This file is indexed.

/usr/share/julia/base/range.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# This file is a part of Julia. License is MIT: http://julialang.org/license

## 1-dimensional ranges ##

typealias Dims Tuple{Vararg{Int}}

abstract Range{T} <: AbstractArray{T,1}

## ordinal ranges

abstract OrdinalRange{T,S} <: Range{T}

immutable StepRange{T,S} <: OrdinalRange{T,S}
    start::T
    step::S
    stop::T

    function StepRange(start::T, step::S, stop::T)
        new(start, step, steprange_last(start,step,stop))
    end
end

# to make StepRange constructor inlineable, so optimizer can see `step` value
function steprange_last{T}(start::T, step, stop)
    if isa(start,AbstractFloat) || isa(step,AbstractFloat)
        throw(ArgumentError("StepRange should not be used with floating point"))
    end
    z = zero(step)
    step == z && throw(ArgumentError("step cannot be zero"))

    if stop == start
        last = stop
    else
        if (step > z) != (stop > start)
            # empty range has a special representation where stop = start-1
            # this is needed to avoid the wrap-around that can happen computing
            # start - step, which leads to a range that looks very large instead
            # of empty.
            if step > z
                last = start - one(stop-start)
            else
                last = start + one(stop-start)
            end
        else
            diff = stop - start
            if T<:Signed && (diff > zero(diff)) != (stop > start)
                # handle overflowed subtraction with unsigned rem
                if diff > zero(diff)
                    remain = -convert(T, unsigned(-diff) % step)
                else
                    remain = convert(T, unsigned(diff) % step)
                end
            else
                remain = steprem(start,stop,step)
            end
            last = stop - remain
        end
    end
    last
end

steprem(start,stop,step) = (stop-start) % step

StepRange{T,S}(start::T, step::S, stop::T) = StepRange{T,S}(start, step, stop)

immutable UnitRange{T<:Real} <: OrdinalRange{T,Int}
    start::T
    stop::T
    UnitRange(start, stop) = new(start, unitrange_last(start,stop))
end
UnitRange{T<:Real}(start::T, stop::T) = UnitRange{T}(start, stop)

unitrange_last(::Bool, stop::Bool) = stop
unitrange_last{T<:Integer}(start::T, stop::T) =
    ifelse(stop >= start, stop, convert(T,start-one(stop-start)))
unitrange_last{T}(start::T, stop::T) =
    ifelse(stop >= start, convert(T,start+floor(stop-start)),
                          convert(T,start-one(stop-start)))

colon(a::Real, b::Real) = colon(promote(a,b)...)

colon{T<:Real}(start::T, stop::T) = UnitRange{T}(start, stop)

range(a::Real, len::Integer) = UnitRange{typeof(a)}(a, oftype(a, a+len-1))

colon{T}(start::T, stop::T) = StepRange(start, one(stop-start), stop)

range{T}(a::T, len::Integer) =
    StepRange{T, typeof(a-a)}(a, one(a-a), a+oftype(a-a,(len-1)))

# first promote start and stop, leaving step alone
# this is for non-numeric ranges where step can be quite different
colon{A<:Real,C<:Real}(a::A, b, c::C) = colon(convert(promote_type(A,C),a), b, convert(promote_type(A,C),c))

colon{T<:Real}(start::T, step, stop::T) = StepRange(start, step, stop)
colon{T<:Real}(start::T, step::T, stop::T) = StepRange(start, step, stop)
colon{T<:Real}(start::T, step::Real, stop::T) = StepRange(promote(start, step, stop)...)

colon{T}(start::T, step, stop::T) = StepRange(start, step, stop)

range{T,S}(a::T, step::S, len::Integer) = StepRange{T,S}(a, step, convert(T, a+step*(len-1)))

## floating point ranges

immutable FloatRange{T<:AbstractFloat} <: Range{T}
    start::T
    step::T
    len::T
    divisor::T
end
FloatRange(a::AbstractFloat, s::AbstractFloat, l::Real, d::AbstractFloat) =
    FloatRange{promote_type(typeof(a),typeof(s),typeof(d))}(a,s,l,d)

