This file is indexed.

/usr/share/julia/base/multidimensional.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
# This file is a part of Julia. License is MIT: http://julialang.org/license

### Multidimensional iterators
module IteratorsMD

import Base: eltype, length, start, done, next, last, getindex, setindex!, linearindexing, min, max, eachindex, ndims
importall ..Base.Operators
import Base: simd_outer_range, simd_inner_length, simd_index, @generated
import Base: @nref, @ncall, @nif, @nexprs, LinearFast, LinearSlow, to_index

export CartesianIndex, CartesianRange

# Traits for linear indexing
linearindexing{A<:BitArray}(::Type{A}) = LinearFast()

# CartesianIndex
immutable CartesianIndex{N}
    I::NTuple{N,Int}
    CartesianIndex(index::NTuple{N,Integer}) = new(index)
end

CartesianIndex{N}(index::NTuple{N,Integer}) = CartesianIndex{N}(index)
@generated function Base.call{N}(::Type{CartesianIndex{N}},index::Integer...)
    length(index) == N && return :(CartesianIndex(index))
    length(index) > N && throw(DimensionMismatch("Cannot create CartesianIndex{$N} from $(length(index)) indexes"))
    args = [i <= length(index) ? :(index[$i]) : 1 for i = 1:N]
    :(CartesianIndex(tuple($(args...))))
end
Base.call{M,N}(::Type{CartesianIndex{N}},index::NTuple{M,Integer}) = CartesianIndex{N}(index...)

# length
length{N}(::CartesianIndex{N})=N
length{N}(::Type{CartesianIndex{N}})=N

# indexing
getindex(index::CartesianIndex, i::Integer) = index.I[i]

# arithmetic, min/max
for op in (:+, :-, :min, :max)
    @eval begin
        @generated function ($op){N}(index1::CartesianIndex{N}, index2::CartesianIndex{N})
            I = index1
            args = [:($($op)(index1[$d],index2[$d])) for d = 1:N]
            :($I($(args...)))
        end
    end
end

@generated function *{N}(a::Integer, index::CartesianIndex{N})
    I = index
    args = [:(a*index[$d]) for d = 1:N]
    :($I($(args...)))
end
*(index::CartesianIndex,a::Integer)=*(a,index)

# Iteration
immutable CartesianRange{I<:CartesianIndex}
    start::I
    stop::I
end

@generated function CartesianRange{N}(I::CartesianIndex{N})
    startargs = fill(1, N)
    :(CartesianRange($I($(startargs...)), I))
end
CartesianRange{N}(sz::NTuple{N,Int}) = CartesianRange(CartesianIndex(sz))

ndims(R::CartesianRange) = length(R.start)
ndims{I<:CartesianIndex}(::Type{CartesianRange{I}}) = length(I)

@generated function eachindex{T,N}(::LinearSlow, A::AbstractArray{T,N})
    startargs = fill(1, N)
    stopargs = [:(size(A,$i)) for i=1:N]
    meta = Expr(:meta, :inline)
    :($meta; CartesianRange(CartesianIndex{$N}($(startargs...)), CartesianIndex{$N}($(stopargs...))))
end

@generated function eachindex(::LinearSlow, A::AbstractArray, B::AbstractArray...)
    K = max(ndims(A), map(ndims, B)...)
    startargs = fill(1, K)
    stopargs = Array(Expr, K)
    for i = 1:K
        Bargs = [:(size(B[$j],$i)) for j = 1:length(B)]
        stopargs[i] = :(max(size(A,$i),$(Bargs...)))
    end
    meta = Expr(:meta, :inline)
    :($meta; CartesianRange(CartesianIndex{$K}($(startargs...)), CartesianIndex{$K}($(stopargs...))))
end

eltype{I}(::Type{CartesianRange{I}}) = I

@generated function start{I<:CartesianIndex}(iter::CartesianRange{I})
    N = length(I)
    cmp = [:(iter.start[$d] > iter.stop[$d]) for d = 1:N]
    extest = Expr(:||, cmp...)
    inc = [d < N ? :(iter.start[$d]) : :(iter.stop[$N]+1) for d = 1:N]
    exstop = :(CartesianIndex{$N}($(inc...)))
    quote
        $extest ? $exstop : iter.start
    end
end
@generated function next{I<:CartesianIndex}(iter::CartesianRange{I}, state)
    N = length(I)
    meta = Expr(:meta, :inline)
    quote
        $meta
        index=state
        @nif $N d->(index[d] < iter.stop[d]) d->(@nexprs($N, k->(ind_k = ifelse(k>=d, index[k] + (k==d), iter.start[k]))))
        newindex = @ncall $N $I ind
        index, newindex
    end
end
@generated function done{I<:CartesianIndex}(iter::CartesianRange{I}, state)
    N = length(I)
    :(state[$N] > iter.stop[$N])
end

