/usr/share/julia/base/math.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | # This file is a part of Julia. License is MIT: http://julialang.org/license
module Math
export sin, cos, tan, sinh, cosh, tanh, asin, acos, atan,
asinh, acosh, atanh, sec, csc, cot, asec, acsc, acot,
sech, csch, coth, asech, acsch, acoth,
sinpi, cospi, sinc, cosc,
cosd, cotd, cscd, secd, sind, tand,
acosd, acotd, acscd, asecd, asind, atand, atan2,
rad2deg, deg2rad,
log, log2, log10, log1p, exponent, exp, exp2, exp10, expm1,
cbrt, sqrt, erf, erfc, erfcx, erfi, dawson,
significand,
lgamma, hypot, gamma, lfact, max, min, minmax, ldexp, frexp,
clamp, clamp!, modf, ^, mod2pi,
airy, airyai, airyprime, airyaiprime, airybi, airybiprime, airyx,
besselj0, besselj1, besselj, besseljx,
bessely0, bessely1, bessely, besselyx,
hankelh1, hankelh2, hankelh1x, hankelh2x,
besseli, besselix, besselk, besselkx, besselh, besselhx,
beta, lbeta, eta, zeta, polygamma, invdigamma, digamma, trigamma,
erfinv, erfcinv, @evalpoly
import Base: log, exp, sin, cos, tan, sinh, cosh, tanh, asin,
acos, atan, asinh, acosh, atanh, sqrt, log2, log10,
max, min, minmax, ^, exp2,
exp10, expm1, log1p,
sign_mask, exponent_mask, exponent_one, exponent_half,
significand_mask, significand_bits, exponent_bits, exponent_bias
import Core.Intrinsics: nan_dom_err, sqrt_llvm, box, unbox, powi_llvm
# non-type specific math functions
clamp{X,L,H}(x::X, lo::L, hi::H) =
ifelse(x > hi, convert(promote_type(X,L,H), hi),
ifelse(x < lo,
convert(promote_type(X,L,H), lo),
convert(promote_type(X,L,H), x)))
clamp{T}(x::AbstractArray{T,1}, lo, hi) = [clamp(xx, lo, hi) for xx in x]
clamp{T}(x::AbstractArray{T,2}, lo, hi) =
[clamp(x[i,j], lo, hi) for i in 1:size(x,1), j in 1:size(x,2)]
clamp{T}(x::AbstractArray{T}, lo, hi) =
reshape([clamp(xx, lo, hi) for xx in x], size(x))
function clamp!{T}(x::AbstractArray{T}, lo, hi)
@inbounds for i in eachindex(x)
x[i] = clamp(x[i], lo, hi)
end
x
end
# evaluate p[1] + x * (p[2] + x * (....)), i.e. a polynomial via Horner's rule
macro horner(x, p...)
ex = esc(p[end])
for i = length(p)-1:-1:1
ex = :(muladd(t, $ex, $(esc(p[i]))))
end
Expr(:block, :(t = $(esc(x))), ex)
end
# Evaluate p[1] + z*p[2] + z^2*p[3] + ... + z^(n-1)*p[n]. This uses
# Horner's method if z is real, but for complex z it uses a more
# efficient algorithm described in Knuth, TAOCP vol. 2, section 4.6.4,
# equation (3).
macro evalpoly(z, p...)
a = :($(esc(p[end])))
b = :($(esc(p[end-1])))
as = []
for i = length(p)-2:-1:1
ai = symbol("a", i)
push!(as, :($ai = $a))
a = :(muladd(r, $ai, $b))
b = :(muladd(-s, $ai, $(esc(p[i]))))
end
ai = :a0
push!(as, :($ai = $a))
C = Expr(:block,
:(x = real(tt)),
:(y = imag(tt)),
:(r = x + x),
:(s = x*x + y*y),
as...,
:(muladd($ai, tt, $b)))
R = Expr(:macrocall, symbol("@horner"), :tt, map(esc, p)...)
:(let tt = $(esc(z))
isa(tt, Complex) ? $C : $R
end)
end
rad2deg(z::AbstractFloat) = z * (180 / oftype(z, pi))
deg2rad(z::AbstractFloat) = z * (oftype(z, pi) / 180)
rad2deg(z::Real) = rad2deg(float(z))
deg2rad(z::Real) = deg2rad(float(z))
@vectorize_1arg Real rad2deg
@vectorize_1arg Real deg2rad
log{T<:Number}(b::T, x::T) = log(x)/log(b)
log(b::Number, x::Number) = log(promote(b,x)...)