# float rationalization helper
function rat(x)
    y = x
    a = d = 1
    b = c = 0
    m = maxintfloat(Float32)
    while abs(y) <= m
        f = trunc(Int,y)
        y -= f
        a, c = f*a + c, a
        b, d = f*b + d, b
        max(abs(a),abs(b)) <= convert(Int,m) || return c, d
        oftype(x,a)/oftype(x,b) == x && break
        y = inv(y)
    end
    return a, b
end

function colon{T<:AbstractFloat}(start::T, step::T, stop::T)
    step == 0 && throw(ArgumentError("range step cannot be zero"))
    start == stop && return FloatRange{T}(start,step,1,1)
    (0 < step) != (start < stop) && return FloatRange{T}(start,step,0,1)

    # float range "lifting"
    r = (stop-start)/step
    n = round(r)
    lo = prevfloat((prevfloat(stop)-nextfloat(start))/n)
    hi = nextfloat((nextfloat(stop)-prevfloat(start))/n)
    if lo <= step <= hi
        a0, b = rat(start)
        a = convert(T,a0)
        if a/convert(T,b) == start
            c0, d = rat(step)
            c = convert(T,c0)
            if c/convert(T,d) == step
                e = lcm(b,d)
                a *= div(e,b)
                c *= div(e,d)
                eT = convert(T,e)
                if (a+n*c)/eT == stop
                    return FloatRange{T}(a, c, n+1, eT)
                end
            end
        end
    end
    FloatRange{T}(start, step, floor(r)+1, one(step))
end

colon{T<:AbstractFloat}(a::T, b::T) = colon(a, one(a), b)

colon{T<:Real}(a::T, b::AbstractFloat, c::T) = colon(promote(a,b,c)...)
colon{T<:AbstractFloat}(a::T, b::AbstractFloat, c::T) = colon(promote(a,b,c)...)
colon{T<:AbstractFloat}(a::T, b::Real, c::T) = colon(promote(a,b,c)...)

range(a::AbstractFloat, len::Integer) = FloatRange(a,one(a),len,one(a))
range(a::AbstractFloat, st::AbstractFloat, len::Integer) = FloatRange(a,st,len,one(a))
range(a::Real, st::AbstractFloat, len::Integer) = FloatRange(float(a), st, len, one(st))
range(a::AbstractFloat, st::Real, len::Integer) = FloatRange(a, float(st), len, one(a))

## linspace and logspace

immutable LinSpace{T<:AbstractFloat} <: Range{T}
    start::T
    stop::T
    len::T
    divisor::T
end

function linspace{T<:AbstractFloat}(start::T, stop::T, len::T)
    len == round(len) || throw(InexactError())
    0 <= len || error("linspace($start, $stop, $len): negative length")
    if len == 0
        n = convert(T, 2)
        if isinf(n*start) || isinf(n*stop)
            start /= n; stop /= n; n = one(T)
        end
        return LinSpace(-start, -stop, -one(T), n)
    end
    if len == 1
        start == stop || error("linspace($start, $stop, $len): endpoints differ")
        return LinSpace(-start, -start, zero(T), one(T))
    end
    n = convert(T, len - 1)
    len - n == 1 || error("linspace($start, $stop, $len): too long for $T")
    a0, b = rat(start)
    a = convert(T,a0)
    if a/convert(T,b) == start
        c0, d = rat(stop)
        c = convert(T,c0)
        if c/convert(T,d) == stop
            e = lcm(b,d)
            a *= div(e,b)
            c *= div(e,d)
            s = convert(T,n*e)
            if isinf(a*n) || isinf(c*n)
                s, p = frexp(s)
                p2 = oftype(s,2)^p
                a /= p2; c /= p2
            end
            if a*n/s == start && c*n/s == stop
                return LinSpace(a, c, len, s)
            end
        end
    end
    a, c, s = start, stop, n
    if isinf(a*n) || isinf(c*n)
        s, p = frexp(s)
        p2 = oftype(s,2)^p
        a /= p2; c /= p2
    end
    if a*n/s == start && c*n/s == stop
        return LinSpace(a, c, len, s)
    end
    return LinSpace(start, stop, len, n)
end
function linspace{T<:AbstractFloat}(start::T, stop::T, len::Real)
    T_len = convert(T, len)
    T_len == len || throw(InexactError())
    linspace(start, stop, T_len)
end
linspace(start::Real, stop::Real, len::Real=50) =
    linspace(promote(AbstractFloat(start), AbstractFloat(stop))..., len)

function show(io::IO, r::LinSpace)
    print(io, "linspace(")
    show(io, first(r))
    print(io, ',')
    show(io, last(r))
    print(io, ',')
    show(io, length(r))
    print(io, ')')
end

logspace(start::Real, stop::Real, n::Integer=50) = 10.^linspace(start, stop, n)

