/usr/share/julia/base/primes.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | # This file is a part of Julia. License is MIT: http://julialang.org/license
# Primes generating functions
# https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
# https://en.wikipedia.org/wiki/Wheel_factorization
# http://primesieve.org
# Jonathan Sorenson, "An analysis of two prime number sieves", Computer Science Technical Report Vol. 1028, 1991
const wheel = [4, 2, 4, 2, 4, 6, 2, 6]
const wheel_primes = [7, 11, 13, 17, 19, 23, 29, 31]
const wheel_indices = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7 ]
@inline wheel_index(n) = ( (d, r) = divrem(n - 1, 30); return 8d + wheel_indices[r+1] )
@inline wheel_prime(n) = ( (d, r) = ((n - 1) >>> 3, (n - 1) & 7); return 30d + wheel_primes[r+1] )
function _primesmask(limit::Int)
limit < 7 && throw(ArgumentError("limit must be at least 7, got $limit"))
n = wheel_index(limit)
m = wheel_prime(n)
sieve = ones(Bool, n)
@inbounds for i = 1:wheel_index(isqrt(limit))
if sieve[i]; p = wheel_prime(i)
q = p * p
j = (i - 1) & 7 + 1
while q ≤ m
sieve[wheel_index(q)] = false
q = q + wheel[j] * p
j = j & 7 + 1
end
end
end
return sieve
end
function _primesmask(lo::Int, hi::Int)
7 ≤ lo ≤ hi || throw(ArgumentError("the condition 7 ≤ lo ≤ hi must be met"))
lo == 7 && return _primesmask(hi)
wlo, whi = wheel_index(lo - 1), wheel_index(hi)
m = wheel_prime(whi)
sieve = ones(Bool, whi - wlo)
small_primes = primes(isqrt(hi))
@inbounds for i in 4:length(small_primes)
p = small_primes[i]
j = wheel_index(2 * div(lo - p - 1, 2p) + 1)
q = p * wheel_prime(j + 1); j = j & 7 + 1
while q ≤ m
sieve[wheel_index(q)-wlo] = false
q = q + wheel[j] * p
j = j & 7 + 1
end
end
return sieve
end
# Sieve of the primes up to limit represented as an array of booleans
function primesmask(limit::Int)
limit < 1 && throw(ArgumentError("limit must be at least 1, got $limit"))
sieve = falses(limit)
limit < 2 && return sieve; sieve[2] = true
limit < 3 && return sieve; sieve[3] = true
limit < 5 && return sieve; sieve[5] = true
limit < 7 && return sieve
wheel_sieve = _primesmask(limit)
@inbounds for i in eachindex(wheel_sieve)
Base.unsafe_setindex!(sieve, wheel_sieve[i], wheel_prime(i))
end
return sieve
end
primesmask(n::Integer) = n <= typemax(Int) ? primesmask(Int(n)) :
throw(ArgumentError("requested number of primes must be ≤ $(typemax(Int)), got $n"))
function primesmask(lo::Int, hi::Int)
0 < lo ≤ hi || throw(ArgumentError("the condition 0 < lo ≤ hi must be met"))
sieve = falses(hi - lo + 1)
lo ≤ 2 ≤ hi && (sieve[3-lo] = true)
lo ≤ 3 ≤ hi && (sieve[4-lo] = true)
lo ≤ 5 ≤ hi && (sieve[6-lo] = true)
hi < 7 && return sieve
wheel_sieve = _primesmask(max(7, lo), hi)
lsi = lo - 1
lwi = wheel_index(lsi)
@inbounds for i in eachindex(wheel_sieve)
Base.unsafe_setindex!(sieve, wheel_sieve[i], wheel_prime(i + lwi) - lsi)
end
return sieve
end
primesmask{T<:Integer}(lo::T, hi::T) = lo <= hi <= typemax(Int) ? primesmask(Int(lo), Int(hi)) :
throw(ArgumentError("both endpoints of the interval to sieve must be ≤ $(typemax(Int)), got $lo and $hi"))
function primes(n::Int)
list = Int[]
n < 2 && return list; push!(list, 2)
n < 3 && return list; push!(list, 3)
n < 5 && return list; push!(list, 5)
n < 7 && return list
