This file is indexed.

/usr/share/julia/base/math.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# This file is a part of Julia. License is MIT: http://julialang.org/license

module Math

export sin, cos, tan, sinh, cosh, tanh, asin, acos, atan,
       asinh, acosh, atanh, sec, csc, cot, asec, acsc, acot,
       sech, csch, coth, asech, acsch, acoth,
       sinpi, cospi, sinc, cosc,
       cosd, cotd, cscd, secd, sind, tand,
       acosd, acotd, acscd, asecd, asind, atand, atan2,
       rad2deg, deg2rad,
       log, log2, log10, log1p, exponent, exp, exp2, exp10, expm1,
       cbrt, sqrt, erf, erfc, erfcx, erfi, dawson,
       significand,
       lgamma, hypot, gamma, lfact, max, min, minmax, ldexp, frexp,
       clamp, clamp!, modf, ^, mod2pi,
       airy, airyai, airyprime, airyaiprime, airybi, airybiprime, airyx,
       besselj0, besselj1, besselj, besseljx,
       bessely0, bessely1, bessely, besselyx,
       hankelh1, hankelh2, hankelh1x, hankelh2x,
       besseli, besselix, besselk, besselkx, besselh, besselhx,
       beta, lbeta, eta, zeta, polygamma, invdigamma, digamma, trigamma,
       erfinv, erfcinv, @evalpoly

import Base: log, exp, sin, cos, tan, sinh, cosh, tanh, asin,
             acos, atan, asinh, acosh, atanh, sqrt, log2, log10,
             max, min, minmax, ^, exp2,
             exp10, expm1, log1p,
             sign_mask, exponent_mask, exponent_one, exponent_half,
             significand_mask, significand_bits, exponent_bits, exponent_bias


import Core.Intrinsics: nan_dom_err, sqrt_llvm, box, unbox, powi_llvm

# non-type specific math functions

clamp{X,L,H}(x::X, lo::L, hi::H) =
    ifelse(x > hi, convert(promote_type(X,L,H), hi),
           ifelse(x < lo,
                  convert(promote_type(X,L,H), lo),
                  convert(promote_type(X,L,H), x)))

clamp{T}(x::AbstractArray{T,1}, lo, hi) = [clamp(xx, lo, hi) for xx in x]
clamp{T}(x::AbstractArray{T,2}, lo, hi) =
    [clamp(x[i,j], lo, hi) for i in 1:size(x,1), j in 1:size(x,2)]
clamp{T}(x::AbstractArray{T}, lo, hi) =
    reshape([clamp(xx, lo, hi) for xx in x], size(x))

function clamp!{T}(x::AbstractArray{T}, lo, hi)
    @inbounds for i in eachindex(x)
        x[i] = clamp(x[i], lo, hi)
    end
    x
end

# evaluate p[1] + x * (p[2] + x * (....)), i.e. a polynomial via Horner's rule
macro horner(x, p...)
    ex = esc(p[end])
    for i = length(p)-1:-1:1
        ex = :(muladd(t, $ex, $(esc(p[i]))))
    end
    Expr(:block, :(t = $(esc(x))), ex)
end

# Evaluate p[1] + z*p[2] + z^2*p[3] + ... + z^(n-1)*p[n].  This uses
# Horner's method if z is real, but for complex z it uses a more
# efficient algorithm described in Knuth, TAOCP vol. 2, section 4.6.4,
# equation (3).
macro evalpoly(z, p...)
    a = :($(esc(p[end])))
    b = :($(esc(p[end-1])))
    as = []
    for i = length(p)-2:-1:1
        ai = symbol("a", i)
        push!(as, :($ai = $a))
        a = :(muladd(r, $ai, $b))
        b = :(muladd(-s, $ai, $(esc(p[i]))))
    end
    ai = :a0
    push!(as, :($ai = $a))
    C = Expr(:block,
             :(x = real(tt)),
             :(y = imag(tt)),
             :(r = x + x),
             :(s = x*x + y*y),
             as...,
             :(muladd($ai, tt, $b)))
    R = Expr(:macrocall, symbol("@horner"), :tt, map(esc, p)...)
    :(let tt = $(esc(z))
          isa(tt, Complex) ? $C : $R
      end)
end