## interface implementations

similar(r::Range, T::Type, dims::Tuple{Vararg{Integer}}) = Array(T, dims...)
similar(r::Range, T::Type, dims::Dims) = Array(T, dims)

size(r::Range) = (length(r),)

isempty(r::StepRange) =
    (r.start != r.stop) & ((r.step > zero(r.step)) != (r.stop > r.start))
isempty(r::UnitRange) = r.start > r.stop
isempty(r::FloatRange) = length(r) == 0
isempty(r::LinSpace) = length(r) == 0

step(r::StepRange) = r.step
step(r::UnitRange) = 1
step(r::FloatRange) = r.step/r.divisor
step{T}(r::LinSpace{T}) = ifelse(r.len <= 0, convert(T,NaN), (r.stop-r.start)/r.divisor)

function length(r::StepRange)
    n = Integer(div(r.stop+r.step - r.start, r.step))
    isempty(r) ? zero(n) : n
end
length(r::UnitRange) = Integer(r.stop - r.start + 1)
length(r::FloatRange) = Integer(r.len)
length(r::LinSpace) = Integer(r.len + signbit(r.len - 1))

function length{T<:Union{Int,UInt,Int64,UInt64}}(r::StepRange{T})
    isempty(r) && return zero(T)
    if r.step > 1
        return checked_add(convert(T, div(unsigned(r.stop - r.start), r.step)), one(T))
    elseif r.step < -1
        return checked_add(convert(T, div(unsigned(r.start - r.stop), -r.step)), one(T))
    else
        checked_add(div(checked_sub(r.stop, r.start), r.step), one(T))
    end
end

length{T<:Union{Int,Int64}}(r::UnitRange{T}) =
    checked_add(checked_sub(r.stop, r.start), one(T))

length{T<:Union{UInt,UInt64}}(r::UnitRange{T}) =
    r.stop < r.start ? zero(T) : checked_add(r.stop - r.start, one(T))

# some special cases to favor default Int type
let smallint = (Int === Int64 ?
                Union{Int8,UInt8,Int16,UInt16,Int32,UInt32} :
                Union{Int8,UInt8,Int16,UInt16})
    global length

    function length{T <: smallint}(r::StepRange{T})
        isempty(r) && return Int(0)
        div(Int(r.stop)+Int(r.step) - Int(r.start), Int(r.step))
    end

    length{T <: smallint}(r::UnitRange{T}) = Int(r.stop) - Int(r.start) + 1
end

first{T}(r::OrdinalRange{T}) = convert(T, r.start)
first{T}(r::FloatRange{T}) = convert(T, r.start/r.divisor)
first{T}(r::LinSpace{T}) = convert(T, (r.len-1)*r.start/r.divisor)

last{T}(r::StepRange{T}) = r.stop
last(r::UnitRange) = r.stop
last{T}(r::FloatRange{T}) = convert(T, (r.start + (r.len-1)*r.step)/r.divisor)
last{T}(r::LinSpace{T}) = convert(T, (r.len-1)*r.stop/r.divisor)

minimum(r::UnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : first(r)
maximum(r::UnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : last(r)
minimum(r::Range)  = isempty(r) ? throw(ArgumentError("range must be non-empty")) : min(first(r), last(r))
maximum(r::Range)  = isempty(r) ? throw(ArgumentError("range must be non-empty")) : max(first(r), last(r))

ctranspose(r::Range) = [x for _=1, x=r]
transpose(r::Range) = r'

# Ranges are immutable
copy(r::Range) = r


## iteration

start(r::FloatRange) = 0
done(r::FloatRange, i::Int) = length(r) <= i
next{T}(r::FloatRange{T}, i::Int) =
    (convert(T, (r.start + i*r.step)/r.divisor), i+1)

start(r::LinSpace) = 1
done(r::LinSpace, i::Int) = length(r) < i
next{T}(r::LinSpace{T}, i::Int) =
    (convert(T, ((r.len-i)*r.start + (i-1)*r.stop)/r.divisor), i+1)

