/usr/share/julia/base/multidimensional.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 | # This file is a part of Julia. License is MIT: http://julialang.org/license
### Multidimensional iterators
module IteratorsMD
import Base: eltype, length, start, done, next, last, getindex, setindex!, linearindexing, min, max, eachindex, ndims
importall ..Base.Operators
import Base: simd_outer_range, simd_inner_length, simd_index, @generated
import Base: @nref, @ncall, @nif, @nexprs, LinearFast, LinearSlow, to_index
export CartesianIndex, CartesianRange
# Traits for linear indexing
linearindexing{A<:BitArray}(::Type{A}) = LinearFast()
# CartesianIndex
immutable CartesianIndex{N}
I::NTuple{N,Int}
CartesianIndex(index::NTuple{N,Integer}) = new(index)
end
CartesianIndex{N}(index::NTuple{N,Integer}) = CartesianIndex{N}(index)
@generated function Base.call{N}(::Type{CartesianIndex{N}},index::Integer...)
length(index) == N && return :(CartesianIndex(index))
length(index) > N && throw(DimensionMismatch("Cannot create CartesianIndex{$N} from $(length(index)) indexes"))
args = [i <= length(index) ? :(index[$i]) : 1 for i = 1:N]
:(CartesianIndex(tuple($(args...))))
end
Base.call{M,N}(::Type{CartesianIndex{N}},index::NTuple{M,Integer}) = CartesianIndex{N}(index...)
# length
length{N}(::CartesianIndex{N})=N
length{N}(::Type{CartesianIndex{N}})=N
# indexing
getindex(index::CartesianIndex, i::Integer) = index.I[i]
# arithmetic, min/max
for op in (:+, :-, :min, :max)
@eval begin
@generated function ($op){N}(index1::CartesianIndex{N}, index2::CartesianIndex{N})
I = index1
args = [:($($op)(index1[$d],index2[$d])) for d = 1:N]
:($I($(args...)))
end
end
end
@generated function *{N}(a::Integer, index::CartesianIndex{N})
I = index
args = [:(a*index[$d]) for d = 1:N]
:($I($(args...)))
end
*(index::CartesianIndex,a::Integer)=*(a,index)
# Iteration
immutable CartesianRange{I<:CartesianIndex}
start::I
stop::I
end
@generated function CartesianRange{N}(I::CartesianIndex{N})
startargs = fill(1, N)
:(CartesianRange($I($(startargs...)), I))
end
CartesianRange{N}(sz::NTuple{N,Int}) = CartesianRange(CartesianIndex(sz))
ndims(R::CartesianRange) = length(R.start)
ndims{I<:CartesianIndex}(::Type{CartesianRange{I}}) = length(I)
@generated function eachindex{T,N}(::LinearSlow, A::AbstractArray{T,N})
startargs = fill(1, N)
stopargs = [:(size(A,$i)) for i=1:N]
meta = Expr(:meta, :inline)
:($meta; CartesianRange(CartesianIndex{$N}($(startargs...)), CartesianIndex{$N}($(stopargs...))))
end
@generated function eachindex(::LinearSlow, A::AbstractArray, B::AbstractArray...)
K = max(ndims(A), map(ndims, B)...)
startargs = fill(1, K)
stopargs = Array(Expr, K)
for i = 1:K
Bargs = [:(size(B[$j],$i)) for j = 1:length(B)]
stopargs[i] = :(max(size(A,$i),$(Bargs...)))
end
meta = Expr(:meta, :inline)
:($meta; CartesianRange(CartesianIndex{$K}($(startargs...)), CartesianIndex{$K}($(stopargs...))))
end
eltype{I}(::Type{CartesianRange{I}}) = I
@generated function start{I<:CartesianIndex}(iter::CartesianRange{I})
N = length(I)
cmp = [:(iter.start[$d] > iter.stop[$d]) for d = 1:N]
extest = Expr(:||, cmp...)
inc = [d < N ? :(iter.start[$d]) : :(iter.stop[$N]+1) for d = 1:N]
exstop = :(CartesianIndex{$N}($(inc...)))
