat) || isa(step,AbstractFloat)
throw(ArgumentError("StepRange should not be used with floating point"))
end
z = zero(step)
step == z && throw(ArgumentError("step cannot be zero"))
if stop == start
last = stop
else
if (step > z) != (stop > start)
# empty range has a special representation where stop = start-1
# this is needed to avoid the wrap-around that can happen computing
# start - step, which leads to a range that looks very large instead
# of empty.
if step > z
last = start - one(stop-start)
else
last = start + one(stop-start)
end
else
diff = stop - start
if T<:Signed && (diff > zero(diff)) != (stop > start)
# handle overflowed subtraction with unsigned rem
if diff > zero(diff)
remain = -convert(T, unsigned(-diff) % step)
else
remain = convert(T, unsigned(diff) % step)
end
else
remain = steprem(start,stop,step)
end
last = stop - remain
end
end
last
end
steprem(start,stop,step) = (stop-start) % step
StepRange{T,S}(start::T, step::S, stop::T) = StepRange{T,S}(start, step, stop)
immutable UnitRange{T<:Real} <: OrdinalRange{T,Int}
start::T
stop::T
UnitRange(start, stop) = new(start, unitrange_last(start,stop))
end
UnitRange{T<:Real}(start::T, stop::T) = UnitRange{T}(start, stop)
unitrange_last(::Bool, stop::Bool) = stop
unitrange_last{T<:Integer}(start::T, stop::T) =
ifelse(stop >= start, stop, convert(T,start-one(stop-start)))
unitrange_last{T}(start::T, stop::T) =
ifelse(stop >= start, convert(T,start+floor(stop-start)),
convert(T,start-one(stop-start)))
colon(a::Real, b::Real) = colon(promote(a,b)...)
colon{T<:Real}(start::T, stop::T) = UnitRange{T}(start, stop)
range(a::Real, len::Integer) = UnitRange{typeof(a)}(a, oftype(a, a+len-1))
colon{T}(start::T, stop::T) = StepRange(start, one(stop-start), stop)
range{T}(a::T, len::Integer) =
StepRange{T, typeof(a-a)}(a, one(a-a), a+oftype(a-a,(len-1)))
# first promote start and stop, leaving step alone
# this is for non-numeric ranges where step can be quite different
colon{A<:Real,C<:Real}(a::A, b, c::C) = colon(convert(promote_type(A,C),a), b, convert(promote_type(A,C),c))
colon{T<:Real}(start::T, step, stop::T) = StepRange(start, step, stop)
colon{T<:Real}(start::T, step::T, stop::T) = StepRange(start, step, stop)
colon{T<:Real}(start::T, step::Real, stop::T) = StepRange(promote(start, step, stop)...)
colon{T}(start::T, step, stop::T) = StepRange(start, step, stop)
range{T,S}(a::T, step::S, len::Integer) = StepRange{T,S}(a, step, convert(T, a+step*(len-1)))
## floating point ranges
immutable FloatRange{T<:AbstractFloat} <: Range{T}
start::T
step::T
len::T
divisor::T
end
FloatRange(a::AbstractFloat, s::AbstractFloat, l::Real, d::AbstractFloat) =
FloatRange{promote_type(typeof(a),typeof(s),typeof(d))}(a,s,l,d)
# float rationalization helper
function rat(x)
y = x
a = d = 1
b = c = 0
m = maxintfloat(Float32)
while abs(y) <= m
f = trunc(Int,y)
y -= f
a, c = f*a + c, a
b, d = f*b + d, b
max(abs(a),abs(b)) <= convert(Int,m) || return c, d
oftype(x,a)/oftype(x,b) == x && break
y = inv(y)
end
return a, b
end
function colon{T<:AbstractFloat}(start::T, step::T, stop::T)
step == 0 && throw(ArgumentError("range step cannot be zero"))
start == stop && return FloatRange{T}(start,step,1,1)
(0 < step) != (start < stop) && return FloatRange{T}(start,step,0,1)
# float range "lifting"
r = (stop-start)/step
n = round(r)
lo = prevfloat((prevfloat(stop)-nextfloat(start))/n)
hi = nextfloat((nextfloat(stop)-prevfloat(start))/n)
if lo <= step <= hi
a0, b = rat(start)
a = convert(T,a0)
if a/convert(T,b) == start
c0, d = rat(step)
c = convert(T,c0)
if c/convert(T,d) == step
e = lcm(b,d)
a *= div(e,b)
c *= div(e,d)
eT = convert(T,e)
if (a+n*c)/eT == stop
return FloatRange{T}(a, c, n+1, eT)
end
end
end
end
FloatRange{T}(start, step, floor(r)+1, one(step))
end
colon{T<:AbstractFloat}(a::T, b::T) = colon(a, one(a), b)
colon{T<:Real}(a::T, b::AbstractFloat, c::T) = colon(promote(a,b,c)...)