rad2deg(z::AbstractFloat) = z * (180 / oftype(z, pi))
deg2rad(z::AbstractFloat) = z * (oftype(z, pi) / 180)
rad2deg(z::Real) = rad2deg(float(z))
deg2rad(z::Real) = deg2rad(float(z))
@vectorize_1arg Real rad2deg
@vectorize_1arg Real deg2rad

log{T<:Number}(b::T, x::T) = log(x)/log(b)
log(b::Number, x::Number) = log(promote(b,x)...)
@vectorize_2arg Number log

# type specific math functions

const libm = Base.libm_name
const openspecfun = "libopenspecfun"

# functions with no domain error
for f in (:cbrt, :sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :exp2, :expm1)
    @eval begin
        ($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
        ($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
        ($f)(x::Real) = ($f)(float(x))
        @vectorize_1arg Number $f
    end
end

# fallback definitions to prevent infinite loop from $f(x::Real) def above
cbrt(x::AbstractFloat) = x^(1//3)
exp2(x::AbstractFloat) = 2^x
for f in (:sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :expm1)
    @eval ($f)(x::AbstractFloat) = error("not implemented for ", typeof(x))
end

# TODO: GNU libc has exp10 as an extension; should openlibm?
exp10(x::Float64) = 10.0^x
exp10(x::Float32) = 10.0f0^x
exp10(x::Integer) = exp10(float(x))
@vectorize_1arg Number exp10

# functions that return NaN on non-NaN argument for domain error
for f in (:sin, :cos, :tan, :asin, :acos, :acosh, :atanh, :log, :log2, :log10,
          :lgamma, :log1p)
    @eval begin
        ($f)(x::Float64) = nan_dom_err(ccall(($(string(f)),libm), Float64, (Float64,), x), x)
        ($f)(x::Float32) = nan_dom_err(ccall(($(string(f,"f")),libm), Float32, (Float32,), x), x)
        ($f)(x::Real) = ($f)(float(x))
        @vectorize_1arg Number $f
    end
end

sqrt(x::Float64) = box(Float64,sqrt_llvm(unbox(Float64,x)))
sqrt(x::Float32) = box(Float32,sqrt_llvm(unbox(Float32,x)))
sqrt(x::Real) = sqrt(float(x))
@vectorize_1arg Number sqrt

hypot(x::Real, y::Real) = hypot(promote(float(x), float(y))...)
function hypot{T<:AbstractFloat}(x::T, y::T)
    x = abs(x)
    y = abs(y)
    if x < y
        x, y = y, x
    end
    if x == 0
        r = y/one(x)
    else
        r = y/x
        if isnan(r)
            isinf(x) && return x
            isinf(y) && return y
            return r
        end
    end
    x * sqrt(one(r)+r*r)
end

atan2(y::Real, x::Real) = atan2(promote(float(y),float(x))...)
atan2{T<:AbstractFloat}(y::T, x::T) = Base.no_op_err("atan2", T)

for f in (:atan2, :hypot)
    @eval begin
        ($f)(y::Float64, x::Float64) = ccall(($(string(f)),libm), Float64, (Float64, Float64,), y, x)
        ($f)(y::Float32, x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32, Float32), y, x)
        @vectorize_2arg Number $f
    end
end

max{T<:AbstractFloat}(x::T, y::T) = ifelse((y > x) | (signbit(y) < signbit(x)),
                                    ifelse(isnan(y), x, y), ifelse(isnan(x), y, x))