# 0-d cartesian ranges are special-cased to iterate once and only once
start{I<:CartesianIndex{0}}(iter::CartesianRange{I}) = false
next{I<:CartesianIndex{0}}(iter::CartesianRange{I}, state) = iter.start, true
done{I<:CartesianIndex{0}}(iter::CartesianRange{I}, state) = state

@generated function length{I<:CartesianIndex}(iter::CartesianRange{I})
    N = length(I)
    N == 0 && return 1
    args = [:(iter.stop[$i]-iter.start[$i]+1) for i=1:N]
    Expr(:call,:*,args...)
end

last(iter::CartesianRange) = iter.stop

@generated function simd_outer_range{I}(iter::CartesianRange{I})
    N = length(I)
    N == 0 && return :(CartesianRange(CartesianIndex{0}(),CartesianIndex{0}()))
    startargs = [:(iter.start[$i]) for i=2:N]
    stopargs  = [:(iter.stop[$i]) for i=2:N]
    :(CartesianRange(CartesianIndex{$(N-1)}($(startargs...)), CartesianIndex{$(N-1)}($(stopargs...))))
end

simd_inner_length{I<:CartesianIndex{0}}(iter::CartesianRange{I}, ::CartesianIndex) = 1
simd_inner_length(iter::CartesianRange, I::CartesianIndex) = iter.stop[1]-iter.start[1]+1

simd_index{I<:CartesianIndex{0}}(iter::CartesianRange{I}, ::CartesianIndex, I1::Int) = iter.start
@generated function simd_index{N}(iter::CartesianRange, Ilast::CartesianIndex{N}, I1::Int)
    args = [d == 1 ? :(I1+iter.start[1]) : :(Ilast[$(d-1)]) for d = 1:N+1]
    meta = Expr(:meta, :inline)
    :($meta; CartesianIndex{$(N+1)}($(args...)))
end

end  # IteratorsMD

using .IteratorsMD

# Recursively compute the lengths of a list of indices, without dropping scalars
# These need to be inlined for more than 3 indexes
index_lengths(A::AbstractArray, I::Colon) = (length(A),)
index_lengths(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),)
index_lengths(A::AbstractArray, I::AbstractArray) = (length(I),)
@inline index_lengths(A::AbstractArray, I...) = index_lengths_dim(A, 1, I...)
index_lengths_dim(A, dim) = ()
index_lengths_dim(A, dim, ::Colon) = (trailingsize(A, dim),)
@inline index_lengths_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_lengths_dim(A, dim+1, i, I...)...)
@inline index_lengths_dim(A, dim, ::Real, I...) = (1, index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray, I...) = (length(i), index_lengths_dim(A, dim+1, I...)...)

# shape of array to create for getindex() with indexes I, dropping trailing scalars
index_shape(A::AbstractArray, I::AbstractArray) = size(I) # Linear index reshape
index_shape(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),) # Logical index
index_shape(A::AbstractArray, I::Colon) = (length(A),)
@inline index_shape(A::AbstractArray, I...) = index_shape_dim(A, 1, I...)
index_shape_dim(A, dim, I::Real...) = ()
index_shape_dim(A, dim, ::Colon) = (trailingsize(A, dim),)
@inline index_shape_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_shape_dim(A, dim+1, i, I...)...)
@inline index_shape_dim(A, dim, ::Real, I...) = (1, index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim(A, dim, i::AbstractVector{Bool}, I...) = (sum(i), index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim(A, dim, i::AbstractVector, I...) = (length(i), index_shape_dim(A, dim+1, I...)...)

### From abstractarray.jl: Internal multidimensional indexing definitions ###
# These are not defined on directly ongetindex and unsafe_getindex to avoid
# ambiguities for AbstractArray subtypes. See the note in abstractarray.jl

# Note that it's most efficient to call checkbounds first, and then to_index
@inline function _getindex(l::LinearIndexing, A::AbstractArray, I::Union{Real, AbstractArray, Colon}...)
    checkbounds(A, I...)
    _unsafe_getindex(l, A, I...)
end
@generated function _unsafe_getindex(l::LinearIndexing, A::AbstractArray, I::Union{Real, AbstractArray, Colon}...)
    N = length(I)
    quote
        # This is specifically *not* inlined.
        @nexprs $N d->(I_d = to_index(I[d]))
        dest = similar(A, @ncall $N index_shape A I)
        @ncall $N checksize dest I
        @ncall $N _unsafe_getindex! dest l A I
    end
end