quote
$extest ? $exstop : iter.start
end
end
@generated function next{I<:CartesianIndex}(iter::CartesianRange{I}, state)
N = length(I)
meta = Expr(:meta, :inline)
quote
$meta
index=state
@nif $N d->(index[d] < iter.stop[d]) d->(@nexprs($N, k->(ind_k = ifelse(k>=d, index[k] + (k==d), iter.start[k]))))
newindex = @ncall $N $I ind
index, newindex
end
end
@generated function done{I<:CartesianIndex}(iter::CartesianRange{I}, state)
N = length(I)
:(state[$N] > iter.stop[$N])
end
# 0-d cartesian ranges are special-cased to iterate once and only once
start{I<:CartesianIndex{0}}(iter::CartesianRange{I}) = false
next{I<:CartesianIndex{0}}(iter::CartesianRange{I}, state) = iter.start, true
done{I<:CartesianIndex{0}}(iter::CartesianRange{I}, state) = state
@generated function length{I<:CartesianIndex}(iter::CartesianRange{I})
N = length(I)
N == 0 && return 1
args = [:(iter.stop[$i]-iter.start[$i]+1) for i=1:N]
Expr(:call,:*,args...)
end
last(iter::CartesianRange) = iter.stop
@generated function simd_outer_range{I}(iter::CartesianRange{I})
N = length(I)
N == 0 && return :(CartesianRange(CartesianIndex{0}(),CartesianIndex{0}()))
startargs = [:(iter.start[$i]) for i=2:N]
stopargs = [:(iter.stop[$i]) for i=2:N]
:(CartesianRange(CartesianIndex{$(N-1)}($(startargs...)), CartesianIndex{$(N-1)}($(stopargs...))))
end
simd_inner_length{I<:CartesianIndex{0}}(iter::CartesianRange{I}, ::CartesianIndex) = 1
simd_inner_length(iter::CartesianRange, I::CartesianIndex) = iter.stop[1]-iter.start[1]+1
simd_index{I<:CartesianIndex{0}}(iter::CartesianRange{I}, ::CartesianIndex, I1::Int) = iter.start
@generated function simd_index{N}(iter::CartesianRange, Ilast::CartesianIndex{N}, I1::Int)
args = [d == 1 ? :(I1+iter.start[1]) : :(Ilast[$(d-1)]) for d = 1:N+1]
meta = Expr(:meta, :inline)
:($meta; CartesianIndex{$(N+1)}($(args...)))
end
end # IteratorsMD
using .IteratorsMD
# Recursively compute the lengths of a list of indices, without dropping scalars
# These need to be inlined for more than 3 indexes
index_lengths(A::AbstractArray, I::Colon) = (length(A),)
index_lengths(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),)
index_lengths(A::AbstractArray, I::AbstractArray) = (length(I),)
@inline index_lengths(A::AbstractArray, I...) = index_lengths_dim(A, 1, I...)
index_lengths_dim(A, dim) = ()
index_lengths_dim(A, dim, ::Colon) = (trailingsize(A, dim),)
@inline index_lengths_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_lengths_dim(A, dim+1, i, I...)...)
@inline index_lengths_dim(A, dim, ::Real, I...) = (1, index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray, I...) = (length(i), index_lengths_dim(A, dim+1, I...)...)
# shape of array to create for getindex() with indexes I, dropping trailing scalars
index_shape(A::AbstractArray, I::AbstractArray) = size(I) # Linear index reshape
index_shape(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),) # Logical index
index_shape(A::AbstractArray, I::Colon) = (length(A),)
@inline index_shape(A::AbstractArray, I...) = index_shape_dim(A, 1, I...)
index_shape_dim(A, dim, I::Real...) = ()
index_shape_dim(A, dim, ::Colon) = (trailingsize(A, dim),)
@inline index_shape_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_shape_dim(A, dim+1, i, I...)...)
@inline index_shape_dim(A, dim, ::Real, I...) = (1, index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim(A, dim, i::AbstractVector{Bool}, I...) = (sum(i), index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim(A, dim, i::AbstractVector, I...) = (length(i), index_shape_dim(A, dim+1, I...)...)
### From abstractarray.jl: Internal multidimensional indexing definitions ###
# These are not defined on directly ongetindex and unsafe_getindex to avoid
# ambiguities for AbstractArray subtypes. See the note in abstractarray.jl
# Note that it's most efficient to call checkbounds first, and then to_index
@inline function _getindex(l::LinearIndexing, A::AbstractArray, I::Union{Real, AbstractArray, Colon}...)
checkbounds(A, I...)
