This file is indexed.

/usr/share/julia/base/promotion.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# This file is a part of Julia. License is MIT: http://julialang.org/license

## type join (closest common ancestor, or least upper bound) ##

typejoin() = Bottom
typejoin(t::ANY) = t
typejoin(t::ANY, ts...) = typejoin(t, typejoin(ts...))
function typejoin(a::ANY, b::ANY)
    if isa(a,TypeConstructor); a = a.body; end
    if isa(b,TypeConstructor); b = b.body; end
    if a <: b
        return b
    elseif b <: a
        return a
    end
    if isa(a,TypeVar)
        return typejoin(a.ub, b)
    end
    if isa(b,TypeVar)
        return typejoin(a, b.ub)
    end
    if isa(a,Union) || isa(b,Union)
        u = Union{a, b}
        if !isa(u,Union)
            return u
        end
        return reduce(typejoin, Bottom, u.types)
    end
    if a <: Tuple
        if !(b <: Tuple)
            return Any
        end
        ap, bp = a.parameters, b.parameters
        la = length(ap)::Int; lb = length(bp)::Int
        if la==0 || lb==0
            return Tuple
        end
        if la < lb
            if isvarargtype(ap[la])
                c = cell(la)
                c[la] = Vararg{typejoin(ap[la].parameters[1], tailjoin(bp,la))}
                n = la-1
            else
                c = cell(la+1)
                c[la+1] = Vararg{tailjoin(bp,la+1)}
                n = la
            end
        elseif lb < la
            if isvarargtype(bp[lb])
                c = cell(lb)
                c[lb] = Vararg{typejoin(bp[lb].parameters[1], tailjoin(ap,lb))}
                n = lb-1
            else
                c = cell(lb+1)
                c[lb+1] = Vararg{tailjoin(ap,lb+1)}
                n = lb
            end
        else
            c = cell(la)
            n = la
        end
        for i = 1:n
            ai = ap[i]; bi = bp[i]
            ci = typejoin(unwrapva(ai),unwrapva(bi))
            c[i] = isvarargtype(ai) || isvarargtype(bi) ? Vararg{ci} : ci
        end
        return Tuple{c...}
    elseif b <: Tuple
        return Any
    end
    while !is(b,Any)
        if a <: b.name.primary
            while a.name !== b.name
                a = super(a)
            end
            # join on parameters
            n = length(a.parameters)
            p = cell(n)
            for i = 1:n
                ai, bi = a.parameters[i], b.parameters[i]
                if ai === bi || (isa(ai,Type) && isa(bi,Type) && typeseq(ai,bi))
                    p[i] = ai
                else
                    p[i] = a.name.primary.parameters[i]
                end
            end
            return a.name.primary{p...}
        end
        b = super(b)
    end
    return Any
end

# reduce typejoin over A[i:end]
function tailjoin(A, i)
    t = Bottom
    for j = i:length(A)
        t = typejoin(t, unwrapva(A[j]))
    end
    return t
end

## promotion mechanism ##

promote_type()  = Bottom
promote_type(T) = T
promote_type(T, S, U, V...) = promote_type(T, promote_type(S, U, V...))

promote_type(::Type{Bottom}, ::Type{Bottom}) = Bottom
promote_type{T}(::Type{T}, ::Type{T}) = T
promote_type{T}(::Type{T}, ::Type{Bottom}) = T
promote_type{T}(::Type{Bottom}, ::Type{T}) = T

# Try promote_rule in both orders. Typically only one is defined,
# and there is a fallback returning Bottom below, so the common case is
#   promote_type(T, S) =>
#   promote_result(T, S, result, Bottom) =>
#   typejoin(result, Bottom) => result
promote_type{T,S}(::Type{T}, ::Type{S}) =
    promote_result(T, S, promote_rule(T,S), promote_rule(S,T))

promote_rule(T, S) = Bottom

promote_result(t,s,T,S) = promote_type(T,S)
# If no promote_rule is defined, both directions give Bottom. In that
# case use typejoin on the original types instead.
promote_result{T,S}(::Type{T},::Type{S},::Type{Bottom},::Type{Bottom}) = typejoin(T, S)

promote() = ()
promote(x) = (x,)
function promote{T,S}(x::T, y::S)
    (convert(promote_type(T,S),x), convert(promote_type(T,S),y))
end
promote_typeof(x) = typeof(x)
promote_typeof(x, xs...) = promote_type(typeof(x), promote_typeof(xs...))
function promote(x, y, z)
    (convert(promote_typeof(x,y,z), x),
     convert(promote_typeof(x,y,z), y),
     convert(promote_typeof(x,y,z), z))
end
function promote(x, y, zs...)
    (convert(promote_typeof(x,y,zs...), x),
     convert(promote_typeof(x,y,zs...), y),
     convert(Tuple{Vararg{promote_typeof(x,y,zs...)}}, zs)...)
end
# TODO: promote{T}(x::T, ys::T...) here to catch all circularities?