# logical indexing optimization - don't use find (within to_index)
# This is inherently a linear operation in the source, but we could potentially
# use fast dividing integers to speed it up.
function _unsafe_getindex(::LinearIndexing, src::AbstractArray, I::AbstractArray{Bool})
    # Both index_shape and checksize compute sum(I); manually hoist it out
    N = sum(I)
    dest = similar(src, (N,))
    size(dest) == (N,) || throw(DimensionMismatch())
    D = eachindex(dest)
    Ds = start(D)
    s = 0
    for b in eachindex(I)
        s+=1
        if unsafe_getindex(I, b)
            d, Ds = next(D, Ds)
            unsafe_setindex!(dest, unsafe_getindex(src, s), d)
        end
    end
    dest
end

# Indexing with an array of indices is inherently linear in the source, but
# might be able to be optimized with fast dividing integers
@inline function _unsafe_getindex!(dest::AbstractArray, ::LinearIndexing, src::AbstractArray, I::AbstractArray)
    D = eachindex(dest)
    Ds = start(D)
    for idx in I
        d, Ds = next(D, Ds)
        unsafe_setindex!(dest, unsafe_getindex(src, idx), d)
    end
    dest
end

# Fast source - compute the linear index
@generated function _unsafe_getindex!(dest::AbstractArray, ::LinearFast, src::AbstractArray, I::Union{Real, AbstractVector, Colon}...)
    N = length(I)
    quote
        $(Expr(:meta, :inline))
        stride_1 = 1
        @nexprs $N d->(stride_{d+1} = stride_d*size(src, d))
        $(symbol(:offset_, N)) = 1
        D = eachindex(dest)
        Ds = start(D)
        @nloops $N i dest d->(offset_{d-1} = offset_d + (unsafe_getindex(I[d], i_d)-1)*stride_d) begin
            d, Ds = next(D, Ds)
            unsafe_setindex!(dest, unsafe_getindex(src, offset_0), d)
        end
        dest
    end
end
# Slow source - index with the indices provided.
# TODO: this may not be the full dimensionality; that case could be optimized
@generated function _unsafe_getindex!(dest::AbstractArray, ::LinearSlow, src::AbstractArray, I::Union{Real, AbstractVector, Colon}...)
    N = length(I)
    quote
        $(Expr(:meta, :inline))
        D = eachindex(dest)
        Ds = start(D)
        @nloops $N i dest d->(j_d = unsafe_getindex(I[d], i_d)) begin
            d, Ds = next(D, Ds)
            v = @ncall $N unsafe_getindex src j
            unsafe_setindex!(dest, v, d)
        end
        dest
    end
end

# checksize ensures the output array A is the correct size for the given indices
checksize(A::AbstractArray, I::AbstractArray) = size(A) == size(I) || throw(DimensionMismatch("index 1 has size $(size(I)), but size(A) = $(size(A))"))
checksize(A::AbstractArray, I::AbstractArray{Bool}) = length(A) == sum(I) || throw(DimensionMismatch("index 1 selects $(sum(I)) elements, but length(A) = $(length(A))"))
@generated function checksize(A::AbstractArray, I...)
    N = length(I)
    quote
        @nexprs $N d->(_checksize(A, d, I[d]) || throw(DimensionMismatch("index $d selects $(length(I[d])) elements, but size(A, $d) = $(size(A,d))")))
    end
end
_checksize(A::AbstractArray, dim, I) = size(A, dim) == length(I)
_checksize(A::AbstractArray, dim, I::AbstractVector{Bool}) = size(A, dim) == sum(I)
_checksize(A::AbstractArray, dim, ::Colon) = true
_checksize(A::AbstractArray, dim, ::Real) = size(A, dim) == 1

@inline unsafe_setindex!(v::BitArray, x::Bool, ind::Int) = (Base.unsafe_bitsetindex!(v.chunks, x, ind); v)
@inline unsafe_setindex!(v::BitArray, x, ind::Real) = (Base.unsafe_bitsetindex!(v.chunks, convert(Bool, x), to_index(ind)); v)