colon{T<:AbstractFloat}(a::T, b::AbstractFloat, c::T) = colon(promote(a,b,c)...)
colon{T<:AbstractFloat}(a::T, b::Real, c::T) = colon(promote(a,b,c)...)
range(a::AbstractFloat, len::Integer) = FloatRange(a,one(a),len,one(a))
range(a::AbstractFloat, st::AbstractFloat, len::Integer) = FloatRange(a,st,len,one(a))
range(a::Real, st::AbstractFloat, len::Integer) = FloatRange(float(a), st, len, one(st))
range(a::AbstractFloat, st::Real, len::Integer) = FloatRange(a, float(st), len, one(a))
## linspace and logspace
immutable LinSpace{T<:AbstractFloat} <: Range{T}
start::T
stop::T
len::T
divisor::T
end
function linspace{T<:AbstractFloat}(start::T, stop::T, len::T)
len == round(len) || throw(InexactError())
0 <= len || error("linspace($start, $stop, $len): negative length")
if len == 0
n = convert(T, 2)
if isinf(n*start) || isinf(n*stop)
start /= n; stop /= n; n = one(T)
end
return LinSpace(-start, -stop, -one(T), n)
end
if len == 1
start == stop || error("linspace($start, $stop, $len): endpoints differ")
return LinSpace(-start, -start, zero(T), one(T))
end
n = convert(T, len - 1)
len - n == 1 || error("linspace($start, $stop, $len): too long for $T")
a0, b = rat(start)
a = convert(T,a0)
if a/convert(T,b) == start
c0, d = rat(stop)
c = convert(T,c0)
if c/convert(T,d) == stop
e = lcm(b,d)
a *= div(e,b)
c *= div(e,d)
s = convert(T,n*e)
if isinf(a*n) || isinf(c*n)
s, p = frexp(s)
p2 = oftype(s,2)^p
a /= p2; c /= p2
end
if a*n/s == start && c*n/s == stop
return LinSpace(a, c, len, s)
end
end
end
a, c, s = start, stop, n
if isinf(a*n) || isinf(c*n)
s, p = frexp(s)
p2 = oftype(s,2)^p
a /= p2; c /= p2
end
if a*n/s == start && c*n/s == stop
return LinSpace(a, c, len, s)
end
return LinSpace(start, stop, len, n)
end
function linspace{T<:AbstractFloat}(start::T, stop::T, len::Real)
T_len = convert(T, len)
T_len == len || throw(InexactError())
linspace(start, stop, T_len)
end
linspace(start::Real, stop::Real, len::Real=50) =
linspace(promote(AbstractFloat(start), AbstractFloat(stop))..., len)
function show(io::IO, r::LinSpace)
print(io, "linspace(")
show(io, first(r))
print(io, ',')
show(io, last(r))
print(io, ',')
show(io, length(r))
print(io, ')')
end
logspace(start::Real, stop::Real, n::Integer=50) = 10.^linspace(start, stop, n)
## interface implementations
similar(r::Range, T::Type, dims::Tuple{Vararg{Integer}}) = Array(T, dims...)
