/usr/share/julia/base/operators.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## types ##
const (<:) = issubtype
super(T::DataType) = T.super
## generic comparison ##
==(x,y) = x === y
isequal(x, y) = x == y
isequal(x::AbstractFloat, y::AbstractFloat) = (isnan(x) & isnan(y)) | (signbit(x) == signbit(y)) & (x == y)
isequal(x::Real, y::AbstractFloat) = (isnan(x) & isnan(y)) | (signbit(x) == signbit(y)) & (x == y)
isequal(x::AbstractFloat, y::Real ) = (isnan(x) & isnan(y)) | (signbit(x) == signbit(y)) & (x == y)
isless(x::AbstractFloat, y::AbstractFloat) = (!isnan(x) & isnan(y)) | (signbit(x) & !signbit(y)) | (x < y)
isless(x::Real, y::AbstractFloat) = (!isnan(x) & isnan(y)) | (signbit(x) & !signbit(y)) | (x < y)
isless(x::AbstractFloat, y::Real ) = (!isnan(x) & isnan(y)) | (signbit(x) & !signbit(y)) | (x < y)
=={T}(::Type{T}, ::Type{T}) = true # encourage more specialization on types (see #11425)
==(T::Type, S::Type) = typeseq(T, S)
## comparison fallbacks ##
!=(x,y) = !(x==y)
const ≠ = !=
const ≡ = is
!==(x,y) = !is(x,y)
const ≢ = !==
<(x,y) = isless(x,y)
>(x,y) = y < x
<=(x,y) = !(y < x)
const ≤ = <=
>=(x,y) = (y <= x)
const ≥ = >=
.>(x,y) = y .< x
.>=(x,y) = y .<= x
const .≥ = .>=
# this definition allows Number types to implement < instead of isless,
# which is more idiomatic:
isless(x::Real, y::Real) = x<y
lexcmp(x::Real, y::Real) = isless(x,y) ? -1 : ifelse(isless(y,x), 1, 0)
ifelse(c::Bool, x, y) = Intrinsics.select_value(c, x, y)
cmp(x,y) = isless(x,y) ? -1 : ifelse(isless(y,x), 1, 0)
lexcmp(x,y) = cmp(x,y)
lexless(x,y) = lexcmp(x,y)<0
# cmp returns -1, 0, +1 indicating ordering
cmp(x::Integer, y::Integer) = ifelse(isless(x,y), -1, ifelse(isless(y,x), 1, 0))
max(x,y) = ifelse(y < x, x, y)
min(x,y) = ifelse(y < x, y, x)
minmax(x,y) = y < x ? (y, x) : (x, y)
scalarmax(x,y) = max(x,y)
scalarmax(x::AbstractArray, y::AbstractArray) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmax(x , y::AbstractArray) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmax(x::AbstractArray, y ) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmin(x,y) = min(x,y)
scalarmin(x::AbstractArray, y::AbstractArray) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmin(x , y::AbstractArray) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmin(x::AbstractArray, y ) = throw(ArgumentError("ordering is not well-defined for arrays"))
## definitions providing basic traits of arithmetic operators ##
+(x::Number) = x
*(x::Number) = x
(&)(x::Integer) = x
(|)(x::Integer) = x
($)(x::Integer) = x
# foldl for argument lists. expand recursively up to a point, then
# switch to a loop. this allows small cases like `a+b+c+d` to be inlined
# efficiently, without a major slowdown for `+(x...)` when `x` is big.
afoldl(op,a) = a
afoldl(op,a,b) = op(a,b)
afoldl(op,a,b,c...) = afoldl(op, op(a,b), c...)
function afoldl(op,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,qs...)