_unsafe_getindex(l, A, I...)
end
@generated function _unsafe_getindex(l::LinearIndexing, A::AbstractArray, I::Union{Real, AbstractArray, Colon}...)
N = length(I)
quote
# This is specifically *not* inlined.
@nexprs $N d->(I_d = to_index(I[d]))
dest = similar(A, @ncall $N index_shape A I)
@ncall $N checksize dest I
@ncall $N _unsafe_getindex! dest l A I
end
end
# logical indexing optimization - don't use find (within to_index)
# This is inherently a linear operation in the source, but we could potentially
# use fast dividing integers to speed it up.
function _unsafe_getindex(::LinearIndexing, src::AbstractArray, I::AbstractArray{Bool})
# Both index_shape and checksize compute sum(I); manually hoist it out
N = sum(I)
dest = similar(src, (N,))
size(dest) == (N,) || throw(DimensionMismatch())
D = eachindex(dest)
Ds = start(D)
s = 0
for b in eachindex(I)
s+=1
if unsafe_getindex(I, b)
d, Ds = next(D, Ds)
unsafe_setindex!(dest, unsafe_getindex(src, s), d)
end
end
dest
end
# Indexing with an array of indices is inherently linear in the source, but
# might be able to be optimized with fast dividing integers
@inline function _unsafe_getindex!(dest::AbstractArray, ::LinearIndexing, src::AbstractArray, I::AbstractArray)
D = eachindex(dest)
Ds = start(D)
for idx in I
d, Ds = next(D, Ds)
unsafe_setindex!(dest, unsafe_getindex(src, idx), d)
end
dest
end
# Fast source - compute the linear index
@generated function _unsafe_getindex!(dest::AbstractArray, ::LinearFast, src::AbstractArray, I::Union{Real, AbstractVector, Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
stride_1 = 1
@nexprs $N d->(stride_{d+1} = stride_d*size(src, d))
$(symbol(:offset_, N)) = 1
D = eachindex(dest)
Ds = start(D)
@nloops $N i dest d->(offset_{d-1} = offset_d + (unsafe_getindex(I[d], i_d)-1)*stride_d) begin
d, Ds = next(D, Ds)
unsafe_setindex!(dest, unsafe_getindex(src, offset_0), d)
end
dest
end
end
# Slow source - index with the indices provided.
# TODO: this may not be the full dimensionality; that case could be optimized
@generated function _unsafe_getindex!(dest::AbstractArray, ::LinearSlow, src::AbstractArray, I::Union{Real, AbstractVector, Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
D = eachindex(dest)
Ds = start(D)
@nloops $N i dest d->(j_d = unsafe_getindex(I[d], i_d)) begin
d, Ds = next(D, Ds)
v = @ncall $N unsafe_getindex src j
unsafe_setindex!(dest, v, d)
end
dest
end
end
# checksize ensures the output array A is the correct size for the given indices
checksize(A::AbstractArray, I::AbstractArray) = size(A) == size(I) || throw(DimensionMismatch("index 1 has size $(size(I)), but size(A) = $(size(A))"))
checksize(A::AbstractArray, I::AbstractArray{Bool}) = length(A) == sum(I) || throw(DimensionMismatch("index 1 selects $(sum(I)) elements, but length(A) = $(length(A))"))
@generated function checksize(A::AbstractArray, I...)
N = length(I)
quote
@nexprs $N d->(_checksize(A, d, I[d]) || throw(DimensionMismatch("index $d selects $(length(I[d])) elements, but size(A, $d) = $(size(A,d))")))
end
end
_checksize(A::AbstractArray, dim, I) = size(A, dim) == length(I)
_checksize(A::AbstractArray, dim, I::AbstractVector{Bool}) = size(A, dim) == sum(I)
_checksize(A::AbstractArray, dim, ::Colon) = true
_checksize(A::AbstractArray, dim, ::Real) = size(A, dim) == 1
@inline unsafe_setindex!(v::BitArray, x::Bool, ind::Int) = (Base.unsafe_bitsetindex!(v.chunks, x, ind); v)
@inline unsafe_setindex!(v::BitArray, x, ind::Real) = (Base.unsafe_bitsetindex!(v.chunks, convert(Bool, x), to_index(ind)); v)
## setindex! ##
# For multi-element setindex!, we check bounds, convert the indices (to_index),
# and ensure the value to set is either an AbstractArray or a Repeated scalar
# before redispatching to the _unsafe_batchsetindex!
_iterable(v::AbstractArray) = v
_iterable(v) = repeated(v)
@inline function _setindex!(l::LinearIndexing, A::AbstractArray, x, J::Union{Real,AbstractArray,Colon}...)
checkbounds(A, J...)
