This file is indexed.

/usr/share/julia/base/operators.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# This file is a part of Julia. License is MIT: http://julialang.org/license

## types ##

const (<:) = issubtype

super(T::DataType) = T.super

## generic comparison ##

==(x,y) = x === y

isequal(x, y) = x == y
isequal(x::AbstractFloat, y::AbstractFloat) = (isnan(x) & isnan(y)) | (signbit(x) == signbit(y)) & (x == y)
isequal(x::Real,          y::AbstractFloat) = (isnan(x) & isnan(y)) | (signbit(x) == signbit(y)) & (x == y)
isequal(x::AbstractFloat, y::Real         ) = (isnan(x) & isnan(y)) | (signbit(x) == signbit(y)) & (x == y)

isless(x::AbstractFloat, y::AbstractFloat) = (!isnan(x) & isnan(y)) | (signbit(x) & !signbit(y)) | (x < y)
isless(x::Real,          y::AbstractFloat) = (!isnan(x) & isnan(y)) | (signbit(x) & !signbit(y)) | (x < y)
isless(x::AbstractFloat, y::Real         ) = (!isnan(x) & isnan(y)) | (signbit(x) & !signbit(y)) | (x < y)

=={T}(::Type{T}, ::Type{T}) = true  # encourage more specialization on types (see #11425)
==(T::Type, S::Type)        = typeseq(T, S)

## comparison fallbacks ##

!=(x,y) = !(x==y)
const ≠ = !=
const ≡ = is
!==(x,y) = !is(x,y)
const ≢ = !==

<(x,y) = isless(x,y)
>(x,y) = y < x
<=(x,y) = !(y < x)
const ≤ = <=
>=(x,y) = (y <= x)
const ≥ = >=
.>(x,y) = y .< x
.>=(x,y) = y .<= x
const .≥ = .>=

# this definition allows Number types to implement < instead of isless,
# which is more idiomatic:
isless(x::Real, y::Real) = x<y
lexcmp(x::Real, y::Real) = isless(x,y) ? -1 : ifelse(isless(y,x), 1, 0)

ifelse(c::Bool, x, y) = Intrinsics.select_value(c, x, y)

cmp(x,y) = isless(x,y) ? -1 : ifelse(isless(y,x), 1, 0)
lexcmp(x,y) = cmp(x,y)
lexless(x,y) = lexcmp(x,y)<0

# cmp returns -1, 0, +1 indicating ordering
cmp(x::Integer, y::Integer) = ifelse(isless(x,y), -1, ifelse(isless(y,x), 1, 0))

max(x,y) = ifelse(y < x, x, y)
min(x,y) = ifelse(y < x, y, x)
minmax(x,y) = y < x ? (y, x) : (x, y)

scalarmax(x,y) = max(x,y)
scalarmax(x::AbstractArray, y::AbstractArray) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmax(x               , y::AbstractArray) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmax(x::AbstractArray, y               ) = throw(ArgumentError("ordering is not well-defined for arrays"))

scalarmin(x,y) = min(x,y)
scalarmin(x::AbstractArray, y::AbstractArray) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmin(x               , y::AbstractArray) = throw(ArgumentError("ordering is not well-defined for arrays"))
scalarmin(x::AbstractArray, y               ) = throw(ArgumentError("ordering is not well-defined for arrays"))

## definitions providing basic traits of arithmetic operators ##

+(x::Number) = x
*(x::Number) = x
(&)(x::Integer) = x
(|)(x::Integer) = x
($)(x::Integer) = x

# foldl for argument lists. expand recursively up to a point, then
# switch to a loop. this allows small cases like `a+b+c+d` to be inlined
# efficiently, without a major slowdown for `+(x...)` when `x` is big.
afoldl(op,a) = a
afoldl(op,a,b) = op(a,b)
afoldl(op,a,b,c...) = afoldl(op, op(a,b), c...)
function afoldl(op,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,qs...)
    y = op(op(op(op(op(op(op(op(op(op(op(op(op(op(op(a,b),c),d),e),f),g),h),i),j),k),l),m),n),o),p)
    for x in qs; y = op(y,x); end
    y
end