y = op(op(op(op(op(op(op(op(op(op(op(op(op(op(op(a,b),c),d),e),f),g),h),i),j),k),l),m),n),o),p)
for x in qs; y = op(y,x); end
y
end
immutable ElementwiseMaxFun end
call(::ElementwiseMaxFun, x, y) = max(x,y)
immutable ElementwiseMinFun end
call(::ElementwiseMinFun, x, y) = min(x, y)
for (op,F) in ((:+,:(AddFun())), (:*,:(MulFun())), (:&,:(AndFun())), (:|,:(OrFun())),
(:$,:(XorFun())), (:min,:(ElementwiseMinFun())), (:max,:(ElementwiseMaxFun())), (:kron,:kron))
@eval begin
# note: these definitions must not cause a dispatch loop when +(a,b) is
# not defined, and must only try to call 2-argument definitions, so
# that defining +(a,b) is sufficient for full functionality.
($op)(a, b, c, xs...) = afoldl($F, ($op)(($op)(a,b),c), xs...)
# a further concern is that it's easy for a type like (Int,Int...)
# to match many definitions, so we need to keep the number of
# definitions down to avoid losing type information.
end
end
\(x,y) = (y'/x')'
# .<op> defaults to <op>
./(x::Number,y::Number) = x/y
.\(x::Number,y::Number) = y./x
.*(x::Number,y::Number) = x*y
.^(x::Number,y::Number) = x^y
.+(x::Number,y::Number) = x+y
.-(x::Number,y::Number) = x-y
.<<(x::Number,y::Number) = x<<y
.>>(x::Number,y::Number) = x>>y
.==(x::Number,y::Number) = x == y
.!=(x::Number,y::Number) = x != y
.<( x::Real,y::Real) = x < y
.<=(x::Real,y::Real) = x <= y
const .≤ = .<=
const .≠ = .!=
# core << >> and >>> takes Int as second arg
<<(x,y::Int) = no_op_err("<<", typeof(x))
>>(x,y::Int) = no_op_err(">>", typeof(x))
>>>(x,y::Int) = no_op_err(">>>", typeof(x))
<<(x,y::Integer) = typemax(Int) < y ? zero(x) : x << (y % Int)
>>(x,y::Integer) = typemax(Int) < y ? zero(x) : x >> (y % Int)
>>>(x,y::Integer) = typemax(Int) < y ? zero(x) : x >>> (y % Int)
# fallback div, fld, and cld implementations
# NOTE: C89 fmod() and x87 FPREM implicitly provide truncating float division,
# so it is used here as the basis of float div().
div{T<:Real}(x::T, y::T) = convert(T,round((x-rem(x,y))/y))
fld{T<:Real}(x::T, y::T) = convert(T,round((x-mod(x,y))/y))
cld{T<:Real}(x::T, y::T) = convert(T,round((x-modCeil(x,y))/y))
#rem{T<:Real}(x::T, y::T) = convert(T,x-y*trunc(x/y))
#mod{T<:Real}(x::T, y::T) = convert(T,x-y*floor(x/y))
modCeil{T<:Real}(x::T, y::T) = convert(T,x-y*ceil(x/y))
# operator alias
const % = rem
.%(x::Real, y::Real) = x%y
const ÷ = div
# mod returns in [0,y) whereas mod1 returns in (0,y]
mod1{T<:Real}(x::T, y::T) = (m=mod(x,y); ifelse(m==0, y, m))
rem1{T<:Real}(x::T, y::T) = rem(x-1,y)+1
fld1{T<:Real}(x::T, y::T) = fld(x-1,y)+1
# transpose
transpose(x) = x