_unsafe_setindex!(l, A, x, J...)
end
@inline function _unsafe_setindex!(l::LinearIndexing, A::AbstractArray, x, J::Union{Real,AbstractArray,Colon}...)
_unsafe_batchsetindex!(l, A, _iterable(x), to_indexes(J...)...)
end
# 1-d logical indexing: override the above to avoid calling find (in to_index)
function _unsafe_setindex!(::LinearIndexing, A::AbstractArray, x, I::AbstractArray{Bool})
X = _iterable(x)
Xs = start(X)
i = 0
c = 0
for b in eachindex(I)
i+=1
if unsafe_getindex(I, b)
done(X, Xs) && throw_setindex_mismatch(x, c+1)
(v, Xs) = next(X, Xs)
unsafe_setindex!(A, v, i)
c += 1
end
end
setindex_shape_check(X, c)
A
end
# Use iteration over X so we don't need to worry about its storage
@generated function _unsafe_batchsetindex!(::LinearFast, A::AbstractArray, X, I::Union{Real,AbstractArray,Colon}...)
N = length(I)
quote
@nexprs $N d->(I_d = I[d])
idxlens = @ncall $N index_lengths A I
@ncall $N setindex_shape_check X (d->idxlens[d])
Xs = start(X)
stride_1 = 1
@nexprs $N d->(stride_{d+1} = stride_d*size(A,d))
$(symbol(:offset_, N)) = 1
@nloops $N i d->(1:idxlens[d]) d->(offset_{d-1} = offset_d + (unsafe_getindex(I_d, i_d)-1)*stride_d) begin
v, Xs = next(X, Xs)
unsafe_setindex!(A, v, offset_0)
end
A
end
end
@generated function _unsafe_batchsetindex!(::LinearSlow, A::AbstractArray, X, I::Union{Real,AbstractArray,Colon}...)
N = length(I)
quote
@nexprs $N d->(I_d = I[d])
idxlens = @ncall $N index_lengths A I
@ncall $N setindex_shape_check X (d->idxlens[d])
Xs = start(X)
@nloops $N i d->(1:idxlens[d]) d->(j_d = unsafe_getindex(I_d, i_d)) begin
v, Xs = next(X, Xs)
@ncall $N unsafe_setindex! A v j
end
A
end
end
# Cartesian indexing
function cartindex_exprs(indexes, syms)
exprs = Any[]
for (i,ind) in enumerate(indexes)
if ind <: CartesianIndex
for j = 1:length(ind)
push!(exprs, :($syms[$i][$j]))
end
else
push!(exprs, :($syms[$i]))
end
end
if isempty(exprs)
push!(exprs, 1) # Handle the zero-dimensional case
end
exprs
end
@generated function _getindex{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
:($(Expr(:meta, :inline)); getindex(A, $(cartindex_exprs(I, :I)...)))
end
@generated function _unsafe_getindex{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
:($(Expr(:meta, :inline)); unsafe_getindex(A, $(cartindex_exprs(I, :I)...)))
end
@generated function _setindex!{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, v, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
:($(Expr(:meta, :inline)); setindex!(A, v, $(cartindex_exprs(I, :I)...)))
end
@generated function _unsafe_setindex!{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, v, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
:($(Expr(:meta, :inline)); unsafe_setindex!(A, v, $(cartindex_exprs(I, :I)...)))
end
##
@generated function findn{T,N}(A::AbstractArray{T,N})
quote
nnzA = countnz(A)
@nexprs $N d->(I_d = Array(Int, nnzA))
k = 1
@nloops $N i A begin
@inbounds if (@nref $N A i) != zero(T)
@nexprs $N d->(I_d[k] = i_d)
