/usr/share/julia/base/quadgk.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | # This file is a part of Julia. License is MIT: http://julialang.org/license
module QuadGK
export gauss, kronrod, quadgk
using Base.Collections
import Base: isless, Order.Reverse, AnyDict
# Adaptive Gauss-Kronrod quadrature routines (arbitrary precision),
# written and contributed to Julia by Steven G. Johnson, 2013.
###########################################################################
# cache of (T,n) -> (x,w,gw) Kronrod rules, to avoid recomputing them
# unnecessarily for repeated integration. We initialize it with the
# default n=7 rule for double-precision calculations.
const rulecache = AnyDict( (Float64,7) => # precomputed in 100-bit arith.
([-9.9145537112081263920685469752598e-01,
-9.4910791234275852452618968404809e-01,
-8.6486442335976907278971278864098e-01,
-7.415311855993944398638647732811e-01,
-5.8608723546769113029414483825842e-01,
-4.0584515137739716690660641207707e-01,
-2.0778495500789846760068940377309e-01,
0.0],
[2.2935322010529224963732008059913e-02,
6.3092092629978553290700663189093e-02,
1.0479001032225018383987632254189e-01,
1.4065325971552591874518959051021e-01,
1.6900472663926790282658342659795e-01,
1.9035057806478540991325640242055e-01,
2.0443294007529889241416199923466e-01,
2.0948214108472782801299917489173e-01],
[1.2948496616886969327061143267787e-01,
2.797053914892766679014677714229e-01,
3.8183005050511894495036977548818e-01,
4.1795918367346938775510204081658e-01]) )
# integration segment (a,b), estimated integral I, and estimated error E
immutable Segment
a::Number
b::Number
I
E::Real
end
isless(i::Segment, j::Segment) = isless(i.E, j.E)
# Internal routine: approximately integrate f(x) over the interval (a,b)
# by evaluating the integration rule (x,w,gw). Return a Segment.
function evalrule(f, a,b, x,w,gw, nrm)
# Ik and Ig are integrals via Kronrod and Gauss rules, respectively
s = convert(eltype(x), 0.5) * (b-a)
n1 = 1 - (length(x) & 1) # 0 if even order, 1 if odd order
# unroll first iterationof loop to get correct type of Ik and Ig
fg = f(a + (1+x[2])*s) + f(a + (1-x[2])*s)
fk = f(a + (1+x[1])*s) + f(a + (1-x[1])*s)
Ig = fg * gw[1]
Ik = fg * w[2] + fk * w[1]
for i = 2:length(gw)-n1
fg = f(a + (1+x[2i])*s) + f(a + (1-x[2i])*s)
fk = f(a + (1+x[2i-1])*s) + f(a + (1-x[2i-1])*s)
Ig += fg * gw[i]
Ik += fg * w[2i] + fk * w[2i-1]
end
if n1 == 0 # even: Gauss rule does not include x == 0
Ik += f(a + s) * w[end]
else # odd: don't count x==0 twice in Gauss rule
f0 = f(a + s)
Ig += f0 * gw[end]
Ik += f0 * w[end] +
(f(a + (1+x[end-1])*s) + f(a + (1-x[end-1])*s)) * w[end-1]
end
Ik *= s
Ig *= s
E = nrm(Ik - Ig)
if isnan(E) || isinf(E)
throw(DomainError())
end
return Segment(a, b, Ik, E)
end
rulekey(::Type{BigFloat}, n) = (BigFloat, get_bigfloat_precision(), n)
rulekey(T,n) = (T,n)