ctranspose(x) = conj(transpose(x))
conj(x) = x
# transposed multiply
Ac_mul_B(a,b) = ctranspose(a)*b
A_mul_Bc(a,b) = a*ctranspose(b)
Ac_mul_Bc(a,b) = ctranspose(a)*ctranspose(b)
At_mul_B(a,b) = transpose(a)*b
A_mul_Bt(a,b) = a*transpose(b)
At_mul_Bt(a,b) = transpose(a)*transpose(b)
# transposed divide
Ac_rdiv_B(a,b) = ctranspose(a)/b
A_rdiv_Bc(a,b) = a/ctranspose(b)
Ac_rdiv_Bc(a,b) = ctranspose(a)/ctranspose(b)
At_rdiv_B(a,b) = transpose(a)/b
A_rdiv_Bt(a,b) = a/transpose(b)
At_rdiv_Bt(a,b) = transpose(a)/transpose(b)
Ac_ldiv_B(a,b) = ctranspose(a)\b
A_ldiv_Bc(a,b) = a\ctranspose(b)
Ac_ldiv_Bc(a,b) = ctranspose(a)\ctranspose(b)
At_ldiv_B(a,b) = transpose(a)\b
A_ldiv_Bt(a,b) = a\transpose(b)
At_ldiv_Bt(a,b) = At_ldiv_B(a,transpose(b))
Ac_ldiv_Bt(a,b) = Ac_ldiv_B(a,transpose(b))
widen{T<:Number}(x::T) = convert(widen(T), x)
eltype(::Type) = Any
eltype(::Type{Any}) = Any
eltype(t::DataType) = eltype(super(t))
eltype(x) = eltype(typeof(x))
# copying immutable things
copy(x::Union{Symbol,Number,AbstractString,Function,Tuple,LambdaStaticData,
TopNode,QuoteNode,DataType,Union}) = x
# function pipelining
|>(x, f) = f(x)
# array shape rules
function promote_shape(a::Tuple{Int,}, b::Tuple{Int,})
if a[1] != b[1]
throw(DimensionMismatch("dimensions must match"))
end
return a
end
function promote_shape(a::Tuple{Int,Int}, b::Tuple{Int,})
if a[1] != b[1] || a[2] != 1
throw(DimensionMismatch("dimensions must match"))
end
return a
end
promote_shape(a::Tuple{Int,}, b::Tuple{Int,Int}) = promote_shape(b, a)
function promote_shape(a::Tuple{Int, Int}, b::Tuple{Int, Int})
if a[1] != b[1] || a[2] != b[2]
throw(DimensionMismatch("dimensions must match"))
end
return a
end
function promote_shape(a::Dims, b::Dims)
if length(a) < length(b)
return promote_shape(b, a)
end
for i=1:length(b)
if a[i] != b[i]
throw(DimensionMismatch("dimensions must match"))
end
end
for i=length(b)+1:length(a)
if a[i] != 1
throw(DimensionMismatch("dimensions must match"))
end
end
return a
end
function throw_setindex_mismatch(X, I)
if length(I) == 1
throw(DimensionMismatch("tried to assign $(length(X)) elements to $(I[1]) destinations"))
else
throw(DimensionMismatch("tried to assign $(dims2string(size(X))) array to $(dims2string(I)) destination"))
end
end
# check for valid sizes in A[I...] = X where X <: AbstractArray
# we want to allow dimensions that are equal up to permutation, but only
# for permutations that leave array elements in the same linear order.
# those are the permutations that preserve the order of the non-singleton
# dimensions.
function setindex_shape_check(X::AbstractArray, I...)