k += 1
end
end
@ntuple $N I
end
end
## SubArray index merging
# A view created like V = A[2:3:8, 5:2:17] can later be indexed as V[2:7],
# creating a new 1d view.
# In such cases we have to collapse the 2d space spanned by the ranges.
#
# API:
# merge_indexes(V, indexes::NTuple, dims::Dims, linindex)
# where dims encodes the trailing sizes of the parent array,
# indexes encodes the view's trailing indexes into the parent array,
# and linindex encodes the subset of these elements that we'll select.
#
# The generic algorithm makes use of div to convert elements
# of linindex into a cartesian index into indexes, looks up
# the corresponding cartesian index into the parent, and then uses
# dims to convert back to a linear index into the parent array.
#
# However, a common case is linindex::Range.
# Since div is slow and in(j::Int, linindex::Range) is fast,
# it can be much faster to generate all possibilities and
# then test whether the corresponding linear index is in linindex.
# One exception occurs when only a small subset of the total
# is desired, in which case we fall back to the div-based algorithm.
#@generated function merge_indexes{T<:Integer}(V, parentindexes::NTuple, parentdims::Dims, linindex::Union{Colon,Range{T}}, lindim)
@generated function merge_indexes_in{TT}(V, parentindexes::TT, parentdims::Dims, linindex, lindim)
N = length(parentindexes.parameters) # number of parent axes we're merging
N > 0 || throw(ArgumentError("cannot merge empty indexes"))
lengthexpr = linindex == Colon ? (:(prod(size(V)[lindim:end]))) : (:(length(linindex)))
L = symbol(string("Istride_", N+1)) # length of V's trailing dimensions
quote
n = $lengthexpr
Base.Cartesian.@nexprs $N d->(I_d = parentindexes[d])
pdimoffset = ndims(V.parent) - length(parentdims)
Istride_1 = 1 # parentindexes strides
Base.Cartesian.@nexprs $N d->(Istride_{d+1} = Istride_d*dimsize(V.parent, d+pdimoffset, I_d))
Istridet = Base.Cartesian.@ntuple $(N+1) d->Istride_d
if n < 0.1*$L # this has not been carefully tuned
return merge_indexes_div(V, parentindexes, parentdims, linindex, lindim)
end
Pstride_1 = 1 # parent strides
Base.Cartesian.@nexprs $(N-1) d->(Pstride_{d+1} = Pstride_d*parentdims[d])
Base.Cartesian.@nexprs $N d->(counter_d = 1) # counter_0 is a linear index into parentindexes
Base.Cartesian.@nexprs $N d->(offset_d = 1) # offset_0 is a linear index into parent
k = 0
index = Array(Int, n)
Base.Cartesian.@nloops $N i d->(1:dimsize(V.parent, d+pdimoffset, I_d)) d->(offset_{d-1} = offset_d + (I_d[i_d]-1)*Pstride_d; counter_{d-1} = counter_d + (i_d-1)*Istride_d) begin
if in(counter_0, linindex)
index[k+=1] = offset_0
end
end
index
end
end
# HACK: dispatch seemingly wasn't working properly
function merge_indexes(V, parentindexes::NTuple, parentdims::Dims, linindex, lindim)
if isa(linindex, Colon) || isa(linindex, Range)
return merge_indexes_in(V, parentindexes, parentdims, linindex, lindim)
end
merge_indexes_div(V, parentindexes, parentdims, linindex, lindim)
end
# Even simpler is the case where the linear index is ::Colon: return all indexes
@generated function merge_indexes(V, indexes::NTuple, dims::Dims, ::Colon)
N = length(indexes)
N > 0 || throw(ArgumentError("cannot merge empty indexes"))
quote
Base.Cartesian.@nexprs $N d->(I_d = indexes[d])
dimoffset = ndims(V.parent) - length(dims)
n = prod(map(length, indexes))
Pstride_1 = 1 # parent strides
Base.Cartesian.@nexprs $(N-1) d->(Pstride_{d+1} = Pstride_d*dims[d])
Base.Cartesian.@nexprs $N d->(offset_d = 1) # offset_0 is a linear index into parent
k = 0
index = Array(Int, n)
Base.Cartesian.@nloops $N i d->(1:dimsize(V, d+dimoffset, I_d)) d->(offset_{d-1} = offset_d + (I_d[i_d]-1)*Pstride_d) begin