@vectorize_2arg Number log
# type specific math functions
const libm = Base.libm_name
const openspecfun = "libopenspecfun"
# functions with no domain error
for f in (:cbrt, :sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :exp2, :expm1)
@eval begin
($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
($f)(x::Real) = ($f)(float(x))
@vectorize_1arg Number $f
end
end
# fallback definitions to prevent infinite loop from $f(x::Real) def above
cbrt(x::AbstractFloat) = x^(1//3)
exp2(x::AbstractFloat) = 2^x
for f in (:sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :expm1)
@eval ($f)(x::AbstractFloat) = error("not implemented for ", typeof(x))
end
# TODO: GNU libc has exp10 as an extension; should openlibm?
exp10(x::Float64) = 10.0^x
exp10(x::Float32) = 10.0f0^x
exp10(x::Integer) = exp10(float(x))
@vectorize_1arg Number exp10
# functions that return NaN on non-NaN argument for domain error
for f in (:sin, :cos, :tan, :asin, :acos, :acosh, :atanh, :log, :log2, :log10,
:lgamma, :log1p)
@eval begin
($f)(x::Float64) = nan_dom_err(ccall(($(string(f)),libm), Float64, (Float64,), x), x)
($f)(x::Float32) = nan_dom_err(ccall(($(string(f,"f")),libm), Float32, (Float32,), x), x)
($f)(x::Real) = ($f)(float(x))
@vectorize_1arg Number $f
end
end
sqrt(x::Float64) = box(Float64,sqrt_llvm(unbox(Float64,x)))
sqrt(x::Float32) = box(Float32,sqrt_llvm(unbox(Float32,x)))
sqrt(x::Real) = sqrt(float(x))
@vectorize_1arg Number sqrt
hypot(x::Real, y::Real) = hypot(promote(float(x), float(y))...)
function hypot{T<:AbstractFloat}(x::T, y::T)
x = abs(x)
y = abs(y)
if x < y
x, y = y, x
end
if x == 0
r = y/one(x)
else
r = y/x
if isnan(r)
isinf(x) && return x
isinf(y) && return y
return r
end
end
x * sqrt(one(r)+r*r)
end
atan2(y::Real, x::Real) = atan2(promote(float(y),float(x))...)
atan2{T<:AbstractFloat}(y::T, x::T) = Base.no_op_err("atan2", T)
for f in (:atan2, :hypot)
@eval begin
($f)(y::Float64, x::Float64) = ccall(($(string(f)),libm), Float64, (Float64, Float64,), y, x)
($f)(y::Float32, x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32, Float32), y, x)
@vectorize_2arg Number $f
end
end
max{T<:AbstractFloat}(x::T, y::T) = ifelse((y > x) | (signbit(y) < signbit(x)),
ifelse(isnan(y), x, y), ifelse(isnan(x), y, x))
@vectorize_2arg Real max
min{T<:AbstractFloat}(x::T, y::T) = ifelse((y < x) | (signbit(y) > signbit(x)),
ifelse(isnan(y), x, y), ifelse(isnan(x), y, x))
@vectorize_2arg Real min
minmax{T<:AbstractFloat}(x::T, y::T) = ifelse(isnan(x-y), ifelse(isnan(x), (y, y), (x, x)),
ifelse((y < x) | (signbit(y) > signbit(x)), (y, x),
ifelse((y > x) | (signbit(y) < signbit(x)), (x, y),
ifelse(x == x, (x, x), (y, y)))))
ldexp(x::Float64,e::Integer) = ccall((:scalbn,libm), Float64, (Float64,Int32), x, Int32(e))
ldexp(x::Float32,e::Integer) = ccall((:scalbnf,libm), Float32, (Float32,Int32), x, Int32(e))
# TODO: vectorize ldexp
function exponent{T<:AbstractFloat}(x::T)
xu = reinterpret(Unsigned,x)
xe = xu & exponent_mask(T)
k = Int(xe >> significand_bits(T))
if xe == 0 # x is subnormal
x == 0 && throw(DomainError())
xu &= significand_mask(T)
m = leading_zeros(xu)-exponent_bits(T)
k = 1-m
elseif xe == exponent_mask(T) # NaN or Inf
throw(DomainError())
end
k - exponent_bias(T)
end
@vectorize_1arg Real exponent
function significand{T<:AbstractFloat}(x::T)
xu = reinterpret(Unsigned,x)