similar(r::Range, T::Type, dims::Dims) = Array(T, dims)
size(r::Range) = (length(r),)
isempty(r::StepRange) =
(r.start != r.stop) & ((r.step > zero(r.step)) != (r.stop > r.start))
isempty(r::UnitRange) = r.start > r.stop
isempty(r::FloatRange) = length(r) == 0
isempty(r::LinSpace) = length(r) == 0
step(r::StepRange) = r.step
step(r::UnitRange) = 1
step(r::FloatRange) = r.step/r.divisor
step{T}(r::LinSpace{T}) = ifelse(r.len <= 0, convert(T,NaN), (r.stop-r.start)/r.divisor)
function length(r::StepRange)
n = Integer(div(r.stop+r.step - r.start, r.step))
isempty(r) ? zero(n) : n
end
length(r::UnitRange) = Integer(r.stop - r.start + 1)
length(r::FloatRange) = Integer(r.len)
length(r::LinSpace) = Integer(r.len + signbit(r.len - 1))
function length{T<:Union{Int,UInt,Int64,UInt64}}(r::StepRange{T})
isempty(r) && return zero(T)
if r.step > 1
return checked_add(convert(T, div(unsigned(r.stop - r.start), r.step)), one(T))
elseif r.step < -1
return checked_add(convert(T, div(unsigned(r.start - r.stop), -r.step)), one(T))
else
checked_add(div(checked_sub(r.stop, r.start), r.step), one(T))
end
end
length{T<:Union{Int,Int64}}(r::UnitRange{T}) =
checked_add(checked_sub(r.stop, r.start), one(T))
length{T<:Union{UInt,UInt64}}(r::UnitRange{T}) =
r.stop < r.start ? zero(T) : checked_add(r.stop - r.start, one(T))
# some special cases to favor default Int type
let smallint = (Int === Int64 ?
Union{Int8,UInt8,Int16,UInt16,Int32,UInt32} :
Union{Int8,UInt8,Int16,UInt16})
global length
function length{T <: smallint}(r::StepRange{T})
isempty(r) && return Int(0)
div(Int(r.stop)+Int(r.step) - Int(r.start), Int(r.step))
end
length{T <: smallint}(r::UnitRange{T}) = Int(r.stop) - Int(r.start) + 1
end
first{T}(r::OrdinalRange{T}) = convert(T, r.start)
first{T}(r::FloatRange{T}) = convert(T, r.start/r.divisor)
first{T}(r::LinSpace{T}) = convert(T, (r.len-1)*r.start/r.divisor)
last{T}(r::StepRange{T}) = r.stop
last(r::UnitRange) = r.stop
last{T}(r::FloatRange{T}) = convert(T, (r.start + (r.len-1)*r.step)/r.divisor)
last{T}(r::LinSpace{T}) = convert(T, (r.len-1)*r.stop/r.divisor)
minimum(r::UnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : first(r)
maximum(r::UnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : last(r)
minimum(r::Range) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : min(first(r), last(r))
maximum(r::Range) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : max(first(r), last(r))
ctranspose(r::Range) = [x for _=1, x=r]
transpose(r::Range) = r'
# Ranges are immutable
copy(r::Range) = r
## iteration
start(r::FloatRange) = 0
done(r::FloatRange, i::Int) = length(r) <= i
next{T}(r::FloatRange{T}, i::Int) =
(convert(T, (r.start + i*r.step)/r.divisor), i+1)
start(r::LinSpace) = 1
done(r::LinSpace, i::Int) = length(r) < i
next{T}(r::LinSpace{T}, i::Int) =
(convert(T, ((r.len-i)*r.start + (i-1)*r.stop)/r.divisor), i+1)