immutable ElementwiseMaxFun end
call(::ElementwiseMaxFun, x, y) = max(x,y)

immutable ElementwiseMinFun end
call(::ElementwiseMinFun, x, y) = min(x, y)

for (op,F) in ((:+,:(AddFun())), (:*,:(MulFun())), (:&,:(AndFun())), (:|,:(OrFun())),
               (:$,:(XorFun())), (:min,:(ElementwiseMinFun())), (:max,:(ElementwiseMaxFun())), (:kron,:kron))
    @eval begin
        # note: these definitions must not cause a dispatch loop when +(a,b) is
        # not defined, and must only try to call 2-argument definitions, so
        # that defining +(a,b) is sufficient for full functionality.
        ($op)(a, b, c, xs...) = afoldl($F, ($op)(($op)(a,b),c), xs...)
        # a further concern is that it's easy for a type like (Int,Int...)
        # to match many definitions, so we need to keep the number of
        # definitions down to avoid losing type information.
    end
end

\(x,y) = (y'/x')'

# .<op> defaults to <op>
./(x::Number,y::Number) = x/y
.\(x::Number,y::Number) = y./x
.*(x::Number,y::Number) = x*y
.^(x::Number,y::Number) = x^y
.+(x::Number,y::Number) = x+y
.-(x::Number,y::Number) = x-y
.<<(x::Number,y::Number) = x<<y
.>>(x::Number,y::Number) = x>>y

.==(x::Number,y::Number) = x == y
.!=(x::Number,y::Number) = x != y
.<( x::Real,y::Real) = x < y
.<=(x::Real,y::Real) = x <= y
const .≤ = .<=
const .≠ = .!=

# core << >> and >>> takes Int as second arg
<<(x,y::Int)  = no_op_err("<<", typeof(x))
>>(x,y::Int)  = no_op_err(">>", typeof(x))
>>>(x,y::Int) = no_op_err(">>>", typeof(x))
<<(x,y::Integer)  = typemax(Int) < y ? zero(x) : x <<  (y % Int)
>>(x,y::Integer)  = typemax(Int) < y ? zero(x) : x >>  (y % Int)
>>>(x,y::Integer) = typemax(Int) < y ? zero(x) : x >>> (y % Int)

# fallback div, fld, and cld implementations
# NOTE: C89 fmod() and x87 FPREM implicitly provide truncating float division,
# so it is used here as the basis of float div().
div{T<:Real}(x::T, y::T) = convert(T,round((x-rem(x,y))/y))
fld{T<:Real}(x::T, y::T) = convert(T,round((x-mod(x,y))/y))
cld{T<:Real}(x::T, y::T) = convert(T,round((x-modCeil(x,y))/y))
#rem{T<:Real}(x::T, y::T) = convert(T,x-y*trunc(x/y))
#mod{T<:Real}(x::T, y::T) = convert(T,x-y*floor(x/y))
modCeil{T<:Real}(x::T, y::T) = convert(T,x-y*ceil(x/y))

# operator alias
const % = rem
.%(x::Real, y::Real) = x%y
const ÷ = div

# mod returns in [0,y) whereas mod1 returns in (0,y]
mod1{T<:Real}(x::T, y::T) = (m=mod(x,y); ifelse(m==0, y, m))
rem1{T<:Real}(x::T, y::T) = rem(x-1,y)+1
fld1{T<:Real}(x::T, y::T) = fld(x-1,y)+1

# transpose
transpose(x) = x
ctranspose(x) = conj(transpose(x))
conj(x) = x

# transposed multiply
Ac_mul_B(a,b)  = ctranspose(a)*b
A_mul_Bc(a,b)  = a*ctranspose(b)
Ac_mul_Bc(a,b) = ctranspose(a)*ctranspose(b)
At_mul_B(a,b)  = transpose(a)*b
A_mul_Bt(a,b)  = a*transpose(b)
At_mul_Bt(a,b) = transpose(a)*transpose(b)