# Internal routine: integrate f over the union of the open intervals
# (s[1],s[2]), (s[2],s[3]), ..., (s[end-1],s[end]), using h-adaptive
# integration with the order-n Kronrod rule and weights of type Tw,
# with absolute tolerance abstol and relative tolerance reltol,
# with maxevals an approximate maximum number of f evaluations.
function do_quadgk{Tw}(f, s, n, ::Type{Tw}, abstol, reltol, maxevals, nrm)
if eltype(s) <: Real # check for infinite or semi-infinite intervals
s1 = s[1]; s2 = s[end]; inf1 = isinf(s1); inf2 = isinf(s2)
if inf1 || inf2
if inf1 && inf2 # x = t/(1-t^2) coordinate transformation
return do_quadgk(t -> begin t2 = t*t; den = 1 / (1 - t2);
f(t*den) * (1+t2)*den*den; end,
map(x -> isinf(x) ? copysign(one(x), x) : 2x / (1+hypot(1,2x)), s),
n, Tw, abstol, reltol, maxevals, nrm)
end
s0,si = inf1 ? (s2,s1) : (s1,s2)
if si < 0 # x = s0 - t/(1-t)
return do_quadgk(t -> begin den = 1 / (1 - t);
f(s0 - t*den) * den*den; end,
reverse!(map(x -> 1 / (1 + 1 / (s0 - x)), s)),
n, Tw, abstol, reltol, maxevals, nrm)
else # x = s0 + t/(1-t)
return do_quadgk(t -> begin den = 1 / (1 - t);
f(s0 + t*den) * den*den; end,
map(x -> 1 / (1 + 1 / (x - s0)), s),
n, Tw, abstol, reltol, maxevals, nrm)
end
end
end
key = rulekey(Tw,n)
x,w,gw = haskey(rulecache, key) ? rulecache[key] :
(rulecache[key] = kronrod(Tw, n))
segs = Segment[]
for i in 1:length(s) - 1
heappush!(segs, evalrule(f, s[i],s[i+1], x,w,gw, nrm), Reverse)
end
numevals = (2n+1) * length(segs)
I = segs[1].I
E = segs[1].E
for i in 2:length(segs)
I += segs[i].I
E += segs[i].E
end
# Pop the biggest-error segment and subdivide (h-adaptation)
# until convergence is achieved or maxevals is exceeded.
while E > abstol && E > reltol * nrm(I) && numevals < maxevals
s = heappop!(segs, Reverse)
mid = (s.a + s.b) * 0.5
s1 = evalrule(f, s.a, mid, x,w,gw, nrm)
s2 = evalrule(f, mid, s.b, x,w,gw, nrm)
heappush!(segs, s1, Reverse)
heappush!(segs, s2, Reverse)
I = (I - s.I) + s1.I + s2.I
E = (E - s.E) + s1.E + s2.E
numevals += 4n+2
end
# re-sum (paranoia about accumulated roundoff)
I = segs[1].I
E = segs[1].E
for i in 2:length(segs)
I += segs[i].I
E += segs[i].E
end
return (I, E)
end
# Gauss-Kronrod quadrature of f from a to b to c...
function quadgk{T<:AbstractFloat}(f, a::T,b::T,c::T...;
abstol=zero(T), reltol=sqrt(eps(T)),
maxevals=10^7, order=7, norm=vecnorm)
do_quadgk(f, [a, b, c...], order, T, abstol, reltol, maxevals, norm)
end
function quadgk{T<:AbstractFloat}(f, a::Complex{T},
b::Complex{T},c::Complex{T}...;
abstol=zero(T), reltol=sqrt(eps(T)),
maxevals=10^7, order=7, norm=vecnorm)
do_quadgk(f, [a, b, c...], order, T, abstol, reltol, maxevals, norm)
end
# generic version: determine precision from a combination of
# all the integration-segment endpoints
function quadgk(f, a, b, c...; kws...)
T = promote_type(typeof(float(a)), typeof(b))
for i in 1:length(c)
T = promote_type(T, typeof(c[i]))
end
cT = T[ c[i] for i in 1:length(c) ]
quadgk(f, convert(T, a), convert(T, b), cT...; kws...)