index[k+=1] = offset_0
end
index
end
end
# This could be written as a regular function, but performance
# will be better using Cartesian macros to avoid the heap and
# an extra loop.
@generated function merge_indexes_div{TT}(V, parentindexes::TT, parentdims::Dims, linindex, lindim)
N = length(parentindexes.parameters)
N > 0 || throw(ArgumentError("cannot merge empty indexes"))
Istride_N = symbol("Istride_$N")
lengthexpr = :(length(linindex))
quote
Base.Cartesian.@nexprs $N d->(I_d = parentindexes[d])
Pstride_1 = 1 # parent strides
Base.Cartesian.@nexprs $(N-1) d->(Pstride_{d+1} = Pstride_d*parentdims[d])
Istride_1 = 1 # parentindexes strides
pdimoffset = ndims(V.parent) - length(parentdims)
Base.Cartesian.@nexprs $(N-1) d->(Istride_{d+1} = Istride_d*dimsize(V.parent, d+pdimoffset, I_d))
n = $lengthexpr
L = $(Istride_N) * dimsize(V.parent, $N+pdimoffset, parentindexes[end])
index = Array(Int, n)
for i = 1:n
k = linindex[i] # k is the parentindexes-centered linear index
1 <= k <= L || throw(BoundsError())
k -= 1
j = 0 # j will be the new parent-centered linear index
Base.Cartesian.@nexprs $N d->(d < $N ?
begin
c, k = divrem(k, Istride_{$N-d+1})
j += (Base.unsafe_getindex(I_{$N-d+1}, c+1)-1)*Pstride_{$N-d+1}
end : begin
j += Base.unsafe_getindex(I_1, k+1)
end)
index[i] = j
end
index
end
end
cumsum(A::AbstractArray, axis::Integer=1) = cumsum!(similar(A, Base._cumsum_type(A)), A, axis)
cumsum!(B, A::AbstractArray) = cumsum!(B, A, 1)
cumprod(A::AbstractArray, axis::Integer=1) = cumprod!(similar(A), A, axis)
cumprod!(B, A) = cumprod!(B, A, 1)
for (f, op) in ((:cumsum!, :+),
(:cumprod!, :*))
@eval begin
@generated function ($f){T,N}(B, A::AbstractArray{T,N}, axis::Integer)
quote
if size(B, axis) < 1
return B
end
size(B) == size(A) || throw(DimensionMismatch("Size of B must match A"))
if axis > N
copy!(B, A)
return B
end
if axis == 1
# We can accumulate to a temporary variable, which allows register usage and will be slightly faster
@inbounds @nloops $N i d->(d > 1 ? (1:size(A,d)) : (1:1)) begin
tmp = convert(eltype(B), @nref($N, A, i))
@nref($N, B, i) = tmp
for i_1 = 2:size(A,1)
tmp = ($($op))(tmp, @nref($N, A, i))
@nref($N, B, i) = tmp
end
end
else
@nexprs $N d->(isaxis_d = axis == d)
# Copy the initial element in each 1d vector along dimension `axis`
@inbounds @nloops $N i d->(d == axis ? (1:1) : (1:size(A,d))) @nref($N, B, i) = @nref($N, A, i)
# Accumulate
@inbounds @nloops $N i d->((1+isaxis_d):size(A, d)) d->(j_d = i_d - isaxis_d) begin
@nref($N, B, i) = ($($op))(@nref($N, B, j), @nref($N, A, i))
end
end
B
end
end
end
end
### from abstractarray.jl
function fill!{T}(A::AbstractArray{T}, x)
xT = convert(T, x)
for I in eachindex(A)
@inbounds A[I] = xT
end
A
end
function copy!{T,N}(dest::AbstractArray{T,N}, src::AbstractArray{T,N})
samesize = true
for d = 1:N
if size(dest,d) != size(src,d)
samesize = false
break
end
end
if samesize && linearindexing(dest) == linearindexing(src)
for I in eachindex(dest)
@inbounds dest[I] = src[I]
end
else
length(dest) >= length(src) || throw(BoundsError())
iterdest = eachindex(dest)
sdest = start(iterdest)
for Isrc in eachindex(src)
Idest, sdest = next(iterdest, sdest)
@inbounds dest[Idest] = src[Isrc]