# NOTE: For ordinal ranges, we assume start+step might be from a
# lifted domain (e.g. Int8+Int8 => Int); use that for iterating.
start(r::StepRange) = convert(typeof(r.start+r.step), r.start)
next{T}(r::StepRange{T}, i) = (convert(T,i), i+r.step)
done{T,S}(r::StepRange{T,S}, i) = isempty(r) | (i < min(r.start, r.stop)) | (i > max(r.start, r.stop))
done{T,S}(r::StepRange{T,S}, i::Integer) = isempty(r) | (i == r.stop+r.step)

start(r::UnitRange) = oftype(r.start+1, r.start)
next{T}(r::UnitRange{T}, i) = (convert(T,i), i+1)
done(r::UnitRange, i) = i==oftype(i,r.stop)+1


## indexing

getindex(r::Range, i::Integer) = (checkbounds(r, i); unsafe_getindex(r, i))
unsafe_getindex{T}(v::Range{T}, i::Integer) = convert(T, first(v) + (i-1)*step(v))

getindex{T}(r::FloatRange{T}, i::Integer) = (checkbounds(r, i); unsafe_getindex(r, i))
unsafe_getindex{T}(r::FloatRange{T}, i::Integer) = convert(T, (r.start + (i-1)*r.step)/r.divisor)

getindex{T}(r::LinSpace{T}, i::Integer) = (checkbounds(r, i); unsafe_getindex(r, i))
unsafe_getindex{T}(r::LinSpace{T}, i::Integer) = convert(T, ((r.len-i)*r.start + (i-1)*r.stop)/r.divisor)

getindex(r::Range, ::Colon) = copy(r)
unsafe_getindex(r::Range, ::Colon) = copy(r)

getindex(r::UnitRange, s::UnitRange{Int}) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex(r::UnitRange, s::UnitRange{Int})
    st = oftype(r.start, r.start + s.start-1)
    range(st, length(s))
end

getindex(r::UnitRange, s::StepRange{Int}) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex(r::UnitRange, s::StepRange{Int})
    st = oftype(r.start, r.start + s.start-1)
    range(st, step(s), length(s))
end

getindex(r::StepRange, s::Range{Int}) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex(r::StepRange, s::Range{Int})
    st = oftype(r.start, r.start + (first(s)-1)*step(r))
    range(st, step(r)*step(s), length(s))
end

getindex(r::FloatRange, s::OrdinalRange) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex(r::FloatRange, s::OrdinalRange)
    FloatRange(r.start + (first(s)-1)*r.step, step(s)*r.step, length(s), r.divisor)
end

getindex(r::LinSpace, s::OrdinalRange) = (checkbounds(r, s); unsafe_getindex(r, s))
function unsafe_getindex{T}(r::LinSpace{T}, s::OrdinalRange)
    sl::T = length(s)
    ifirst = first(s)
    ilast = last(s)
    vfirst::T = ((r.len - ifirst) * r.start + (ifirst - 1) * r.stop) / r.divisor
    vlast::T = ((r.len - ilast) * r.start + (ilast - 1) * r.stop) / r.divisor
    return linspace(vfirst, vlast, sl)
end

function show(io::IO, r::Range)
    print(io, repr(first(r)), ':', repr(step(r)), ':', repr(last(r)))
end
show(io::IO, r::UnitRange) = print(io, repr(first(r)), ':', repr(last(r)))

=={T<:Range}(r::T, s::T) = (first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s))
==(r::OrdinalRange, s::OrdinalRange) = (first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s))
=={T<:LinSpace}(r::T, s::T) = (first(r) == first(s)) & (length(r) == length(s)) & (last(r) == last(s))

function ==(r::Range, s::Range)
    lr = length(r)
    if lr != length(s)
        return false
    end
    u, v = start(r), start(s)
    while !done(r, u)
        x, u = next(r, u)
        y, v = next(s, v)
        if x != y
            return false
        end
    end
    return true
end

intersect{T1<:Integer, T2<:Integer}(r::UnitRange{T1}, s::UnitRange{T2}) = max(r.start,s.start):min(last(r),last(s))

intersect{T<:Integer}(i::Integer, r::UnitRange{T}) =
    i < first(r) ? (first(r):i) :
    i > last(r)  ? (i:last(r))  : (i:i)

intersect{T<:Integer}(r::UnitRange{T}, i::Integer) = intersect(i, r)

function intersect{T1<:Integer, T2<:Integer}(r::UnitRange{T1}, s::StepRange{T2})
    if isempty(s)
        range(first(r), 0)
    elseif step(s) == 0
        intersect(first(s), r)
    elseif step(s) < 0
        intersect(r, reverse(s))
    else
        sta = first(s)
        ste = step(s)
        sto = last(s)
        lo = first(r)
        hi = last(r)
        i0 = max(sta, lo + mod(sta - lo, ste))
        i1 = min(sto, hi - mod(hi - sta, ste))
        i0:ste:i1
    end
end