# transposed divide
Ac_rdiv_B(a,b)  = ctranspose(a)/b
A_rdiv_Bc(a,b)  = a/ctranspose(b)
Ac_rdiv_Bc(a,b) = ctranspose(a)/ctranspose(b)
At_rdiv_B(a,b)  = transpose(a)/b
A_rdiv_Bt(a,b)  = a/transpose(b)
At_rdiv_Bt(a,b) = transpose(a)/transpose(b)

Ac_ldiv_B(a,b)  = ctranspose(a)\b
A_ldiv_Bc(a,b)  = a\ctranspose(b)
Ac_ldiv_Bc(a,b) = ctranspose(a)\ctranspose(b)
At_ldiv_B(a,b)  = transpose(a)\b
A_ldiv_Bt(a,b)  = a\transpose(b)
At_ldiv_Bt(a,b) = At_ldiv_B(a,transpose(b))
Ac_ldiv_Bt(a,b) = Ac_ldiv_B(a,transpose(b))

widen{T<:Number}(x::T) = convert(widen(T), x)

eltype(::Type) = Any
eltype(::Type{Any}) = Any
eltype(t::DataType) = eltype(super(t))
eltype(x) = eltype(typeof(x))

# copying immutable things
copy(x::Union{Symbol,Number,AbstractString,Function,Tuple,LambdaStaticData,
              TopNode,QuoteNode,DataType,Union}) = x

# function pipelining
|>(x, f) = f(x)

# array shape rules

function promote_shape(a::Tuple{Int,}, b::Tuple{Int,})
    if a[1] != b[1]
        throw(DimensionMismatch("dimensions must match"))
    end
    return a
end

function promote_shape(a::Tuple{Int,Int}, b::Tuple{Int,})
    if a[1] != b[1] || a[2] != 1
        throw(DimensionMismatch("dimensions must match"))
    end
    return a
end

promote_shape(a::Tuple{Int,}, b::Tuple{Int,Int}) = promote_shape(b, a)

function promote_shape(a::Tuple{Int, Int}, b::Tuple{Int, Int})
    if a[1] != b[1] || a[2] != b[2]
        throw(DimensionMismatch("dimensions must match"))
    end
    return a
end

function promote_shape(a::Dims, b::Dims)
    if length(a) < length(b)
        return promote_shape(b, a)
    end
    for i=1:length(b)
        if a[i] != b[i]
            throw(DimensionMismatch("dimensions must match"))
        end
    end
    for i=length(b)+1:length(a)
        if a[i] != 1
            throw(DimensionMismatch("dimensions must match"))
        end
    end
    return a
end

function throw_setindex_mismatch(X, I)
    if length(I) == 1
        throw(DimensionMismatch("tried to assign $(length(X)) elements to $(I[1]) destinations"))
    else
        throw(DimensionMismatch("tried to assign $(dims2string(size(X))) array to $(dims2string(I)) destination"))
    end
end

# check for valid sizes in A[I...] = X where X <: AbstractArray
# we want to allow dimensions that are equal up to permutation, but only
# for permutations that leave array elements in the same linear order.
# those are the permutations that preserve the order of the non-singleton
# dimensions.
function setindex_shape_check(X::AbstractArray, I...)
    li = ndims(X)
    lj = length(I)
    i = j = 1
    while true
        ii = size(X,i)
        jj = I[j]
        if i == li || j == lj
            while i < li
                i += 1
                ii *= size(X,i)
            end
            while j < lj
                j += 1
                jj *= I[j]
            end
            if ii != jj
                throw_setindex_mismatch(X, I)
            end
            return
        end
        if ii == jj
            i += 1
            j += 1
        elseif ii == 1
            i += 1
        elseif jj == 1
            j += 1
        else
            throw_setindex_mismatch(X, I)
        end
    end
end

setindex_shape_check(X::AbstractArray) =
    (length(X)==1 || throw_setindex_mismatch(X,()))

setindex_shape_check(X::AbstractArray, i) =
    (length(X)==i || throw_setindex_mismatch(X, (i,)))

setindex_shape_check{T}(X::AbstractArray{T,1}, i) =
    (length(X)==i || throw_setindex_mismatch(X, (i,)))

setindex_shape_check{T}(X::AbstractArray{T,1}, i, j) =
    (length(X)==i*j || throw_setindex_mismatch(X, (i,j)))

function setindex_shape_check{T}(X::AbstractArray{T,2}, i, j)
    if length(X) != i*j
        throw_setindex_mismatch(X, (i,j))
    end
    sx1 = size(X,1)
    if !(i == 1 || i == sx1 || sx1 == 1)
        throw_setindex_mismatch(X, (i,j))
    end
end
setindex_shape_check(X, I...) = nothing # Non-arrays broadcast to all idxs