sizehint!(list, floor(Int, n / log(n)))
sieve = _primesmask(n)
@inbounds for i in eachindex(sieve)
sieve[i] && push!(list, wheel_prime(i))
end
return list
end
function primes(lo::Int, hi::Int)
lo ≤ hi || throw(ArgumentError("the condition lo ≤ hi must be met"))
list = Int[]
lo ≤ 2 ≤ hi && push!(list, 2)
lo ≤ 3 ≤ hi && push!(list, 3)
lo ≤ 5 ≤ hi && push!(list, 5)
hi < 7 && return list
sieve = _primesmask(max(7, lo), hi)
lwi = wheel_index(lo - 1)
@inbounds for i in eachindex(sieve)
sieve[i] && push!(list, wheel_prime(i + lwi))
end
return list
end
const PRIMES = primes(2^16)
# Small precomputed primes + Miller-Rabin for primality testing:
# https://en.wikipedia.org/wiki/Miller–Rabin_primality_test
#
function isprime(n::Integer)
(n < 3 || iseven(n)) && return n == 2
n <= 2^16 && return PRIMES[searchsortedlast(PRIMES,n)] == n
s = trailing_zeros(n-1)
d = (n-1) >>> s
for a in witnesses(n)
x = powermod(a,d,n)
x == 1 && continue
t = s
while x != n-1
(t-=1) <= 0 && return false
x = oftype(n, widemul(x,x) % n)
x == 1 && return false
end
end
return true
end
# Miller-Rabin witness choices based on:
# http://mathoverflow.net/questions/101922/smallest-collection-of-bases-for-prime-testing-of-64-bit-numbers
# http://primes.utm.edu/prove/merged.html
# http://miller-rabin.appspot.com
#
witnesses(n::Union{UInt8,Int8,UInt16,Int16}) = (2,3)
witnesses(n::Union{UInt32,Int32}) = n < 1373653 ? (2,3) : (2,7,61)
witnesses(n::Union{UInt64,Int64}) =
n < 1373653 ? (2,3) :
n < 4759123141 ? (2,7,61) :
n < 2152302898747 ? (2,3,5,7,11) :
n < 3474749660383 ? (2,3,5,7,11,13) :
(2,325,9375,28178,450775,9780504,1795265022)
isprime(n::UInt128) =
n <= typemax(UInt64) ? isprime(UInt64(n)) : isprime(BigInt(n))
isprime(n::Int128) = n < 2 ? false :
n <= typemax(Int64) ? isprime(Int64(n)) : isprime(BigInt(n))
# Trial division of small (< 2^16) precomputed primes +
# Pollard rho's algorithm with Richard P. Brent optimizations
# https://en.wikipedia.org/wiki/Trial_division
# https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
# http://maths-people.anu.edu.au/~brent/pub/pub051.html
#
function factor{T<:Integer}(n::T)
0 < n || throw(ArgumentError("number to be factored must be ≥ 0, got $n"))
h = Dict{T,Int}()
n == 1 && return h
isprime(n) && (h[n] = 1; return h)
local p::T
for p in PRIMES
if n % p == 0
h[p] = get(h,p,0)+1
n = div(n,p)
while n % p == 0
h[p] = get(h,p,0)+1
n = div(n,p)
end
n == 1 && return h
isprime(n) && (h[n] = 1; return h)
end
end
T <: BigInt || widemul(n-1,n-1) <= typemax(n) ? pollardfactors!(n, h) : pollardfactors!(widen(n), h)
end
function pollardfactors!{T<:Integer,K<:Integer}(n::T, h::Dict{K,Int})
while true
local c::T = rand(1:(n-1)), G::T = 1, r::K = 1, y::T = rand(0:(n-1)), m::K = 1900
local ys::T, q::T = 1, x::T
while c == n - 2
c = rand(1:(n-1))
end
while G == 1
x = y
for i in 1:r
y = (y*y)%n
y = (y+c)%n
end
local k::K = 0
G = 1
while k < r && G == 1
for i in 1:(m>(r-k)?(r-k):m)
ys = y
y = (y*y)%n
y = (y+c)%n
q = (q*(x>y?x-y:y-x))%n
end
G = gcd(q,n)
k = k + m
end
r = 2 * r
end
G == n && (G = 1)
while G == 1
ys = (ys*ys)%n
ys = (ys+c)%n
G = gcd(x>ys?x-ys:ys-x,n)
end
if G != n
isprime(G) ? h[G] = get(h,G,0) + 1 : pollardfactors!(G,h)
G2 = div(n,G)
isprime(G2) ? h[G2] = get(h,G2,0) + 1 : pollardfactors!(G2,h)
return h
end
end
end
|