function intersect{T1<:Integer, T2<:Integer}(r::StepRange{T1}, s::UnitRange{T2})
    if step(r) < 0
        reverse(intersect(s, reverse(r)))
    else
        intersect(s, r)
    end
end

function intersect(r::StepRange, s::StepRange)
    if isempty(r) || isempty(s)
        return range(first(r), step(r), 0)
    elseif step(s) < 0
        return intersect(r, reverse(s))
    elseif step(r) < 0
        return reverse(intersect(reverse(r), s))
    end

    start1 = first(r)
    step1 = step(r)
    stop1 = last(r)
    start2 = first(s)
    step2 = step(s)
    stop2 = last(s)
    a = lcm(step1, step2)

    # if a == 0
    #     # One or both ranges have step 0.
    #     if step1 == 0 && step2 == 0
    #         return start1 == start2 ? r : Range(start1, 0, 0)
    #     elseif step1 == 0
    #         return start2 <= start1 <= stop2 && rem(start1 - start2, step2) == 0 ? r : Range(start1, 0, 0)
    #     else
    #         return start1 <= start2 <= stop1 && rem(start2 - start1, step1) == 0 ? (start2:step1:start2) : Range(start1, step1, 0)
    #     end
    # end

    g, x, y = gcdx(step1, step2)

    if rem(start1 - start2, g) != 0
        # Unaligned, no overlap possible.
        return range(start1, a, 0)
    end

    z = div(start1 - start2, g)
    b = start1 - x * z * step1
    # Possible points of the intersection of r and s are
    # ..., b-2a, b-a, b, b+a, b+2a, ...
    # Determine where in the sequence to start and stop.
    m = max(start1 + mod(b - start1, a), start2 + mod(b - start2, a))
    n = min(stop1 - mod(stop1 - b, a), stop2 - mod(stop2 - b, a))
    m:a:n
end

function intersect(r1::Range, r2::Range, r3::Range, r::Range...)
    i = intersect(intersect(r1, r2), r3)
    for t in r
        i = intersect(i, t)
    end
    i
end

# findin (the index of intersection)
function _findin{T1<:Integer, T2<:Integer}(r::Range{T1}, span::UnitRange{T2})
    local ifirst
    local ilast
    fspan = first(span)
    lspan = last(span)
    fr = first(r)
    lr = last(r)
    sr = step(r)
    if sr > 0
        ifirst = fr >= fspan ? 1 : ceil(Integer,(fspan-fr)/sr)+1
        ilast = lr <= lspan ? length(r) : length(r) - ceil(Integer,(lr-lspan)/sr)
    elseif sr < 0
        ifirst = fr <= lspan ? 1 : ceil(Integer,(lspan-fr)/sr)+1
        ilast = lr >= fspan ? length(r) : length(r) - ceil(Integer,(lr-fspan)/sr)
    else
        ifirst = fr >= fspan ? 1 : length(r)+1
        ilast = fr <= lspan ? length(r) : 0
    end
    ifirst, ilast
end

function findin{T1<:Integer, T2<:Integer}(r::UnitRange{T1}, span::UnitRange{T2})
    ifirst, ilast = _findin(r, span)
    ifirst:ilast
end

function findin{T1<:Integer, T2<:Integer}(r::Range{T1}, span::UnitRange{T2})
    ifirst, ilast = _findin(r, span)
    ifirst:1:ilast
end

## linear operations on ranges ##

-(r::OrdinalRange) = range(-r.start, -step(r), length(r))
-(r::FloatRange)   = FloatRange(-r.start, -r.step, r.len, r.divisor)
-(r::LinSpace)     = LinSpace(-r.start, -r.stop, r.len, r.divisor)

.+(x::Real, r::UnitRange)  = range(x + r.start, length(r))
.+(x::Real, r::Range) = (x+first(r)):step(r):(x+last(r))
#.+(x::Real, r::StepRange)  = range(x + r.start, r.step, length(r))
.+(x::Real, r::FloatRange) = FloatRange(r.divisor*x + r.start, r.step, r.len, r.divisor)
function .+{T}(x::Real, r::LinSpace{T})
    x2 = x * r.divisor / (r.len - 1)
    LinSpace(x2 + r.start, x2 + r.stop, r.len, r.divisor)
end
.+(r::Range, x::Real)      = x + r
#.+(r::FloatRange, x::Real) = x + r