end
end
dest
end
### BitArrays
## getindex
# contiguous multidimensional indexing: if the first dimension is a range,
# we can get some performance from using copy_chunks!
@inline function _unsafe_getindex!(X::BitArray, ::LinearFast, B::BitArray, I0::Union{UnitRange{Int}, Colon})
copy_chunks!(X.chunks, 1, B.chunks, first(I0), index_lengths(B, I0)[1])
return X
end
# Optimization where the inner dimension is contiguous improves perf dramatically
@generated function _unsafe_getindex!(X::BitArray, ::LinearFast, B::BitArray, I0::Union{Colon,UnitRange{Int}}, I::Union{Int,UnitRange{Int},Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
@nexprs $N d->(I_d = I[d])
f0 = first(I0)
l0 = size(X, 1)
gap_lst_1 = 0
@nexprs $N d->(gap_lst_{d+1} = size(X, d+1))
stride = 1
ind = f0
@nexprs $N d->begin
stride *= size(B, d)
stride_lst_d = stride
ind += stride * (first(I_d) - 1)
gap_lst_{d+1} *= stride
end
storeind = 1
Xc, Bc = X.chunks, B.chunks
@nloops($N, i, d->1:size(X, d+1),
d->nothing, # PRE
d->(ind += stride_lst_d - gap_lst_d), # POST
begin # BODY
copy_chunks!(Xc, storeind, Bc, ind, l0)
storeind += l0
end)
return X
end
end
# in the general multidimensional non-scalar case, can we do about 10% better
# in most cases by manually hoisting the bitarray chunks access out of the loop
# (This should really be handled by the compiler or with an immutable BitArray)
@generated function _unsafe_getindex!(X::BitArray, ::LinearFast, B::BitArray, I::Union{Int,AbstractVector{Int},Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
stride_1 = 1
@nexprs $N d->(stride_{d+1} = stride_d*size(B, d))
$(symbol(:offset_, N)) = 1
ind = 0
Xc, Bc = X.chunks, B.chunks
@nloops $N i X d->(offset_{d-1} = offset_d + (unsafe_getindex(I[d], i_d)-1)*stride_d) begin
ind += 1
unsafe_bitsetindex!(Xc, unsafe_bitgetindex(Bc, offset_0), ind)
end
return X
end
end
## setindex!
# contiguous multidimensional indexing: if the first dimension is a range,
# we can get some performance from using copy_chunks!
function unsafe_setindex!(B::BitArray, X::BitArray, I0::UnitRange{Int})
l0 = length(I0)
l0 == 0 && return B
f0 = first(I0)
copy_chunks!(B.chunks, f0, X.chunks, 1, l0)
return B
end
function unsafe_setindex!(B::BitArray, x::Bool, I0::UnitRange{Int})
l0 = length(I0)
l0 == 0 && return B
f0 = first(I0)
fill_chunks!(B.chunks, x, f0, l0)
return B
end
@generated function unsafe_setindex!(B::BitArray, X::BitArray, I0::UnitRange{Int}, I::Union{Int,UnitRange{Int}}...)
N = length(I)
quote
length(X) == 0 && return B
f0 = first(I0)
l0 = length(I0)
gap_lst_1 = 0
@nexprs $N d->(gap_lst_{d+1} = length(I[d]))
stride = 1
ind = f0
@nexprs $N d->begin
stride *= size(B, d)
stride_lst_d = stride
ind += stride * (first(I[d]) - 1)
gap_lst_{d+1} *= stride
end
refind = 1
@nloops($N, i, d->I[d],
d->nothing, # PRE
d->(ind += stride_lst_d - gap_lst_d), # POST
begin # BODY
copy_chunks!(B.chunks, ind, X.chunks, refind, l0)
refind += l0
end)
return B
end
end
@generated function unsafe_setindex!(B::BitArray, x::Bool, I0::UnitRange{Int}, I::Union{Int,UnitRange{Int}}...)
N = length(I)
quote
f0 = first(I0)
l0 = length(I0)
l0 == 0 && return B
@nexprs $N d->(length(I[d]) == 0 && return B)
gap_lst_1 = 0
@nexprs $N d->(gap_lst_{d+1} = length(I[d]))
stride = 1
ind = f0
@nexprs $N d->begin
stride *= size(B, d)
stride_lst_d = stride
ind += stride * (first(I[d]) - 1)
gap_lst_{d+1} *= stride
end
@nloops($N, i, d->I[d],
d->nothing, # PRE
d->(ind += stride_lst_d - gap_lst_d), # POST
fill_chunks!(B.chunks, x, ind, l0) # BODY
)
return B
end
end
## findn
@generated function findn{N}(B::BitArray{N})
quote
nnzB = countnz(B)
I = ntuple(x->Array(Int, nnzB), $N)
if nnzB > 0
count = 1
@nloops $N i B begin
if (@nref $N B i) # TODO: should avoid bounds checking
@nexprs $N d->(I[d][count] = i_d)
count += 1
end
end
end
return I
end
end
## isassigned
@generated function isassigned(B::BitArray, I_0::Int, I::Int...)
