This file is indexed.

/usr/share/julia/base/primes.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# This file is a part of Julia. License is MIT: http://julialang.org/license

# Primes generating functions
#     https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
#     https://en.wikipedia.org/wiki/Wheel_factorization
#     http://primesieve.org
#     Jonathan Sorenson, "An analysis of two prime number sieves", Computer Science Technical Report Vol. 1028, 1991
const wheel         = [4,  2,  4,  2,  4,  6,  2,  6]
const wheel_primes  = [7, 11, 13, 17, 19, 23, 29, 31]
const wheel_indices = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7 ]

@inline wheel_index(n) = ( (d, r) = divrem(n - 1, 30); return 8d + wheel_indices[r+1] )
@inline wheel_prime(n) = ( (d, r) = ((n - 1) >>> 3, (n - 1) & 7); return 30d + wheel_primes[r+1] )

function _primesmask(limit::Int)
    limit < 7 && throw(ArgumentError("limit must be at least 7, got $limit"))
    n = wheel_index(limit)
    m = wheel_prime(n)
    sieve = ones(Bool, n)
    @inbounds for i = 1:wheel_index(isqrt(limit))
        if sieve[i]; p = wheel_prime(i)
            q = p * p
            j = (i - 1) & 7 + 1
            while q ≤ m
                sieve[wheel_index(q)] = false
                q = q + wheel[j] * p
                j = j & 7 + 1
            end
        end
    end
    return sieve
end

function _primesmask(lo::Int, hi::Int)
    7 ≤ lo ≤ hi || throw(ArgumentError("the condition 7 ≤ lo ≤ hi must be met"))
    lo == 7 && return _primesmask(hi)
    wlo, whi = wheel_index(lo - 1), wheel_index(hi)
    m = wheel_prime(whi)
    sieve = ones(Bool, whi - wlo)
    small_primes = primes(isqrt(hi))
    @inbounds for i in 4:length(small_primes)
        p = small_primes[i]
        j = wheel_index(2 * div(lo - p - 1, 2p) + 1)
        q = p * wheel_prime(j + 1); j = j & 7 + 1
        while q ≤ m
            sieve[wheel_index(q)-wlo] = false
            q = q + wheel[j] * p
            j = j & 7 + 1
        end
    end
    return sieve
end

# Sieve of the primes up to limit represented as an array of booleans
function primesmask(limit::Int)
    limit < 1 && throw(ArgumentError("limit must be at least 1, got $limit"))
    sieve = falses(limit)
    limit < 2 && return sieve; sieve[2] = true
    limit < 3 && return sieve; sieve[3] = true
    limit < 5 && return sieve; sieve[5] = true
    limit < 7 && return sieve
    wheel_sieve = _primesmask(limit)
    @inbounds for i in eachindex(wheel_sieve)
        Base.unsafe_setindex!(sieve, wheel_sieve[i], wheel_prime(i))
    end
    return sieve
end
primesmask(n::Integer) = n <= typemax(Int) ? primesmask(Int(n)) :
    throw(ArgumentError("requested number of primes must be ≤ $(typemax(Int)), got $n"))

function primesmask(lo::Int, hi::Int)
    0 < lo ≤ hi || throw(ArgumentError("the condition 0 < lo ≤ hi must be met"))
    sieve = falses(hi - lo + 1)
    lo ≤ 2 ≤ hi && (sieve[3-lo] = true)
    lo ≤ 3 ≤ hi && (sieve[4-lo] = true)
    lo ≤ 5 ≤ hi && (sieve[6-lo] = true)
    hi < 7 && return sieve
    wheel_sieve = _primesmask(max(7, lo), hi)
    lsi = lo - 1
    lwi = wheel_index(lsi)
    @inbounds for i in eachindex(wheel_sieve)
        Base.unsafe_setindex!(sieve, wheel_sieve[i], wheel_prime(i + lwi) - lsi)
    end
    return sieve
end
primesmask{T<:Integer}(lo::T, hi::T) = lo <= hi <= typemax(Int) ? primesmask(Int(lo), Int(hi)) :
    throw(ArgumentError("both endpoints of the interval to sieve must be ≤ $(typemax(Int)), got $lo and $hi"))

function primes(n::Int)
    list = Int[]
    n < 2 && return list; push!(list, 2)
    n < 3 && return list; push!(list, 3)
    n < 5 && return list; push!(list, 5)
    n < 7 && return list
    sizehint!(list, floor(Int, n / log(n)))
    sieve = _primesmask(n)
    @inbounds for i in eachindex(sieve)
        sieve[i] && push!(list, wheel_prime(i))
    end
    return list
end

function primes(lo::Int, hi::Int)
    lo ≤ hi || throw(ArgumentError("the condition lo ≤ hi must be met"))
    list = Int[]
    lo ≤ 2 ≤ hi && push!(list, 2)
    lo ≤ 3 ≤ hi && push!(list, 3)
    lo ≤ 5 ≤ hi && push!(list, 5)
    hi < 7 && return list
    sieve = _primesmask(max(7, lo), hi)
    lwi = wheel_index(lo - 1)
    @inbounds for i in eachindex(sieve)
        sieve[i] && push!(list, wheel_prime(i + lwi))
    end
    return list
end

const PRIMES = primes(2^16)