end
###########################################################################
# Gauss-Kronrod integration-weight computation for arbitrary floating-point
# types and precision, implemented based on the description in:
#
# Dirk P. Laurie, "Calculation of Gauss-Kronrod quadrature rules,"
# Mathematics of Computation, vol. 66, no. 219, pp. 1133-1145 (1997).
#
# for the Kronrod rule, and for the Gauss rule from the description in
#
# Lloyd N. Trefethen and David Bau, Numerical Linear Algebra (SIAM, 1997).
#
# Arbitrary-precision eigenvalue (eignewt & eigpoly) and eigenvector
# (eigvec1) routines are written by SGJ, independent of the above sources.
#
# Since we only implement Gauss-Kronrod rules for the unit weight function,
# the diagonals of the Jacobi matrices are zero and certain things simplify
# compared to the general case of an arbitrary weight function.
# Given a symmetric tridiagonal matrix H with H[i,i] = 0 and
# H[i-1,i] = H[i,i-1] = b[i-1], compute p(z) = det(z I - H) and its
# derivative p'(z), returning (p,p').
function eigpoly(b,z,m=length(b)+1)
d1 = z
d1deriv = d2 = one(z);
d2deriv = zero(z);
for i = 2:m
b2 = b[i-1]^2
d = z * d1 - b2 * d2;
dderiv = d1 + z * d1deriv - b2 * d2deriv;
d2 = d1;
d1 = d;
d2deriv = d1deriv;
d1deriv = dderiv;
end
return (d1, d1deriv)
end
# compute the n smallest eigenvalues of the symmetric tridiagonal matrix H
# (defined from b as in eigpoly) using a Newton iteration
# on det(H - lambda I). Unlike eig, handles BigFloat.
function eignewt(b,m,n)
# get initial guess from eig on Float64 matrix
H = SymTridiagonal(zeros(m), Float64[ b[i] for i in 1:m-1 ])
lambda0 = sort(eigvals(H))
lambda = Array(eltype(b), n)
for i = 1:n
lambda[i] = lambda0[i]
for k = 1:1000
(p,pderiv) = eigpoly(b,lambda[i],m)
lambda[i] = (lamold = lambda[i]) - p / pderiv
if abs(lambda[i] - lamold) < 10 * eps(lambda[i]) * abs(lambda[i])
break
end
end
# do one final Newton iteration for luck and profit:
(p,pderiv) = eigpoly(b,lambda[i],m)
lambda[i] = lambda[i] - p / pderiv
end
return lambda
end
# given an eigenvalue z and the matrix H(b) from above, return
# the corresponding eigenvector, normalized to 1.
function eigvec1(b,z::Number,m=length(b)+1)
# "cheat" and use the fact that our eigenvector v must have a
# nonzero first entries (since it is a quadrature weight), so we
# can set v[1] = 1 to solve for the rest of the components:.
v = Array(eltype(b), m)
v[1] = 1
if m > 1
s = v[1]
v[2] = z * v[1] / b[1]
s += v[2]^2
for i = 3:m
v[i] = - (b[i-2]*v[i-2] - z*v[i-1]) / b[i-1]
s += v[i]^2
end
scale!(v, 1 / sqrt(s))
end
return v
end
# return (x, w) pair of N quadrature points x[i] and weights w[i] to
# integrate functions on the interval (-1, 1). i.e. dot(f(x), w)
# approximates the integral. Uses the method described in Trefethen &
# Bau, Numerical Linear Algebra, to find the N-point Gaussian quadrature
function gauss{T<:AbstractFloat}(::Type{T}, N::Integer)
if N < 1
throw(ArgumentError("Gauss rules require positive order"))
end
o = one(T)
b = T[ n / sqrt(4n^2 - o) for n = 1:N-1 ]
x = eignewt(b,N,N)
w = T[ 2*eigvec1(b,x[i])[1]^2 for i = 1:N ]
return (x, w)
end
# Compute 2n+1 Kronrod points x and weights w based on the description in
# Laurie (1997), appendix A, simplified for a=0, for integrating on [-1,1].
# Since the rule is symmetric only returns the n+1 points with x <= 0.
# Also computes the embedded n-point Gauss quadrature weights gw (again
# for x <= 0), corresponding to the points x[2:2:end]. Returns (x,w,wg).
function kronrod{T<:AbstractFloat}(::Type{T}, n::Integer)
if n < 1
throw(ArgumentError("Kronrod rules require positive order"))
end
o = one(T)
b = zeros(T, 2n+1)
b[1] = 2*o
for j = 1:div(3n+1,2)
b[j+1] = j^2 / (4j^2 - o)
end
s = zeros(T, div(n,2) + 2)
t = zeros(T, div(n,2) + 2)
t[2] = b[n+2]
for m = 0:n-2
u = zero(T)
for k = div(m+1,2):-1:0
l = m - k + 1
k1 = k + n + 2
u += b[k1]*s[k+1] - b[l]*s[k+2]
s[k+2] = u
end
s,t = t,s
end
for j = div(n,2):-1:0
s[j+2] = s[j+1]
end
for m = n-1:2n-3
u = zero(T)
for k = m+1-n:div(m-1,2)
l = m - k + 1
j = n - l
k1 = k + n + 2
u -= b[k1]*s[j+2] - b[l]*s[j+3]
s[j+2] = u
end
k = div(m+1,2)
if 2k != m
j = n - (m - k + 2)
b[k+n+2] = s[j+2] / s[j+3]
end
s,t = t,s
end
for j = 1:2n
b[j] = sqrt(b[j+1])
end
# get negative quadrature points x
x = eignewt(b,2n+1,n+1) # x <= 0
# get quadrature weights
w = T[ 2*eigvec1(b,x[i],2n+1)[1]^2 for i in 1:n+1 ]
# Get embedded Gauss rule from even-indexed points, using
# the method described in Trefethen and Bau.
for j = 1:n-1
b[j] = j / sqrt(4j^2 - o)
end
gw = T[ 2*eigvec1(b,x[i],n)[1]^2 for i = 2:2:n+1 ]
return (x, w, gw)
end
###########################################################################
end # module QuadGK
|