N = length(I)
quote
@nexprs $N d->(I_d = I[d])
stride = 1
index = I_0
@nexprs $N d->begin
l = size(B,d)
stride *= l
1 <= I_{d-1} <= l || return false
index += (I_d - 1) * stride
end
return isassigned(B, index)
end
end
## permutedims
for (V, PT, BT) in [((:N,), BitArray, BitArray), ((:T,:N), Array, StridedArray)]
@eval @generated function permutedims!{$(V...)}(P::$PT{$(V...)}, B::$BT{$(V...)}, perm)
quote
dimsB = size(B)
length(perm) == N || throw(ArgumentError("expected permutation of size $N, but length(perm)=$(length(perm))"))
isperm(perm) || throw(ArgumentError("input is not a permutation"))
dimsP = size(P)
for i = 1:length(perm)
dimsP[i] == dimsB[perm[i]] || throw(DimensionMismatch("destination tensor of incorrect size"))
end
#calculates all the strides
strides_1 = 0
@nexprs $N d->(strides_{d+1} = stride(B, perm[d]))
#Creates offset, because indexing starts at 1
offset = 1 - sum(@ntuple $N d->strides_{d+1})
if isa(B, SubArray)
offset += first_index(B::SubArray) - 1
B = B.parent
end
ind = 1
@nexprs 1 d->(counts_{$N+1} = strides_{$N+1}) # a trick to set counts_($N+1)
@nloops($N, i, P,
d->(counts_d = strides_d), # PRE
d->(counts_{d+1} += strides_{d+1}), # POST
begin # BODY
sumc = sum(@ntuple $N d->counts_{d+1})
@inbounds P[ind] = B[sumc+offset]
ind += 1
end)
return P
end
end
end
## unique across dim
# TODO: this doesn't fit into the new hashing scheme in any obvious way
immutable Prehashed
hash::UInt
end
hash(x::Prehashed) = x.hash
doc"""
unique(itr[, dim])
Returns an array containing only the unique elements of the iterable `itr`, in
the order that the first of each set of equivalent elements originally appears.
If `dim` is specified, returns unique regions of the array `itr` along `dim`.
"""
@generated function unique{T,N}(A::AbstractArray{T,N}, dim::Int)
quote
1 <= dim <= $N || return copy(A)
hashes = zeros(UInt, size(A, dim))
# Compute hash for each row
k = 0
@nloops $N i A d->(if d == dim; k = i_d; end) begin
@inbounds hashes[k] = hash(hashes[k], hash((@nref $N A i)))
end
# Collect index of first row for each hash
uniquerow = Array(Int, size(A, dim))
firstrow = Dict{Prehashed,Int}()
for k = 1:size(A, dim)
uniquerow[k] = get!(firstrow, Prehashed(hashes[k]), k)
end
uniquerows = collect(values(firstrow))
# Check for collisions
collided = falses(size(A, dim))
@inbounds begin
@nloops $N i A d->(if d == dim
k = i_d
j_d = uniquerow[k]
else
j_d = i_d
end) begin
if (@nref $N A j) != (@nref $N A i)
collided[k] = true
end
end
end
if any(collided)
nowcollided = BitArray(size(A, dim))
while any(collided)
# Collect index of first row for each collided hash
empty!(firstrow)
for j = 1:size(A, dim)
collided[j] || continue
uniquerow[j] = get!(firstrow, Prehashed(hashes[j]), j)
end
for v in values(firstrow)
push!(uniquerows, v)
end
# Check for collisions
fill!(nowcollided, false)
@nloops $N i A d->begin
if d == dim
k = i_d
j_d = uniquerow[k]
(!collided[k] || j_d == k) && continue
else
j_d = i_d
end
end begin
if (@nref $N A j) != (@nref $N A i)
nowcollided[k] = true
end
end
(collided, nowcollided) = (nowcollided, collided)
end
end
@nref $N A d->d == dim ? sort!(uniquerows) : (1:size(A, d))
end
end
|