@vectorize_2arg Real max

min{T<:AbstractFloat}(x::T, y::T) = ifelse((y < x) | (signbit(y) > signbit(x)),
                                    ifelse(isnan(y), x, y), ifelse(isnan(x), y, x))
@vectorize_2arg Real min

minmax{T<:AbstractFloat}(x::T, y::T) = ifelse(isnan(x-y), ifelse(isnan(x), (y, y), (x, x)),
                                       ifelse((y < x) | (signbit(y) > signbit(x)), (y, x),
                                       ifelse((y > x) | (signbit(y) < signbit(x)), (x, y),
                                       ifelse(x == x, (x, x), (y, y)))))

ldexp(x::Float64,e::Integer) = ccall((:scalbn,libm),  Float64, (Float64,Int32), x, Int32(e))
ldexp(x::Float32,e::Integer) = ccall((:scalbnf,libm), Float32, (Float32,Int32), x, Int32(e))
# TODO: vectorize ldexp

function exponent{T<:AbstractFloat}(x::T)
    xu = reinterpret(Unsigned,x)
    xe = xu & exponent_mask(T)
    k = Int(xe >> significand_bits(T))
    if xe == 0 # x is subnormal
        x == 0 && throw(DomainError())
        xu &= significand_mask(T)
        m = leading_zeros(xu)-exponent_bits(T)
        k = 1-m
    elseif xe == exponent_mask(T) # NaN or Inf
        throw(DomainError())
    end
    k - exponent_bias(T)
end
@vectorize_1arg Real exponent

function significand{T<:AbstractFloat}(x::T)
    xu = reinterpret(Unsigned,x)
    xe = xu & exponent_mask(T)
    if xe == 0 # x is subnormal
        x == 0 && return x
        xs = xu & sign_mask(T)
        xu $= xs
        m = leading_zeros(xu)-exponent_bits(T)
        xu <<= m
        xu $= xs
    elseif xe == exponent_mask(T) # NaN or Inf
        return x
    end
    xu = (xu & ~exponent_mask(T)) | exponent_one(T)
    reinterpret(T,xu)
end
@vectorize_1arg Real significand

function frexp{T<:AbstractFloat}(x::T)
    xu = reinterpret(Unsigned,x)
    xe = xu & exponent_mask(T)
    k = Int(xe >> significand_bits(T))
    if xe == 0 # x is subnormal
        x == 0 && return x, 0
        xs = xu & sign_mask(T)
        xu $= xs
        m = leading_zeros(xu)-exponent_bits(T)
        xu <<= m
        xu $= xs
        k = 1-m
    elseif xe == exponent_mask(T) # NaN or Inf
        return x,0
    end
    k -= (exponent_bias(T)-1)
    xu = (xu & ~exponent_mask(T)) | exponent_half(T)
    reinterpret(T,xu), k
end

function frexp{T<:AbstractFloat}(A::Array{T})
    f = similar(A)
    e = Array(Int, size(A))
    for i in eachindex(A)
        f[i], e[i] = frexp(A[i])
    end
    return (f, e)
end

modf(x) = rem(x,one(x)), trunc(x)

const _modff_temp = Float32[0]
function modf(x::Float32)
    f = ccall((:modff,libm), Float32, (Float32,Ptr{Float32}), x, _modff_temp)
    f, _modff_temp[1]
end

const _modf_temp = Float64[0]
function modf(x::Float64)
    f = ccall((:modf,libm), Float64, (Float64,Ptr{Float64}), x, _modf_temp)
    f, _modf_temp[1]
end

^(x::Float64, y::Float64) = nan_dom_err(ccall((:pow,libm),  Float64, (Float64,Float64), x, y), x+y)
^(x::Float32, y::Float32) = nan_dom_err(ccall((:powf,libm), Float32, (Float32,Float32), x, y), x+y)

^(x::Float64, y::Integer) =
    box(Float64, powi_llvm(unbox(Float64,x), unbox(Int32,Int32(y))))
^(x::Float32, y::Integer) =
    box(Float32, powi_llvm(unbox(Float32,x), unbox(Int32,Int32(y))))

function angle_restrict_symm(theta)
    const P1 = 4 * 7.8539812564849853515625e-01
    const P2 = 4 * 3.7748947079307981766760e-08
    const P3 = 4 * 2.6951514290790594840552e-15

    y = 2*floor(theta/(2*pi))
    r = ((theta - y*P1) - y*P2) - y*P3
    if (r > pi)
        r -= (2*pi)
    end
    return r
end