# Small precomputed primes + Miller-Rabin for primality testing:
#     https://en.wikipedia.org/wiki/Miller–Rabin_primality_test
#
function isprime(n::Integer)
    (n < 3 || iseven(n)) && return n == 2
    n <= 2^16 && return PRIMES[searchsortedlast(PRIMES,n)] == n
    s = trailing_zeros(n-1)
    d = (n-1) >>> s
    for a in witnesses(n)
        x = powermod(a,d,n)
        x == 1 && continue
        t = s
        while x != n-1
            (t-=1) <= 0 && return false
            x = oftype(n, widemul(x,x) % n)
            x == 1 && return false
        end
    end
    return true
end

# Miller-Rabin witness choices based on:
#     http://mathoverflow.net/questions/101922/smallest-collection-of-bases-for-prime-testing-of-64-bit-numbers
#     http://primes.utm.edu/prove/merged.html
#     http://miller-rabin.appspot.com
#
witnesses(n::Union{UInt8,Int8,UInt16,Int16}) = (2,3)
witnesses(n::Union{UInt32,Int32}) = n < 1373653 ? (2,3) : (2,7,61)
witnesses(n::Union{UInt64,Int64}) =
        n < 1373653         ? (2,3) :
        n < 4759123141      ? (2,7,61) :
        n < 2152302898747   ? (2,3,5,7,11) :
        n < 3474749660383   ? (2,3,5,7,11,13) :
                              (2,325,9375,28178,450775,9780504,1795265022)

isprime(n::UInt128) =
    n <= typemax(UInt64) ? isprime(UInt64(n)) : isprime(BigInt(n))
isprime(n::Int128) = n < 2 ? false :
    n <= typemax(Int64)  ? isprime(Int64(n))  : isprime(BigInt(n))


# Trial division of small (< 2^16) precomputed primes +
# Pollard rho's algorithm with Richard P. Brent optimizations
#     https://en.wikipedia.org/wiki/Trial_division
#     https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
#     http://maths-people.anu.edu.au/~brent/pub/pub051.html
#
function factor{T<:Integer}(n::T)
    0 < n || throw(ArgumentError("number to be factored must be ≥ 0, got $n"))
    h = Dict{T,Int}()
    n == 1 && return h
    isprime(n) && (h[n] = 1; return h)
    local p::T
    for p in PRIMES
        if n % p == 0
            h[p] = get(h,p,0)+1
            n = div(n,p)
            while n % p == 0
                h[p] = get(h,p,0)+1
                n = div(n,p)
            end
            n == 1 && return h
            isprime(n) && (h[n] = 1; return h)
        end
    end
    T <: BigInt || widemul(n-1,n-1) <= typemax(n) ? pollardfactors!(n, h) : pollardfactors!(widen(n), h)
end

function pollardfactors!{T<:Integer,K<:Integer}(n::T, h::Dict{K,Int})
    while true
        local c::T = rand(1:(n-1)), G::T = 1, r::K = 1, y::T = rand(0:(n-1)), m::K = 1900
        local ys::T, q::T = 1, x::T
        while c == n - 2
            c = rand(1:(n-1))
        end
        while G == 1
            x = y
            for i in 1:r
                y = (y*y)%n
                y = (y+c)%n
            end
            local k::K = 0
            G = 1
            while k < r && G == 1
                for i in 1:(m>(r-k)?(r-k):m)
                    ys = y
                    y = (y*y)%n
                    y = (y+c)%n
                    q = (q*(x>y?x-y:y-x))%n
                end
                G = gcd(q,n)
                k = k + m
            end
            r = 2 * r
        end
        G == n && (G = 1)
        while G == 1
            ys = (ys*ys)%n
            ys = (ys+c)%n
            G = gcd(x>ys?x-ys:ys-x,n)
        end
        if G != n
            isprime(G) ? h[G] = get(h,G,0) + 1 : pollardfactors!(G,h)
            G2 = div(n,G)
            isprime(G2) ? h[G2] = get(h,G2,0) + 1 : pollardfactors!(G2,h)
            return h
        end
    end
end