## setindex! ##
# For multi-element setindex!, we check bounds, convert the indices (to_index),
# and ensure the value to set is either an AbstractArray or a Repeated scalar
# before redispatching to the _unsafe_batchsetindex!
_iterable(v::AbstractArray) = v
_iterable(v) = repeated(v)
@inline function _setindex!(l::LinearIndexing, A::AbstractArray, x, J::Union{Real,AbstractArray,Colon}...)
    checkbounds(A, J...)
    _unsafe_setindex!(l, A, x, J...)
end
@inline function _unsafe_setindex!(l::LinearIndexing, A::AbstractArray, x, J::Union{Real,AbstractArray,Colon}...)
    _unsafe_batchsetindex!(l, A, _iterable(x), to_indexes(J...)...)
end

# 1-d logical indexing: override the above to avoid calling find (in to_index)
function _unsafe_setindex!(::LinearIndexing, A::AbstractArray, x, I::AbstractArray{Bool})
    X = _iterable(x)
    Xs = start(X)
    i = 0
    c = 0
    for b in eachindex(I)
        i+=1
        if unsafe_getindex(I, b)
            done(X, Xs) && throw_setindex_mismatch(x, c+1)
            (v, Xs) = next(X, Xs)
            unsafe_setindex!(A, v, i)
            c += 1
        end
    end
    setindex_shape_check(X, c)
    A
end

# Use iteration over X so we don't need to worry about its storage
@generated function _unsafe_batchsetindex!(::LinearFast, A::AbstractArray, X, I::Union{Real,AbstractArray,Colon}...)
    N = length(I)
    quote
        @nexprs $N d->(I_d = I[d])
        idxlens = @ncall $N index_lengths A I
        @ncall $N setindex_shape_check X (d->idxlens[d])
        Xs = start(X)
        stride_1 = 1
        @nexprs $N d->(stride_{d+1} = stride_d*size(A,d))
        $(symbol(:offset_, N)) = 1
        @nloops $N i d->(1:idxlens[d]) d->(offset_{d-1} = offset_d + (unsafe_getindex(I_d, i_d)-1)*stride_d) begin
            v, Xs = next(X, Xs)
            unsafe_setindex!(A, v, offset_0)
        end
        A
    end
end
@generated function _unsafe_batchsetindex!(::LinearSlow, A::AbstractArray, X, I::Union{Real,AbstractArray,Colon}...)
    N = length(I)
    quote
        @nexprs $N d->(I_d = I[d])
        idxlens = @ncall $N index_lengths A I
        @ncall $N setindex_shape_check X (d->idxlens[d])
        Xs = start(X)
        @nloops $N i d->(1:idxlens[d]) d->(j_d = unsafe_getindex(I_d, i_d)) begin
            v, Xs = next(X, Xs)
            @ncall $N unsafe_setindex! A v j
        end
        A
    end
end

# Cartesian indexing
function cartindex_exprs(indexes, syms)
    exprs = Any[]
    for (i,ind) in enumerate(indexes)
        if ind <: CartesianIndex
            for j = 1:length(ind)
                push!(exprs, :($syms[$i][$j]))
            end
        else
            push!(exprs, :($syms[$i]))
        end
    end
    if isempty(exprs)
        push!(exprs, 1)  # Handle the zero-dimensional case
    end
    exprs
end
@generated function _getindex{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
    :($(Expr(:meta, :inline)); getindex(A, $(cartindex_exprs(I, :I)...)))
end
@generated function _unsafe_getindex{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
    :($(Expr(:meta, :inline)); unsafe_getindex(A, $(cartindex_exprs(I, :I)...)))
end
@generated function _setindex!{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, v, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
    :($(Expr(:meta, :inline)); setindex!(A, v, $(cartindex_exprs(I, :I)...)))
end
@generated function _unsafe_setindex!{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, v, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
    :($(Expr(:meta, :inline)); unsafe_setindex!(A, v, $(cartindex_exprs(I, :I)...)))
end


##

@generated function findn{T,N}(A::AbstractArray{T,N})
    quote
        nnzA = countnz(A)
        @nexprs $N d->(I_d = Array(Int, nnzA))
        k = 1
        @nloops $N i A begin
            @inbounds if (@nref $N A i) != zero(T)
                @nexprs $N d->(I_d[k] = i_d)
                k += 1
            end
        end
        @ntuple $N I
    end
end