.-(x::Real, r::Range)      = (x-first(r)):-step(r):(x-last(r))
.-(x::Real, r::FloatRange) = FloatRange(r.divisor*x - r.start, -r.step, r.len, r.divisor)
function .-(x::Real, r::LinSpace)
    x2 = x * r.divisor / (r.len - 1)
    LinSpace(x2 - r.start, x2 - r.stop, r.len, r.divisor)
end
.-(r::UnitRange, x::Real)  = range(r.start-x, length(r))
.-(r::StepRange , x::Real) = range(r.start-x, r.step, length(r))
.-(r::FloatRange, x::Real) = FloatRange(r.start - r.divisor*x, r.step, r.len, r.divisor)
function .-(r::LinSpace, x::Real)
    x2 = x * r.divisor / (r.len - 1)
    LinSpace(r.start - x2, r.stop - x2, r.len, r.divisor)
end

.*(x::Real, r::OrdinalRange) = range(x*r.start, x*step(r), length(r))
.*(x::Real, r::FloatRange)   = FloatRange(x*r.start, x*r.step, r.len, r.divisor)
.*(x::Real, r::LinSpace)     = LinSpace(x * r.start, x * r.stop, r.len, r.divisor)
.*(r::Range, x::Real)        = x .* r
.*(r::FloatRange, x::Real)   = x .* r
.*(r::LinSpace, x::Real)     = x .* r

./(r::OrdinalRange, x::Real) = range(r.start/x, step(r)/x, length(r))
./(r::FloatRange, x::Real)   = FloatRange(r.start/x, r.step/x, r.len, r.divisor)
./(r::LinSpace, x::Real)     = LinSpace(r.start / x, r.stop / x, r.len, r.divisor)

promote_rule{T1,T2}(::Type{UnitRange{T1}},::Type{UnitRange{T2}}) =
    UnitRange{promote_type(T1,T2)}
convert{T}(::Type{UnitRange{T}}, r::UnitRange{T}) = r
convert{T}(::Type{UnitRange{T}}, r::UnitRange) = UnitRange{T}(r.start, r.stop)

promote_rule{T1a,T1b,T2a,T2b}(::Type{StepRange{T1a,T1b}},::Type{StepRange{T2a,T2b}}) =
    StepRange{promote_type(T1a,T2a),promote_type(T1b,T2b)}
convert{T1,T2}(::Type{StepRange{T1,T2}}, r::StepRange{T1,T2}) = r

promote_rule{T1a,T1b,T2}(::Type{StepRange{T1a,T1b}},::Type{UnitRange{T2}}) =
    StepRange{promote_type(T1a,T2),promote_type(T1b,T2)}
convert{T1,T2}(::Type{StepRange{T1,T2}}, r::Range) =
    StepRange{T1,T2}(convert(T1, first(r)), convert(T2, step(r)), convert(T1, last(r)))
convert{T}(::Type{StepRange}, r::UnitRange{T}) =
    StepRange{T,T}(first(r), step(r), last(r))

promote_rule{T1,T2}(::Type{FloatRange{T1}},::Type{FloatRange{T2}}) =
    FloatRange{promote_type(T1,T2)}
convert{T}(::Type{FloatRange{T}}, r::FloatRange{T}) = r
convert{T}(::Type{FloatRange{T}}, r::FloatRange) =
    FloatRange{T}(r.start,r.step,r.len,r.divisor)

promote_rule{F,OR<:OrdinalRange}(::Type{FloatRange{F}}, ::Type{OR}) =
    FloatRange{promote_type(F,eltype(OR))}
convert{T}(::Type{FloatRange{T}}, r::OrdinalRange) =
    FloatRange{T}(first(r), step(r), length(r), one(T))
convert{T}(::Type{FloatRange}, r::OrdinalRange{T}) =
    FloatRange{typeof(float(first(r)))}(first(r), step(r), length(r), one(T))

promote_rule{T1,T2}(::Type{LinSpace{T1}},::Type{LinSpace{T2}}) =
    LinSpace{promote_type(T1,T2)}
convert{T}(::Type{LinSpace{T}}, r::LinSpace{T}) = r
convert{T}(::Type{LinSpace{T}}, r::LinSpace) =
    LinSpace{T}(r.start, r.stop, r.len, r.divisor)

promote_rule{F,OR<:OrdinalRange}(::Type{LinSpace{F}}, ::Type{OR}) =
    LinSpace{promote_type(F,eltype(OR))}
convert{T}(::Type{LinSpace{T}}, r::OrdinalRange) =
    linspace(convert(T, first(r)), convert(T, last(r)), convert(T, length(r)))
convert{T}(::Type{LinSpace}, r::OrdinalRange{T}) =
    convert(LinSpace{typeof(float(first(r)))}, r)