# convert to a supported index type (Array, Colon, or Int)
to_index(i::Int) = i
to_index(i::Integer) = convert(Int,i)::Int
to_index(c::Colon) = c
to_index(I::AbstractArray{Bool}) = find(I)
to_index(A::AbstractArray) = A
to_index{T<:AbstractArray}(A::AbstractArray{T}) = throw(ArgumentError("invalid index: $A"))
to_index(A::AbstractArray{Colon}) = throw(ArgumentError("invalid index: $A"))
to_index(i) = throw(ArgumentError("invalid index: $i"))

to_indexes() = ()
to_indexes(i1) = (to_index(i1),)
to_indexes(i1, I...) = (to_index(i1), to_indexes(I...)...)

# Addition/subtraction of ranges
for f in (:+, :-)
    @eval begin
        function $f(r1::OrdinalRange, r2::OrdinalRange)
            r1l = length(r1)
            (r1l == length(r2) ||
             throw(DimensionMismatch("argument dimensions must match")))
            range($f(r1.start,r2.start), $f(step(r1),step(r2)), r1l)
        end

        function $f{T<:AbstractFloat}(r1::FloatRange{T}, r2::FloatRange{T})
            len = r1.len
            (len == r2.len ||
             throw(DimensionMismatch("argument dimensions must match")))
            divisor1, divisor2 = r1.divisor, r2.divisor
            if divisor1 == divisor2
                FloatRange{T}($f(r1.start,r2.start), $f(r1.step,r2.step),
                              len, divisor1)
            else
                d1 = Int(divisor1)
                d2 = Int(divisor2)
                d = lcm(d1,d2)
                s1 = div(d,d1)
                s2 = div(d,d2)
                FloatRange{T}($f(r1.start*s1, r2.start*s2),
                              $f(r1.step*s1, r2.step*s2),  len, d)
            end
        end

        function $f{T<:AbstractFloat}(r1::LinSpace{T}, r2::LinSpace{T})
            len = r1.len
            (len == r2.len ||
             throw(DimensionMismatch("argument dimensions must match")))
            divisor1, divisor2 = r1.divisor, r2.divisor
            if divisor1 == divisor2
                LinSpace{T}($f(r1.start, r2.start), $f(r1.stop, r2.stop),
                            len, divisor1)
            else
                linspace(convert(T, $f(first(r1), first(r2))),
                         convert(T, $f(last(r1), last(r2))), len)
            end
        end

        $f(r1::Union{FloatRange, OrdinalRange, LinSpace},
           r2::Union{FloatRange, OrdinalRange, LinSpace}) =
               $f(promote(r1, r2)...)
    end
end

# vectorization

macro vectorize_1arg(S,f)
    S = esc(S); f = esc(f); T = esc(:T)
    quote
        ($f){$T<:$S}(x::AbstractArray{$T,1}) = [ ($f)(x[i]) for i=1:length(x) ]
        ($f){$T<:$S}(x::AbstractArray{$T,2}) =
            [ ($f)(x[i,j]) for i=1:size(x,1), j=1:size(x,2) ]
        ($f){$T<:$S}(x::AbstractArray{$T}) =
            reshape([ ($f)(x[i]) for i in eachindex(x) ], size(x))
    end
end

macro vectorize_2arg(S,f)
    S = esc(S); f = esc(f); T1 = esc(:T1); T2 = esc(:T2)
    quote
        ($f){$T1<:$S, $T2<:$S}(x::($T1), y::AbstractArray{$T2}) =
            reshape([ ($f)(x, y[i]) for i in eachindex(y) ], size(y))
        ($f){$T1<:$S, $T2<:$S}(x::AbstractArray{$T1}, y::($T2)) =
            reshape([ ($f)(x[i], y) for i in eachindex(x) ], size(x))

        function ($f){$T1<:$S, $T2<:$S}(x::AbstractArray{$T1}, y::AbstractArray{$T2})
            shp = promote_shape(size(x),size(y))
            reshape([ ($f)(x[i], y[i]) for i in eachindex(x,y) ], shp)
        end
    end
end