## SubArray index merging
# A view created like V = A[2:3:8, 5:2:17] can later be indexed as V[2:7],
# creating a new 1d view.
# In such cases we have to collapse the 2d space spanned by the ranges.
#
# API:
#    merge_indexes(V, indexes::NTuple, dims::Dims, linindex)
# where dims encodes the trailing sizes of the parent array,
# indexes encodes the view's trailing indexes into the parent array,
# and linindex encodes the subset of these elements that we'll select.
#
# The generic algorithm makes use of div to convert elements
# of linindex into a cartesian index into indexes, looks up
# the corresponding cartesian index into the parent, and then uses
# dims to convert back to a linear index into the parent array.
#
# However, a common case is linindex::Range.
# Since div is slow and in(j::Int, linindex::Range) is fast,
# it can be much faster to generate all possibilities and
# then test whether the corresponding linear index is in linindex.
# One exception occurs when only a small subset of the total
# is desired, in which case we fall back to the div-based algorithm.
#@generated function merge_indexes{T<:Integer}(V, parentindexes::NTuple, parentdims::Dims, linindex::Union{Colon,Range{T}}, lindim)
@generated function merge_indexes_in{TT}(V, parentindexes::TT, parentdims::Dims, linindex, lindim)
    N = length(parentindexes.parameters)   # number of parent axes we're merging
    N > 0 || throw(ArgumentError("cannot merge empty indexes"))
    lengthexpr = linindex == Colon ? (:(prod(size(V)[lindim:end]))) : (:(length(linindex)))
    L = symbol(string("Istride_", N+1))  # length of V's trailing dimensions
    quote
        n = $lengthexpr
        Base.Cartesian.@nexprs $N d->(I_d = parentindexes[d])
        pdimoffset = ndims(V.parent) - length(parentdims)
        Istride_1 = 1   # parentindexes strides
        Base.Cartesian.@nexprs $N d->(Istride_{d+1} = Istride_d*dimsize(V.parent, d+pdimoffset, I_d))
        Istridet = Base.Cartesian.@ntuple $(N+1) d->Istride_d
        if n < 0.1*$L   # this has not been carefully tuned
            return merge_indexes_div(V, parentindexes, parentdims, linindex, lindim)
        end
        Pstride_1 = 1   # parent strides
        Base.Cartesian.@nexprs $(N-1) d->(Pstride_{d+1} = Pstride_d*parentdims[d])
        Base.Cartesian.@nexprs $N d->(counter_d = 1) # counter_0 is a linear index into parentindexes
        Base.Cartesian.@nexprs $N d->(offset_d = 1)  # offset_0 is a linear index into parent
        k = 0
        index = Array(Int, n)
        Base.Cartesian.@nloops $N i d->(1:dimsize(V.parent, d+pdimoffset, I_d)) d->(offset_{d-1} = offset_d + (I_d[i_d]-1)*Pstride_d; counter_{d-1} = counter_d + (i_d-1)*Istride_d) begin
            if in(counter_0, linindex)
                index[k+=1] = offset_0
            end
        end
        index
    end
end

# HACK: dispatch seemingly wasn't working properly
function merge_indexes(V, parentindexes::NTuple, parentdims::Dims, linindex, lindim)
    if isa(linindex, Colon) || isa(linindex, Range)
        return merge_indexes_in(V, parentindexes, parentdims, linindex, lindim)
    end
    merge_indexes_div(V, parentindexes, parentdims, linindex, lindim)
end

# Even simpler is the case where the linear index is ::Colon: return all indexes
@generated function merge_indexes(V, indexes::NTuple, dims::Dims, ::Colon)
    N = length(indexes)
    N > 0 || throw(ArgumentError("cannot merge empty indexes"))
    quote
        Base.Cartesian.@nexprs $N d->(I_d = indexes[d])
        dimoffset = ndims(V.parent) - length(dims)
        n = prod(map(length, indexes))
        Pstride_1 = 1   # parent strides
        Base.Cartesian.@nexprs $(N-1) d->(Pstride_{d+1} = Pstride_d*dims[d])
        Base.Cartesian.@nexprs $N d->(offset_d = 1)  # offset_0 is a linear index into parent
        k = 0
        index = Array(Int, n)
        Base.Cartesian.@nloops $N i d->(1:dimsize(V, d+dimoffset, I_d)) d->(offset_{d-1} = offset_d + (I_d[i_d]-1)*Pstride_d) begin
            index[k+=1] = offset_0
        end
        index
    end
end