## mod2pi-related calculations ##

function add22condh(xh::Float64, xl::Float64, yh::Float64, yl::Float64)
    # as above, but only compute and return high double
    r = xh+yh
    s = (abs(xh) > abs(yh)) ? (xh-r+yh+yl+xl) : (yh-r+xh+xl+yl)
    zh = r+s
    return zh
end

function ieee754_rem_pio2(x::Float64)
    # rem_pio2 essentially computes x mod pi/2 (ie within a quarter circle)
    # and returns the result as
    # y between + and - pi/4 (for maximal accuracy (as the sign bit is exploited)), and
    # n, where n specifies the integer part of the division, or, at any rate,
    # in which quadrant we are.
    # The invariant fulfilled by the returned values seems to be
    #  x = y + n*pi/2 (where y = y1+y2 is a double-double and y2 is the "tail" of y).
    # Note: for very large x (thus n), the invariant might hold only modulo 2pi
    # (in other words, n might be off by a multiple of 4, or a multiple of 100)

    # this is just wrapping up
    # https://github.com/JuliaLang/openspecfun/blob/master/rem_pio2/e_rem_pio2.c

    y = [0.0,0.0]
    n = ccall((:__ieee754_rem_pio2, openspecfun), Cint, (Float64,Ptr{Float64}), x, y)
    return (n,y)
end

# multiples of pi/2, as double-double (ie with "tail")
const pi1o2_h  = 1.5707963267948966     # convert(Float64, pi * BigFloat(1/2))
const pi1o2_l  = 6.123233995736766e-17  # convert(Float64, pi * BigFloat(1/2) - pi1o2_h)

const pi2o2_h  = 3.141592653589793      # convert(Float64, pi * BigFloat(1))
const pi2o2_l  = 1.2246467991473532e-16 # convert(Float64, pi * BigFloat(1) - pi2o2_h)

const pi3o2_h  = 4.71238898038469       # convert(Float64, pi * BigFloat(3/2))
const pi3o2_l  = 1.8369701987210297e-16 # convert(Float64, pi * BigFloat(3/2) - pi3o2_h)

const pi4o2_h  = 6.283185307179586      # convert(Float64, pi * BigFloat(2))
const pi4o2_l  = 2.4492935982947064e-16 # convert(Float64, pi * BigFloat(2) - pi4o2_h)

function mod2pi(x::Float64) # or modtau(x)
# with r = mod2pi(x)
# a) 0 <= r < 2π  (note: boundary open or closed - a bit fuzzy, due to rem_pio2 implementation)
# b) r-x = k*2π with k integer

# note: mod(n,4) is 0,1,2,3; while mod(n-1,4)+1 is 1,2,3,4.
# We use the latter to push negative y in quadrant 0 into the positive (one revolution, + 4*pi/2)

    if x < pi4o2_h
        if 0.0 <= x return x end
        if x > -pi4o2_h
            return add22condh(x,0.0,pi4o2_h,pi4o2_l)
        end
    end

    (n,y) = ieee754_rem_pio2(x)

    if iseven(n)
        if n & 2 == 2 # add pi
            return add22condh(y[1],y[2],pi2o2_h,pi2o2_l)
        else # add 0 or 2pi
            if y[1] > 0.0
                return y[1]
            else # else add 2pi
                return add22condh(y[1],y[2],pi4o2_h,pi4o2_l)
            end
        end
    else # add pi/2 or 3pi/2
        if n & 2 == 2 # add 3pi/2
            return add22condh(y[1],y[2],pi3o2_h,pi3o2_l)
        else # add pi/2
            return add22condh(y[1],y[2],pi1o2_h,pi1o2_l)
        end
    end
end

mod2pi(x::Float32) = Float32(mod2pi(Float64(x)))
mod2pi(x::Int32) = mod2pi(Float64(x))
function mod2pi(x::Int64)
  fx = Float64(x)
  fx == x || throw(ArgumentError("Int64 argument to mod2pi is too large: $x"))
  mod2pi(fx)
end

# More special functions
include("special/trig.jl")
include("special/bessel.jl")
include("special/erf.jl")
include("special/gamma.jl")

module JuliaLibm
include("special/log.jl")
end

end # module