# vectorized ifelse

function ifelse(c::AbstractArray{Bool}, x, y)
    reshape([ifelse(ci, x, y) for ci in c], size(c))
end

function ifelse(c::AbstractArray{Bool}, x::AbstractArray, y::AbstractArray)
    shp = promote_shape(size(c), promote_shape(size(x), size(y)))
    reshape([ifelse(c[i], x[i], y[i]) for i = 1 : length(c)], shp)
end

function ifelse(c::AbstractArray{Bool}, x::AbstractArray, y)
    shp = promote_shape(size(c), size(c))
    reshape([ifelse(c[i], x[i], y) for i = 1 : length(c)], shp)
end

function ifelse(c::AbstractArray{Bool}, x, y::AbstractArray)
    shp = promote_shape(size(c), size(y))
    reshape([ifelse(c[i], x, y[i]) for i = 1 : length(c)], shp)
end

# Pair

immutable Pair{A,B}
    first::A
    second::B
end

const => = Pair

start(p::Pair) = 1
done(p::Pair, i) = i>2
next(p::Pair, i) = (getfield(p,i), i+1)

indexed_next(p::Pair, i::Int, state) = (getfield(p,i), i+1)

hash(p::Pair, h::UInt) = hash(p.second, hash(p.first, h))

==(p::Pair, q::Pair) = (p.first==q.first) & (p.second==q.second)
isequal(p::Pair, q::Pair) = isequal(p.first,q.first) & isequal(p.second,q.second)

isless(p::Pair, q::Pair) = ifelse(!isequal(p.first,q.first), isless(p.first,q.first),
                                                             isless(p.second,q.second))
getindex(p::Pair,i::Int) = getfield(p,i)
getindex(p::Pair,i::Real) = getfield(p, convert(Int, i))
reverse{A,B}(p::Pair{A,B}) = Pair{B,A}(p.second, p.first)

endof(p::Pair) = 2

# some operators not defined yet
global //, >:, <|, hcat, hvcat, ⋅, ×, ∈, ∉, ∋, ∌, ⊆, ⊈, ⊊, ∩, ∪, √, ∛

this_module = current_module()
baremodule Operators

export
    !,
    !=,
    !==,
    ===,
    $,
    %,
    .%,
    &,
    *,
    +,
    -,
    .!=,
    .+,
    .-,
    .*,
    ./,
    .<,
    .<=,
    .==,
    .>,
    .>=,
    .\,
    .^,
    /,
    //,
    <,
    <:,
    >:,
    <<,
    <=,
    ==,
    >,
    >=,
    ≥,
    ≤,
    ≠,
    .≥,
    .≤,
    .≠,
    >>,
    .>>,
    .<<,
    >>>,
    \,
    ^,
    |,
    |>,
    <|,
    ~,
    ÷,
    ⋅,
    ×,
    ∈,
    ∉,
    ∋,
    ∌,
    ⊆,
    ⊈,
    ⊊,
    ∩,
    ∪,
    √,
    ∛,
    colon,
    hcat,
    vcat,
    hvcat,
    getindex,
    setindex!,
    transpose,
    ctranspose,
    call

import ..this_module: !, !=, $, %, .%, &, *, +, -, .!=, .+, .-, .*, ./, .<, .<=, .==, .>,
    .>=, .\, .^, /, //, <, <:, <<, <=, ==, >, >=, >>, .>>, .<<, >>>,
    <|, |>, \, ^, |, ~, !==, ===, >:, colon, hcat, vcat, hvcat, getindex, setindex!,
    transpose, ctranspose, call,
    ≥, ≤, ≠, .≥, .≤, .≠, ÷, ⋅, ×, ∈, ∉, ∋, ∌, ⊆, ⊈, ⊊, ∩, ∪, √, ∛

end