# This could be written as a regular function, but performance
# will be better using Cartesian macros to avoid the heap and
# an extra loop.
@generated function merge_indexes_div{TT}(V, parentindexes::TT, parentdims::Dims, linindex, lindim)
    N = length(parentindexes.parameters)
    N > 0 || throw(ArgumentError("cannot merge empty indexes"))
    Istride_N = symbol("Istride_$N")
    lengthexpr = :(length(linindex))
    quote
        Base.Cartesian.@nexprs $N d->(I_d = parentindexes[d])
        Pstride_1 = 1   # parent strides
        Base.Cartesian.@nexprs $(N-1) d->(Pstride_{d+1} = Pstride_d*parentdims[d])
        Istride_1 = 1   # parentindexes strides
        pdimoffset = ndims(V.parent) - length(parentdims)
        Base.Cartesian.@nexprs $(N-1) d->(Istride_{d+1} = Istride_d*dimsize(V.parent, d+pdimoffset, I_d))
        n = $lengthexpr
        L = $(Istride_N) * dimsize(V.parent, $N+pdimoffset, parentindexes[end])
        index = Array(Int, n)
        for i = 1:n
            k = linindex[i] # k is the parentindexes-centered linear index
            1 <= k <= L || throw(BoundsError())
            k -= 1
            j = 0  # j will be the new parent-centered linear index
            Base.Cartesian.@nexprs $N d->(d < $N ?
                begin
                    c, k = divrem(k, Istride_{$N-d+1})
                    j += (Base.unsafe_getindex(I_{$N-d+1}, c+1)-1)*Pstride_{$N-d+1}
                end : begin
                    j += Base.unsafe_getindex(I_1, k+1)
                end)
            index[i] = j
        end
        index
    end
end


 cumsum(A::AbstractArray, axis::Integer=1) =  cumsum!(similar(A, Base._cumsum_type(A)), A, axis)
cumsum!(B, A::AbstractArray) = cumsum!(B, A, 1)
cumprod(A::AbstractArray, axis::Integer=1) = cumprod!(similar(A), A, axis)
cumprod!(B, A) = cumprod!(B, A, 1)

for (f, op) in ((:cumsum!, :+),
                (:cumprod!, :*))
    @eval begin
        @generated function ($f){T,N}(B, A::AbstractArray{T,N}, axis::Integer)
            quote
                if size(B, axis) < 1
                    return B
                end
                size(B) == size(A) || throw(DimensionMismatch("Size of B must match A"))
                if axis > N
                    copy!(B, A)
                    return B
                end
                if axis == 1
                    # We can accumulate to a temporary variable, which allows register usage and will be slightly faster
                    @inbounds @nloops $N i d->(d > 1 ? (1:size(A,d)) : (1:1)) begin
                        tmp = convert(eltype(B), @nref($N, A, i))
                        @nref($N, B, i) = tmp
                        for i_1 = 2:size(A,1)
                            tmp = ($($op))(tmp, @nref($N, A, i))
                            @nref($N, B, i) = tmp
                        end
                    end
                else
                    @nexprs $N d->(isaxis_d = axis == d)
                    # Copy the initial element in each 1d vector along dimension `axis`
                    @inbounds @nloops $N i d->(d == axis ? (1:1) : (1:size(A,d))) @nref($N, B, i) = @nref($N, A, i)
                    # Accumulate
                    @inbounds @nloops $N i d->((1+isaxis_d):size(A, d)) d->(j_d = i_d - isaxis_d) begin
                        @nref($N, B, i) = ($($op))(@nref($N, B, j), @nref($N, A, i))
                    end
                end
                B
            end
        end
    end
end

### from abstractarray.jl

function fill!{T}(A::AbstractArray{T}, x)
    xT = convert(T, x)
    for I in eachindex(A)
        @inbounds A[I] = xT
    end
    A
end

function copy!{T,N}(dest::AbstractArray{T,N}, src::AbstractArray{T,N})
    samesize = true
    for d = 1:N
        if size(dest,d) != size(src,d)
            samesize = false
            break
        end
    end
    if samesize && linearindexing(dest) == linearindexing(src)
        for I in eachindex(dest)
            @inbounds dest[I] = src[I]
        end
    else
        length(dest) >= length(src) || throw(BoundsError())
        iterdest = eachindex(dest)
        sdest = start(iterdest)
        for Isrc in eachindex(src)
            Idest, sdest = next(iterdest, sdest)
            @inbounds dest[Idest] = src[Isrc]
        end
    end
    dest
end

### BitArrays

## getindex

# contiguous multidimensional indexing: if the first dimension is a range,
# we can get some performance from using copy_chunks!
@inline function _unsafe_getindex!(X::BitArray, ::LinearFast, B::BitArray, I0::Union{UnitRange{Int}, Colon})
    copy_chunks!(X.chunks, 1, B.chunks, first(I0), index_lengths(B, I0)[1])
    return X
end