li = ndims(X)
lj = length(I)
i = j = 1
while true
ii = size(X,i)
jj = I[j]
if i == li || j == lj
while i < li
i += 1
ii *= size(X,i)
end
while j < lj
j += 1
jj *= I[j]
end
if ii != jj
throw_setindex_mismatch(X, I)
end
return
end
if ii == jj
i += 1
j += 1
elseif ii == 1
i += 1
elseif jj == 1
j += 1
else
throw_setindex_mismatch(X, I)
end
end
end
setindex_shape_check(X::AbstractArray) =
(length(X)==1 || throw_setindex_mismatch(X,()))
setindex_shape_check(X::AbstractArray, i) =
(length(X)==i || throw_setindex_mismatch(X, (i,)))
setindex_shape_check{T}(X::AbstractArray{T,1}, i) =
(length(X)==i || throw_setindex_mismatch(X, (i,)))
setindex_shape_check{T}(X::AbstractArray{T,1}, i, j) =
(length(X)==i*j || throw_setindex_mismatch(X, (i,j)))
function setindex_shape_check{T}(X::AbstractArray{T,2}, i, j)
if length(X) != i*j
throw_setindex_mismatch(X, (i,j))
end
sx1 = size(X,1)
if !(i == 1 || i == sx1 || sx1 == 1)
throw_setindex_mismatch(X, (i,j))
end
end
setindex_shape_check(X, I...) = nothing # Non-arrays broadcast to all idxs
# convert to a supported index type (Array, Colon, or Int)
to_index(i::Int) = i
to_index(i::Integer) = convert(Int,i)::Int
to_index(c::Colon) = c
to_index(I::AbstractArray{Bool}) = find(I)
to_index(A::AbstractArray) = A
to_index{T<:AbstractArray}(A::AbstractArray{T}) = throw(ArgumentError("invalid index: $A"))
to_index(A::AbstractArray{Colon}) = throw(ArgumentError("invalid index: $A"))
to_index(i) = throw(ArgumentError("invalid index: $i"))
to_indexes() = ()
to_indexes(i1) = (to_index(i1),)
to_indexes(i1, I...) = (to_index(i1), to_indexes(I...)...)
# Addition/subtraction of ranges
for f in (:+, :-)
@eval begin
function $f(r1::OrdinalRange, r2::OrdinalRange)
r1l = length(r1)
(r1l == length(r2) ||
throw(DimensionMismatch("argument dimensions must match")))
range($f(r1.start,r2.start), $f(step(r1),step(r2)), r1l)
end
function $f{T<:AbstractFloat}(r1::FloatRange{T}, r2::FloatRange{T})
len = r1.len
(len == r2.len ||
throw(DimensionMismatch("argument dimensions must match")))
divisor1, divisor2 = r1.divisor, r2.divisor
if divisor1 == divisor2
FloatRange{T}($f(r1.start,r2.start), $f(r1.step,r2.step),
len, divisor1)
else
d1 = Int(divisor1)
d2 = Int(divisor2)
d = lcm(d1,d2)
s1 = div(d,d1)
s2 = div(d,d2)
FloatRange{T}($f(r1.start*s1, r2.start*s2),
$f(r1.step*s1, r2.step*s2), len, d)
end
end
function $f{T<:AbstractFloat}(r1::LinSpace{T}, r2::LinSpace{T})
len = r1.len
(len == r2.len ||
throw(DimensionMismatch("argument dimensions must match")))
divisor1, divisor2 = r1.divisor, r2.divisor
if divisor1 == divisor2
LinSpace{T}($f(r1.start, r2.start), $f(r1.stop, r2.stop),
len, divisor1)
else
linspace(convert(T, $f(first(r1), first(r2))),
convert(T, $f(last(r1), last(r2))), len)
end
end
$f(r1::Union{FloatRange, OrdinalRange, LinSpace},
r2::Union{FloatRange, OrdinalRange, LinSpace}) =
$f(promote(r1, r2)...)