# NOTE: For ordinal ranges, we assume start+step might be from a
# lifted domain (e.g. Int8+Int8 => Int); use that for iterating.
start(r::StepRange) = convert(typeof(r.start+r.step), r.start)
next{T}(r::StepRange{T}, i) = (convert(T,i), i+r.step)
done{T,S}(r::StepRange{T,S}, i) = isempty(r) | (i < min(r.start, r.stop)) | (i > max(r.start, r.stop))
done{T,S}(r::StepRange{T,S}, i::Integer) = isempty(r) | (i == r.stop+r.step)
start(r::UnitRange) = oftype(r.start+1, r.start)
next{T}(r::UnitRange{T}, i) = (convert(T,i), i+1)
done(r::UnitRange, i) = i==oftype(i,r.stop)+1
## indexing
getindex(r::Range, i::Integer) = (checkbounds(r, i); unsafe_getindex(r, i))
unsafe_getindex{T}(v::Range{T}, i::Integer) = convert(T, first(v) + (i-1)*step(v))
getindex{T}(r::FloatRange{T}, i::Integer) = (checkbounds(r, i); unsafe_getindex(r, i))
unsafe_getindex{T}(r::FloatRange{T}, i::Integer) = convert(T, (r.start + (i-1)*r.step)/r.divisor)
getindex{T}(r::LinSpace{T}, i::Integer) = (checkbounds(r, i); unsafe_getindex(r, i))
unsafe_getindex{T}(r::LinSpace{T}, i::Integer) = convert(T, ((r.len-i)*r.start + (i-1)*r.stop)/r.divisor)
getindex(r::Range, ::Colon) = copy(r)
unsafe_getindex(r::Range, ::Colon) = copy(r)
getindex(r::UnitRange, s::UnitRange{Int}) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex(r::UnitRange, s::UnitRange{Int})
st = oftype(r.start, r.start + s.start-1)
range(st, length(s))
end
getindex(r::UnitRange, s::StepRange{Int}) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex(r::UnitRange, s::StepRange{Int})
st = oftype(r.start, r.start + s.start-1)
range(st, step(s), length(s))
end
getindex(r::StepRange, s::Range{Int}) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex(r::StepRange, s::Range{Int})
st = oftype(r.start, r.start + (first(s)-1)*step(r))
range(st, step(r)*step(s), length(s))
end
getindex(r::FloatRange, s::OrdinalRange) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex(r::FloatRange, s::OrdinalRange)
FloatRange(r.start + (first(s)-1)*r.step, step(s)*r.step, length(s), r.divisor)
end
getindex(r::LinSpace, s::OrdinalRange) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex{T}(r::LinSpace{T}, s::OrdinalRange)
sl::T = length(s)
ifirst = first(s)
ilast = last(s)
vfirst::T = ((r.len - ifirst) * r.start + (ifirst - 1) * r.stop) / r.divisor
vlast::T = ((r.len - ilast) * r.start + (ilast - 1) * r.stop) / r.divisor
return linspace(vfirst, vlast, sl)
end
function show(io::IO, r::Range)
print(io, repr(first(r)), ':', repr(step(r)), ':', repr(last(r)))
end
show(io::IO, r::UnitRange) = print(io, repr(first(r)), ':', repr(last(r)))
=={T<:Range}(r::T, s::T) = (first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s))
==(r::OrdinalRange, s::OrdinalRange) = (first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s))
=={T<:LinSpace}(r::T, s::T) = (first(r) == first(s)) & (length(r) == length(s)) & (last(r) == last(s))
function ==(r::Range, s::Range)
lr = length(r)
if lr != length(s)
return false
end
u, v = start(r), start(s)
while !done(r, u)
x, u = next(r, u)
y, v = next(s, v)
if x != y
return false
end
end
return true
end
intersect{T1<:Integer, T2<:Integer}(r::UnitRange{T1}, s::UnitRange{T2}) = max(r.start,s.start):min(last(r),last(s))
intersect{T<:Integer}(i::Integer, r::UnitRange{T}) =
i < first(r) ? (first(r):i) :
i > last(r) ? (i:last(r)) : (i:i)
intersect{T<:Integer}(r::UnitRange{T}, i::Integer) = intersect(i, r)
function intersect{T1<:Integer, T2<:Integer}(r::UnitRange{T1}, s::StepRange{T2})
if isempty(s)
range(first(r), 0)
elseif step(s) == 0
intersect(first(s), r)
elseif step(s) < 0
intersect(r, reverse(s))
else
sta = first(s)
ste = step(s)
sto = last(s)
lo = first(r)
hi = last(r)
i0 = max(sta, lo + mod(sta - lo, ste))
i1 = min(sto, hi - mod(hi - sta, ste))
i0:ste:i1
end
end
function intersect{T1<:Integer, T2<:Integer}(r::StepRange{T1}, s::UnitRange{T2})
if step(r) < 0
reverse(intersect(s, reverse(r)))
else
intersect(s, r)
end
end
function intersect(r::StepRange, s::StepRange)
if isempty(r) || isempty(s)
return range(first(r), step(r), 0)
elseif step(s) < 0
return intersect(r, reverse(s))
elseif step(r) < 0
return reverse(intersect(reverse(r), s))
end
start1 = first(r)
step1 = step(r)
stop1 = last(r)
start2 = first(s)
step2 = step(s)
stop2 = last(s)
a = lcm(step1, step2)