# Optimization where the inner dimension is contiguous improves perf dramatically
@generated function _unsafe_getindex!(X::BitArray, ::LinearFast, B::BitArray, I0::Union{Colon,UnitRange{Int}}, I::Union{Int,UnitRange{Int},Colon}...)
    N = length(I)
    quote
        $(Expr(:meta, :inline))
        @nexprs $N d->(I_d = I[d])

        f0 = first(I0)
        l0 = size(X, 1)

        gap_lst_1 = 0
        @nexprs $N d->(gap_lst_{d+1} = size(X, d+1))
        stride = 1
        ind = f0
        @nexprs $N d->begin
            stride *= size(B, d)
            stride_lst_d = stride
            ind += stride * (first(I_d) - 1)
            gap_lst_{d+1} *= stride
        end

        storeind = 1
        Xc, Bc = X.chunks, B.chunks
        @nloops($N, i, d->1:size(X, d+1),
                d->nothing, # PRE
                d->(ind += stride_lst_d - gap_lst_d), # POST
                begin # BODY
                    copy_chunks!(Xc, storeind, Bc, ind, l0)
                    storeind += l0
                end)
        return X
    end
end

# in the general multidimensional non-scalar case, can we do about 10% better
# in most cases by manually hoisting the bitarray chunks access out of the loop
# (This should really be handled by the compiler or with an immutable BitArray)
@generated function _unsafe_getindex!(X::BitArray, ::LinearFast, B::BitArray, I::Union{Int,AbstractVector{Int},Colon}...)
    N = length(I)
    quote
        $(Expr(:meta, :inline))
        stride_1 = 1
        @nexprs $N d->(stride_{d+1} = stride_d*size(B, d))
        $(symbol(:offset_, N)) = 1
        ind = 0
        Xc, Bc = X.chunks, B.chunks
        @nloops $N i X d->(offset_{d-1} = offset_d + (unsafe_getindex(I[d], i_d)-1)*stride_d) begin
            ind += 1
            unsafe_bitsetindex!(Xc, unsafe_bitgetindex(Bc, offset_0), ind)
        end
        return X
    end
end

## setindex!

# contiguous multidimensional indexing: if the first dimension is a range,
# we can get some performance from using copy_chunks!

function unsafe_setindex!(B::BitArray, X::BitArray, I0::UnitRange{Int})
    l0 = length(I0)
    l0 == 0 && return B
    f0 = first(I0)
    copy_chunks!(B.chunks, f0, X.chunks, 1, l0)
    return B
end

function unsafe_setindex!(B::BitArray, x::Bool, I0::UnitRange{Int})
    l0 = length(I0)
    l0 == 0 && return B
    f0 = first(I0)
    fill_chunks!(B.chunks, x, f0, l0)
    return B
end

@generated function unsafe_setindex!(B::BitArray, X::BitArray, I0::UnitRange{Int}, I::Union{Int,UnitRange{Int}}...)
    N = length(I)
    quote
        length(X) == 0 && return B
        f0 = first(I0)
        l0 = length(I0)

        gap_lst_1 = 0
        @nexprs $N d->(gap_lst_{d+1} = length(I[d]))
        stride = 1
        ind = f0
        @nexprs $N d->begin
            stride *= size(B, d)
            stride_lst_d = stride
            ind += stride * (first(I[d]) - 1)
            gap_lst_{d+1} *= stride
        end

        refind = 1
        @nloops($N, i, d->I[d],
                d->nothing, # PRE
                d->(ind += stride_lst_d - gap_lst_d), # POST
                begin # BODY
                    copy_chunks!(B.chunks, ind, X.chunks, refind, l0)
                    refind += l0
                end)

        return B
    end
end

@generated function unsafe_setindex!(B::BitArray, x::Bool, I0::UnitRange{Int}, I::Union{Int,UnitRange{Int}}...)
    N = length(I)
    quote
        f0 = first(I0)
        l0 = length(I0)
        l0 == 0 && return B
        @nexprs $N d->(length(I[d]) == 0 && return B)

        gap_lst_1 = 0
        @nexprs $N d->(gap_lst_{d+1} = length(I[d]))
        stride = 1
        ind = f0
        @nexprs $N d->begin
            stride *= size(B, d)
            stride_lst_d = stride
            ind += stride * (first(I[d]) - 1)
            gap_lst_{d+1} *= stride
        end

        @nloops($N, i, d->I[d],
                d->nothing, # PRE
                d->(ind += stride_lst_d - gap_lst_d), # POST
                fill_chunks!(B.chunks, x, ind, l0) # BODY
                )

        return B
    end
end

## findn

@generated function findn{N}(B::BitArray{N})
    quote
        nnzB = countnz(B)
        I = ntuple(x->Array(Int, nnzB), $N)
        if nnzB > 0
            count = 1
            @nloops $N i B begin
                if (@nref $N B i) # TODO: should avoid bounds checking
                    @nexprs $N d->(I[d][count] = i_d)
                    count += 1
                end
            end
        end
        return I
    end
end