## promotions in arithmetic, etc. ##

# Because of the promoting fallback definitions for Number, we need
# a special case for undefined promote_rule on numeric types.
# Otherwise, typejoin(T,S) is called (returning Number) so no conversion
# happens, and +(promote(x,y)...) is called again, causing a stack
# overflow.
promote_result{T<:Number,S<:Number}(::Type{T},::Type{S},::Type{Bottom},::Type{Bottom}) =
    promote_to_super(T, S, typejoin(T,S))

# promote numeric types T and S to typejoin(T,S) if T<:S or S<:T
# for example this makes promote_type(Integer,Real) == Real without
# promoting arbitrary pairs of numeric types to Number.
promote_to_super{T<:Number          }(::Type{T}, ::Type{T}, ::Type{T}) = T
promote_to_super{T<:Number,S<:Number}(::Type{T}, ::Type{S}, ::Type{T}) = T
promote_to_super{T<:Number,S<:Number}(::Type{T}, ::Type{S}, ::Type{S}) = S
promote_to_super{T<:Number,S<:Number}(::Type{T}, ::Type{S}, ::Type) =
    error("no promotion exists for ", T, " and ", S)

+(x::Number, y::Number) = +(promote(x,y)...)
*(x::Number, y::Number) = *(promote(x,y)...)
-(x::Number, y::Number) = -(promote(x,y)...)
/(x::Number, y::Number) = /(promote(x,y)...)
^(x::Number, y::Number) = ^(promote(x,y)...)

fma(x::Number, y::Number, z::Number) = fma(promote(x,y,z)...)
muladd(x::Number, y::Number, z::Number) = muladd(promote(x,y,z)...)

(&)(x::Integer, y::Integer) = (&)(promote(x,y)...)
(|)(x::Integer, y::Integer) = (|)(promote(x,y)...)
($)(x::Integer, y::Integer) = ($)(promote(x,y)...)

==(x::Number, y::Number) = (==)(promote(x,y)...)
<( x::Real, y::Real)     = (< )(promote(x,y)...)
<=(x::Real, y::Real)     = (<=)(promote(x,y)...)

div(x::Real, y::Real) = div(promote(x,y)...)
fld(x::Real, y::Real) = fld(promote(x,y)...)
cld(x::Real, y::Real) = cld(promote(x,y)...)
rem(x::Real, y::Real) = rem(promote(x,y)...)
mod(x::Real, y::Real) = mod(promote(x,y)...)

mod1(x::Real, y::Real) = mod1(promote(x,y)...)
rem1(x::Real, y::Real) = rem1(promote(x,y)...)
fld1(x::Real, y::Real) = fld1(promote(x,y)...)

max(x::Real, y::Real) = max(promote(x,y)...)
min(x::Real, y::Real) = min(promote(x,y)...)
minmax(x::Real, y::Real) = minmax(promote(x, y)...)

checked_add(x::Integer, y::Integer) = checked_add(promote(x,y)...)
checked_sub(x::Integer, y::Integer) = checked_sub(promote(x,y)...)
checked_mul(x::Integer, y::Integer) = checked_mul(promote(x,y)...)

# "Promotion" that takes a Functor into account. You can override this
# as needed. For example, if you need to provide a custom result type
# for the multiplication of two types,
#   promote_op{R<:MyType,S<:MyType}(::MulFun, ::Type{R}, ::Type{S}) = MyType{multype(R,S)}
promote_op{R,S}(::Any, ::Type{R}, ::Type{S}) = promote_type(R, S)

## catch-alls to prevent infinite recursion when definitions are missing ##

no_op_err(name, T) = error(name," not defined for ",T)
+{T<:Number}(x::T, y::T) = no_op_err("+", T)
*{T<:Number}(x::T, y::T) = no_op_err("*", T)
-{T<:Number}(x::T, y::T) = no_op_err("-", T)
/{T<:Number}(x::T, y::T) = no_op_err("/", T)
^{T<:Number}(x::T, y::T) = no_op_err("^", T)

fma{T<:Number}(x::T, y::T, z::T) = no_op_err("fma", T)
fma(x::Integer, y::Integer, z::Integer) = x*y+z
muladd{T<:Number}(x::T, y::T, z::T) = x*y+z

(&){T<:Integer}(x::T, y::T) = no_op_err("&", T)
(|){T<:Integer}(x::T, y::T) = no_op_err("|", T)
($){T<:Integer}(x::T, y::T) = no_op_err("\$", T)

=={T<:Number}(x::T, y::T) = x === y
 <{T<:Real}(x::T, y::T) = no_op_err("<" , T)
<={T<:Real}(x::T, y::T) = no_op_err("<=", T)

div{T<:Real}(x::T, y::T) = no_op_err("div", T)
fld{T<:Real}(x::T, y::T) = no_op_err("fld", T)
cld{T<:Real}(x::T, y::T) = no_op_err("cld", T)
rem{T<:Real}(x::T, y::T) = no_op_err("rem", T)
mod{T<:Real}(x::T, y::T) = no_op_err("mod", T)

mod1{T<:Real}(x::T, y::T) = no_op_err("mod1", T)
rem1{T<:Real}(x::T, y::T) = no_op_err("rem1", T)
fld1{T<:Real}(x::T, y::T) = no_op_err("fld1", T)

max{T<:Real}(x::T, y::T) = ifelse(y < x, x, y)
min{T<:Real}(x::T, y::T) = ifelse(y < x, y, x)
minmax{T<:Real}(x::T, y::T) = y < x ? (y, x) : (x, y)

checked_add{T<:Integer}(x::T, y::T) = no_op_err("checked_add", T)
checked_sub{T<:Integer}(x::T, y::T) = no_op_err("checked_sub", T)
checked_mul{T<:Integer}(x::T, y::T) = no_op_err("checked_mul", T)