# if a == 0
# # One or both ranges have step 0.
# if step1 == 0 && step2 == 0
# return start1 == start2 ? r : Range(start1, 0, 0)
# elseif step1 == 0
# return start2 <= start1 <= stop2 && rem(start1 - start2, step2) == 0 ? r : Range(start1, 0, 0)
# else
# return start1 <= start2 <= stop1 && rem(start2 - start1, step1) == 0 ? (start2:step1:start2) : Range(start1, step1, 0)
# end
# end
g, x, y = gcdx(step1, step2)
if rem(start1 - start2, g) != 0
# Unaligned, no overlap possible.
return range(start1, a, 0)
end
z = div(start1 - start2, g)
b = start1 - x * z * step1
# Possible points of the intersection of r and s are
# ..., b-2a, b-a, b, b+a, b+2a, ...
# Determine where in the sequence to start and stop.
m = max(start1 + mod(b - start1, a), start2 + mod(b - start2, a))
n = min(stop1 - mod(stop1 - b, a), stop2 - mod(stop2 - b, a))
m:a:n
end
function intersect(r1::Range, r2::Range, r3::Range, r::Range...)
i = intersect(intersect(r1, r2), r3)
for t in r
i = intersect(i, t)
end
i
end
# findin (the index of intersection)
function _findin{T1<:Integer, T2<:Integer}(r::Range{T1}, span::UnitRange{T2})
local ifirst
local ilast
fspan = first(span)
lspan = last(span)
fr = first(r)
lr = last(r)
sr = step(r)
if sr > 0
ifirst = fr >= fspan ? 1 : ceil(Integer,(fspan-fr)/sr)+1
ilast = lr <= lspan ? length(r) : length(r) - ceil(Integer,(lr-lspan)/sr)
elseif sr < 0
ifirst = fr <= lspan ? 1 : ceil(Integer,(lspan-fr)/sr)+1
ilast = lr >= fspan ? length(r) : length(r) - ceil(Integer,(lr-fspan)/sr)
else
ifirst = fr >= fspan ? 1 : length(r)+1
ilast = fr <= lspan ? length(r) : 0
end
ifirst, ilast
end
function findin{T1<:Integer, T2<:Integer}(r::UnitRange{T1}, span::UnitRange{T2})
ifirst, ilast = _findin(r, span)
ifirst:ilast
end
function findin{T1<:Integer, T2<:Integer}(r::Range{T1}, span::UnitRange{T2})
ifirst, ilast = _findin(r, span)
ifirst:1:ilast
end
## linear operations on ranges ##
-(r::OrdinalRange) = range(-r.start, -step(r), length(r))
-(r::FloatRange) = FloatRange(-r.start, -r.step, r.len, r.divisor)
-(r::LinSpace) = LinSpace(-r.start, -r.stop, r.len, r.divisor)
.+(x::Real, r::UnitRange) = range(x + r.start, length(r))
.+(x::Real, r::Range) = (x+first(r)):step(r):(x+last(r))
#.+(x::Real, r::StepRange) = range(x + r.start, r.step, length(r))
.+(x::Real, r::FloatRange) = FloatRange(r.divisor*x + r.start, r.step, r.len, r.divisor)
function .+{T}(x::Real, r::LinSpace{T})
x2 = x * r.divisor / (r.len - 1)
LinSpace(x2 + r.start, x2 + r.stop, r.len, r.divisor)
end
.+(r::Range, x::Real) = x + r
#.+(r::FloatRange, x::Real) = x + r
.-(x::Real, r::Range) = (x-first(r)):-step(r):(x-last(r))
.-(x::Real, r::FloatRange) = FloatRange(r.divisor*x - r.start, -r.step, r.len, r.divisor)
function .-(x::Real, r::LinSpace)
x2 = x * r.divisor / (r.len - 1)
LinSpace(x2 - r.start, x2 - r.stop, r.len, r.divisor)
end
.-(r::UnitRange, x::Real) = range(r.start-x, length(r))
.-(r::StepRange , x::Real) = range(r.start-x, r.step, length(r))
.-(r::FloatRange, x::Real) = FloatRange(r.start - r.divisor*x, r.step, r.len, r.divisor)