## isassigned

@generated function isassigned(B::BitArray, I_0::Int, I::Int...)
    N = length(I)
    quote
        @nexprs $N d->(I_d = I[d])
        stride = 1
        index = I_0
        @nexprs $N d->begin
            l = size(B,d)
            stride *= l
            1 <= I_{d-1} <= l || return false
            index += (I_d - 1) * stride
        end
        return isassigned(B, index)
    end
end

## permutedims

for (V, PT, BT) in [((:N,), BitArray, BitArray), ((:T,:N), Array, StridedArray)]
    @eval @generated function permutedims!{$(V...)}(P::$PT{$(V...)}, B::$BT{$(V...)}, perm)
        quote
            dimsB = size(B)
            length(perm) == N || throw(ArgumentError("expected permutation of size $N, but length(perm)=$(length(perm))"))
            isperm(perm) || throw(ArgumentError("input is not a permutation"))
            dimsP = size(P)
            for i = 1:length(perm)
                dimsP[i] == dimsB[perm[i]] || throw(DimensionMismatch("destination tensor of incorrect size"))
            end

            #calculates all the strides
            strides_1 = 0
            @nexprs $N d->(strides_{d+1} = stride(B, perm[d]))

            #Creates offset, because indexing starts at 1
            offset = 1 - sum(@ntuple $N d->strides_{d+1})

            if isa(B, SubArray)
                offset += first_index(B::SubArray) - 1
                B = B.parent
            end

            ind = 1
            @nexprs 1 d->(counts_{$N+1} = strides_{$N+1}) # a trick to set counts_($N+1)
            @nloops($N, i, P,
                    d->(counts_d = strides_d), # PRE
                    d->(counts_{d+1} += strides_{d+1}), # POST
                    begin # BODY
                        sumc = sum(@ntuple $N d->counts_{d+1})
                        @inbounds P[ind] = B[sumc+offset]
                        ind += 1
                    end)

            return P
        end
    end
end

## unique across dim

# TODO: this doesn't fit into the new hashing scheme in any obvious way

immutable Prehashed
    hash::UInt
end
hash(x::Prehashed) = x.hash

doc"""
    unique(itr[, dim])

Returns an array containing only the unique elements of the iterable `itr`, in
the order that the first of each set of equivalent elements originally appears.
If `dim` is specified, returns unique regions of the array `itr` along `dim`.
"""
@generated function unique{T,N}(A::AbstractArray{T,N}, dim::Int)
    quote
        1 <= dim <= $N || return copy(A)
        hashes = zeros(UInt, size(A, dim))

        # Compute hash for each row
        k = 0
        @nloops $N i A d->(if d == dim; k = i_d; end) begin
            @inbounds hashes[k] = hash(hashes[k], hash((@nref $N A i)))
        end

        # Collect index of first row for each hash
        uniquerow = Array(Int, size(A, dim))
        firstrow = Dict{Prehashed,Int}()
        for k = 1:size(A, dim)
            uniquerow[k] = get!(firstrow, Prehashed(hashes[k]), k)
        end
        uniquerows = collect(values(firstrow))

        # Check for collisions
        collided = falses(size(A, dim))
        @inbounds begin
            @nloops $N i A d->(if d == dim
                k = i_d
                j_d = uniquerow[k]
            else
                j_d = i_d
            end) begin
                if (@nref $N A j) != (@nref $N A i)
                    collided[k] = true
                end
            end
        end

        if any(collided)
            nowcollided = BitArray(size(A, dim))
            while any(collided)
                # Collect index of first row for each collided hash
                empty!(firstrow)
                for j = 1:size(A, dim)
                    collided[j] || continue
                    uniquerow[j] = get!(firstrow, Prehashed(hashes[j]), j)
                end
                for v in values(firstrow)
                    push!(uniquerows, v)
                end

                # Check for collisions
                fill!(nowcollided, false)
                @nloops $N i A d->begin
                    if d == dim
                        k = i_d
                        j_d = uniquerow[k]
                        (!collided[k] || j_d == k) && continue
                    else
                        j_d = i_d
                    end
                end begin
                    if (@nref $N A j) != (@nref $N A i)
                        nowcollided[k] = true
                    end
                end
                (collided, nowcollided) = (nowcollided, collided)
            end
        end

        @nref $N A d->d == dim ? sort!(uniquerows) : (1:size(A, d))
    end
end