end
end
# vectorization
macro vectorize_1arg(S,f)
S = esc(S); f = esc(f); T = esc(:T)
quote
($f){$T<:$S}(x::AbstractArray{$T,1}) = [ ($f)(x[i]) for i=1:length(x) ]
($f){$T<:$S}(x::AbstractArray{$T,2}) =
[ ($f)(x[i,j]) for i=1:size(x,1), j=1:size(x,2) ]
($f){$T<:$S}(x::AbstractArray{$T}) =
reshape([ ($f)(x[i]) for i in eachindex(x) ], size(x))
end
end
macro vectorize_2arg(S,f)
S = esc(S); f = esc(f); T1 = esc(:T1); T2 = esc(:T2)
quote
($f){$T1<:$S, $T2<:$S}(x::($T1), y::AbstractArray{$T2}) =
reshape([ ($f)(x, y[i]) for i in eachindex(y) ], size(y))
($f){$T1<:$S, $T2<:$S}(x::AbstractArray{$T1}, y::($T2)) =
reshape([ ($f)(x[i], y) for i in eachindex(x) ], size(x))
function ($f){$T1<:$S, $T2<:$S}(x::AbstractArray{$T1}, y::AbstractArray{$T2})
shp = promote_shape(size(x),size(y))
reshape([ ($f)(x[i], y[i]) for i in eachindex(x,y) ], shp)
end
end
end
# vectorized ifelse
function ifelse(c::AbstractArray{Bool}, x, y)
reshape([ifelse(ci, x, y) for ci in c], size(c))
end
function ifelse(c::AbstractArray{Bool}, x::AbstractArray, y::AbstractArray)
shp = promote_shape(size(c), promote_shape(size(x), size(y)))
reshape([ifelse(c[i], x[i], y[i]) for i = 1 : length(c)], shp)
end
function ifelse(c::AbstractArray{Bool}, x::AbstractArray, y)
shp = promote_shape(size(c), size(c))
reshape([ifelse(c[i], x[i], y) for i = 1 : length(c)], shp)
end
function ifelse(c::AbstractArray{Bool}, x, y::AbstractArray)
shp = promote_shape(size(c), size(y))
reshape([ifelse(c[i], x, y[i]) for i = 1 : length(c)], shp)
end
# Pair
immutable Pair{A,B}
first::A
second::B
end
const => = Pair
start(p::Pair) = 1
done(p::Pair, i) = i>2
next(p::Pair, i) = (getfield(p,i), i+1)
indexed_next(p::Pair, i::Int, state) = (getfield(p,i), i+1)
hash(p::Pair, h::UInt) = hash(p.second, hash(p.first, h))
==(p::Pair, q::Pair) = (p.first==q.first) & (p.second==q.second)
isequal(p::Pair, q::Pair) = isequal(p.first,q.first) & isequal(p.second,q.second)
isless(p::Pair, q::Pair) = ifelse(!isequal(p.first,q.first), isless(p.first,q.first),
isless(p.second,q.second))
getindex(p::Pair,i::Int) = getfield(p,i)
getindex(p::Pair,i::Real) = getfield(p, convert(Int, i))
reverse{A,B}(p::Pair{A,B}) = Pair{B,A}(p.second, p.first)
endof(p::Pair) = 2
# some operators not defined yet
global //, >:, <|, hcat, hvcat, ⋅, ×, ∈, ∉, ∋, ∌, ⊆, ⊈, ⊊, ∩, ∪, √, ∛
this_module = current_module()
baremodule Operators
export
!,
!=,
!==,
===,
$,
%,
.%,
&,
*,
+,
-,
.!=,
.+,
.-,
.*,
./,
.<,
.<=,
.==,
.>,
.>=,
.\,
.^,
/,
//,
<,
<:,
>:,
<<,
<=,
==,
>,
>=,
≥,
≤,
≠,
.≥,
.≤,
.≠,
>>,
.>>,
.<<,
>>>,
\,
^,
|,
|>,
<|,
~,
÷,
⋅,
×,
∈,
∉,
∋,
∌,
⊆,
⊈,
⊊,
∩,
∪,
√,
∛,
colon,
hcat,
vcat,
hvcat,
getindex,
setindex!,
transpose,
ctranspose,
call
import ..this_module: !, !=, $, %, .%, &, *, +, -, .!=, .+, .-, .*, ./, .<, .<=, .==, .>,
.>=, .\, .^, /, //, <, <:, <<, <=, ==, >, >=, >>, .>>, .<<, >>>,
<|, |>, \, ^, |, ~, !==, ===, >:, colon, hcat, vcat, hvcat, getindex, setindex!,
transpose, ctranspose, call,
≥, ≤, ≠, .≥, .≤, .≠, ÷, ⋅, ×, ∈, ∉, ∋, ∌, ⊆, ⊈, ⊊, ∩, ∪, √, ∛
end
|