function .-(r::LinSpace, x::Real)
x2 = x * r.divisor / (r.len - 1)
LinSpace(r.start - x2, r.stop - x2, r.len, r.divisor)
end
.*(x::Real, r::OrdinalRange) = range(x*r.start, x*step(r), length(r))
.*(x::Real, r::FloatRange) = FloatRange(x*r.start, x*r.step, r.len, r.divisor)
.*(x::Real, r::LinSpace) = LinSpace(x * r.start, x * r.stop, r.len, r.divisor)
.*(r::Range, x::Real) = x .* r
.*(r::FloatRange, x::Real) = x .* r
.*(r::LinSpace, x::Real) = x .* r
./(r::OrdinalRange, x::Real) = range(r.start/x, step(r)/x, length(r))
./(r::FloatRange, x::Real) = FloatRange(r.start/x, r.step/x, r.len, r.divisor)
./(r::LinSpace, x::Real) = LinSpace(r.start / x, r.stop / x, r.len, r.divisor)
promote_rule{T1,T2}(::Type{UnitRange{T1}},::Type{UnitRange{T2}}) =
UnitRange{promote_type(T1,T2)}
convert{T}(::Type{UnitRange{T}}, r::UnitRange{T}) = r
convert{T}(::Type{UnitRange{T}}, r::UnitRange) = UnitRange{T}(r.start, r.stop)
promote_rule{T1a,T1b,T2a,T2b}(::Type{StepRange{T1a,T1b}},::Type{StepRange{T2a,T2b}}) =
StepRange{promote_type(T1a,T2a),promote_type(T1b,T2b)}
convert{T1,T2}(::Type{StepRange{T1,T2}}, r::StepRange{T1,T2}) = r
promote_rule{T1a,T1b,T2}(::Type{StepRange{T1a,T1b}},::Type{UnitRange{T2}}) =
StepRange{promote_type(T1a,T2),promote_type(T1b,T2)}
convert{T1,T2}(::Type{StepRange{T1,T2}}, r::Range) =
StepRange{T1,T2}(convert(T1, first(r)), convert(T2, step(r)), convert(T1, last(r)))
convert{T}(::Type{StepRange}, r::UnitRange{T}) =
StepRange{T,T}(first(r), step(r), last(r))
promote_rule{T1,T2}(::Type{FloatRange{T1}},::Type{FloatRange{T2}}) =
FloatRange{promote_type(T1,T2)}
convert{T}(::Type{FloatRange{T}}, r::FloatRange{T}) = r
convert{T}(::Type{FloatRange{T}}, r::FloatRange) =
FloatRange{T}(r.start,r.step,r.len,r.divisor)
promote_rule{F,OR<:OrdinalRange}(::Type{FloatRange{F}}, ::Type{OR}) =
FloatRange{promote_type(F,eltype(OR))}
convert{T}(::Type{FloatRange{T}}, r::OrdinalRange) =
FloatRange{T}(first(r), step(r), length(r), one(T))
convert{T}(::Type{FloatRange}, r::OrdinalRange{T}) =
FloatRange{typeof(float(first(r)))}(first(r), step(r), length(r), one(T))
promote_rule{T1,T2}(::Type{LinSpace{T1}},::Type{LinSpace{T2}}) =
LinSpace{promote_type(T1,T2)}
convert{T}(::Type{LinSpace{T}}, r::LinSpace{T}) = r
convert{T}(::Type{LinSpace{T}}, r::LinSpace) =
LinSpace{T}(r.start, r.stop, r.len, r.divisor)
promote_rule{F,OR<:OrdinalRange}(::Type{LinSpace{F}}, ::Type{OR}) =
LinSpace{promote_type(F,eltype(OR))}
convert{T}(::Type{LinSpace{T}}, r::OrdinalRange) =
linspace(convert(T, first(r)), convert(T, last(r)), convert(T, length(r)))
convert{T}(::Type{LinSpace}, r::OrdinalRange{T}) =
convert(LinSpace{typeof(float(first(r)))}, r)
# Promote FloatRange to LinSpace
promote_rule{F,OR<:FloatRange}(::Type{LinSpace{F}}, ::Type{OR}) =
LinSpace{promote_type(F,eltype(OR))}
convert{T}(::Type{LinSpace{T}}, r::FloatRange) =
linspace(convert(T, first(r)), convert(T, last(r)), convert(T, length(r)))
convert{T}(::Type{LinSpace}, r::FloatRange{T}) =
convert(LinSpace{T}, r)