# Promote FloatRange to LinSpace
promote_rule{F,OR<:FloatRange}(::Type{LinSpace{F}}, ::Type{OR}) =
    LinSpace{promote_type(F,eltype(OR))}
convert{T}(::Type{LinSpace{T}}, r::FloatRange) =
    linspace(convert(T, first(r)), convert(T, last(r)), convert(T, length(r)))
convert{T}(::Type{LinSpace}, r::FloatRange{T}) =
    convert(LinSpace{T}, r)


# +/- of ranges is defined in operators.jl (to be able to use @eval etc.)

## non-linear operations on ranges and fallbacks for non-real numbers ##

.+(x::Number, r::Range) = [ x+y for y=r ]
.+(r::Range, y::Number) = [ x+y for x=r ]

.-(x::Number, r::Range) = [ x-y for y=r ]
.-(r::Range, y::Number) = [ x-y for x=r ]

.*(x::Number, r::Range) = [ x*y for y=r ]
.*(r::Range, y::Number) = [ x*y for x=r ]

./(x::Number, r::Range) = [ x/y for y=r ]
./(r::Range, y::Number) = [ x/y for x=r ]

.^(x::Number, r::Range) = [ x^y for y=r ]
.^(r::Range, y::Number) = [ x^y for x=r ]

## concatenation ##

function vcat{T}(rs::Range{T}...)
    n::Int = 0
    for ra in rs
        n += length(ra)
    end
    a = Array(T,n)
    i = 1
    for ra in rs, x in ra
        @inbounds a[i] = x
        i += 1
    end
    return a
end

convert{T}(::Type{Array{T,1}}, r::Range{T}) = vcat(r)
collect(r::Range) = vcat(r)

reverse(r::OrdinalRange) = colon(last(r), -step(r), first(r))
reverse(r::FloatRange)   = FloatRange(r.start + (r.len-1)*r.step, -r.step, r.len, r.divisor)
reverse(r::LinSpace)     = LinSpace(r.stop, r.start, r.len, r.divisor)

## sorting ##

issorted(r::UnitRange) = true
issorted(r::Range) = step(r) >= zero(step(r))

sort(r::UnitRange) = r
sort!(r::UnitRange) = r

sort(r::Range) = issorted(r) ? r : reverse(r)

sortperm(r::UnitRange) = 1:length(r)
sortperm(r::Range) = issorted(r) ? (1:1:length(r)) : (length(r):-1:1)

function sum{T<:Real}(r::Range{T})
    l = length(r)
    # note that a little care is required to avoid overflow in l*(l-1)/2
    return l * first(r) + (iseven(l) ? (step(r) * (l-1)) * (l>>1)
                                     : (step(r) * l) * ((l-1)>>1))
end

function sum(r::FloatRange)
    l = length(r)
    if iseven(l)
        s = r.step * (l-1) * (l>>1)
    else
        s = (r.step * l) * ((l-1)>>1)
    end
    return (l * r.start + s)/r.divisor
end


function mean{T<:Real}(r::Range{T})
    isempty(r) && throw(ArgumentError("mean of an empty range is undefined"))
    (first(r) + last(r)) / 2
end

median{T<:Real}(r::Range{T}) = mean(r)

function in(x, r::Range)
    n = step(r) == 0 ? 1 : round(Integer,(x-first(r))/step(r))+1
    n >= 1 && n <= length(r) && r[n] == x
end

in{T<:Integer}(x, r::Range{T}) = isinteger(x) && !isempty(r) && x>=minimum(r) && x<=maximum(r) && (mod(convert(T,x),step(r))-mod(first(r),step(r)) == 0)
in(x::Char, r::Range{Char}) = !isempty(r) && x >= minimum(r) && x <= maximum(r) && (mod(Int(x) - Int(first(r)), step(r)) == 0)