# +/- of ranges is defined in operators.jl (to be able to use @eval etc.)
## non-linear operations on ranges and fallbacks for non-real numbers ##
.+(x::Number, r::Range) = [ x+y for y=r ]
.+(r::Range, y::Number) = [ x+y for x=r ]
.-(x::Number, r::Range) = [ x-y for y=r ]
.-(r::Range, y::Number) = [ x-y for x=r ]
.*(x::Number, r::Range) = [ x*y for y=r ]
.*(r::Range, y::Number) = [ x*y for x=r ]
./(x::Number, r::Range) = [ x/y for y=r ]
./(r::Range, y::Number) = [ x/y for x=r ]
.^(x::Number, r::Range) = [ x^y for y=r ]
.^(r::Range, y::Number) = [ x^y for x=r ]
## concatenation ##
function vcat{T}(rs::Range{T}...)
n::Int = 0
for ra in rs
n += length(ra)
end
a = Array(T,n)
i = 1
for ra in rs, x in ra
@inbounds a[i] = x
i += 1
end
return a
end
convert{T}(::Type{Array{T,1}}, r::Range{T}) = vcat(r)
collect(r::Range) = vcat(r)
reverse(r::OrdinalRange) = colon(last(r), -step(r), first(r))
reverse(r::FloatRange) = FloatRange(r.start + (r.len-1)*r.step, -r.step, r.len, r.divisor)
reverse(r::LinSpace) = LinSpace(r.stop, r.start, r.len, r.divisor)
## sorting ##
issorted(r::UnitRange) = true
issorted(r::Range) = step(r) >= zero(step(r))
sort(r::UnitRange) = r
sort!(r::UnitRange) = r
sort(r::Range) = issorted(r) ? r : reverse(r)
sortperm(r::UnitRange) = 1:length(r)
sortperm(r::Range) = issorted(r) ? (1:1:length(r)) : (length(r):-1:1)
function sum{T<:Real}(r::Range{T})
l = length(r)
# note that a little care is required to avoid overflow in l*(l-1)/2
return l * first(r) + (iseven(l) ? (step(r) * (l-1)) * (l>>1)
: (step(r) * l) * ((l-1)>>1))
end
function sum(r::FloatRange)
l = length(r)
if iseven(l)
s = r.step * (l-1) * (l>>1)
else
s = (r.step * l) * ((l-1)>>1)
end
return (l * r.start + s)/r.divisor
end
function mean{T<:Real}(r::Range{T})
isempty(r) && throw(ArgumentError("mean of an empty range is undefined"))
(first(r) + last(r)) / 2
end
median{T<:Real}(r::Range{T}) = mean(r)
function in(x, r::Range)
n = step(r) == 0 ? 1 : round(Integer,(x-first(r))/step(r))+1
n >= 1 && n <= length(r) && r[n] == x
end
in{T<:Integer}(x, r::Range{T}) = isinteger(x) && !isempty(r) && x>=minimum(r) && x<=maximum(r) && (mod(convert(T,x),step(r))-mod(first(r),step(r)) == 0)
in(x::Char, r::Range{Char}) = !isempty(r) && x >= minimum(r) && x <= maximum(r) && (mod(Int(x) - Int(first(r)), step(r)) == 0)
|