xe = xu & exponent_mask(T)
if xe == 0 # x is subnormal
x == 0 && return x
xs = xu & sign_mask(T)
xu $= xs
m = leading_zeros(xu)-exponent_bits(T)
xu <<= m
xu $= xs
elseif xe == exponent_mask(T) # NaN or Inf
return x
end
xu = (xu & ~exponent_mask(T)) | exponent_one(T)
reinterpret(T,xu)
end
@vectorize_1arg Real significand
function frexp{T<:AbstractFloat}(x::T)
xu = reinterpret(Unsigned,x)
xe = xu & exponent_mask(T)
k = Int(xe >> significand_bits(T))
if xe == 0 # x is subnormal
x == 0 && return x, 0
xs = xu & sign_mask(T)
xu $= xs
m = leading_zeros(xu)-exponent_bits(T)
xu <<= m
xu $= xs
k = 1-m
elseif xe == exponent_mask(T) # NaN or Inf
return x,0
end
k -= (exponent_bias(T)-1)
xu = (xu & ~exponent_mask(T)) | exponent_half(T)
reinterpret(T,xu), k
end
function frexp{T<:AbstractFloat}(A::Array{T})
f = similar(A)
e = Array(Int, size(A))
for i in eachindex(A)
f[i], e[i] = frexp(A[i])
end
return (f, e)
end
modf(x) = rem(x,one(x)), trunc(x)
const _modff_temp = Float32[0]
function modf(x::Float32)
f = ccall((:modff,libm), Float32, (Float32,Ptr{Float32}), x, _modff_temp)
f, _modff_temp[1]
end
const _modf_temp = Float64[0]
function modf(x::Float64)
f = ccall((:modf,libm), Float64, (Float64,Ptr{Float64}), x, _modf_temp)
f, _modf_temp[1]
end
^(x::Float64, y::Float64) = nan_dom_err(ccall((:pow,libm), Float64, (Float64,Float64), x, y), x+y)
^(x::Float32, y::Float32) = nan_dom_err(ccall((:powf,libm), Float32, (Float32,Float32), x, y), x+y)
^(x::Float64, y::Integer) =
box(Float64, powi_llvm(unbox(Float64,x), unbox(Int32,Int32(y))))
^(x::Float32, y::Integer) =
box(Float32, powi_llvm(unbox(Float32,x), unbox(Int32,Int32(y))))
function angle_restrict_symm(theta)
const P1 = 4 * 7.8539812564849853515625e-01
const P2 = 4 * 3.7748947079307981766760e-08
const P3 = 4 * 2.6951514290790594840552e-15
y = 2*floor(theta/(2*pi))
r = ((theta - y*P1) - y*P2) - y*P3
if (r > pi)
r -= (2*pi)
end
return r
end
## mod2pi-related calculations ##
function add22condh(xh::Float64, xl::Float64, yh::Float64, yl::Float64)
# as above, but only compute and return high double
r = xh+yh
s = (abs(xh) > abs(yh)) ? (xh-r+yh+yl+xl) : (yh-r+xh+xl+yl)
zh = r+s
return zh
end
function ieee754_rem_pio2(x::Float64)
# rem_pio2 essentially computes x mod pi/2 (ie within a quarter circle)
# and returns the result as
# y between + and - pi/4 (for maximal accuracy (as the sign bit is exploited)), and
# n, where n specifies the integer part of the division, or, at any rate,
# in which quadrant we are.
# The invariant fulfilled by the returned values seems to be
# x = y + n*pi/2 (where y = y1+y2 is a double-double and y2 is the "tail" of y).
# Note: for very large x (thus n), the invariant might hold only modulo 2pi
# (in other words, n might be off by a multiple of 4, or a multiple of 100)
# this is just wrapping up
# https://github.com/JuliaLang/openspecfun/blob/master/rem_pio2/e_rem_pio2.c
y = [0.0,0.0]
n = ccall((:__ieee754_rem_pio2, openspecfun), Cint, (Float64,Ptr{Float64}), x, y)
return (n,y)
end
# multiples of pi/2, as double-double (ie with "tail")
const pi1o2_h = 1.5707963267948966 # convert(Float64, pi * BigFloat(1/2))
const pi1o2_l = 6.123233995736766e-17 # convert(Float64, pi * BigFloat(1/2) - pi1o2_h)
const pi2o2_h = 3.141592653589793 # convert(Float64, pi * BigFloat(1))
const pi2o2_l = 1.2246467991473532e-16 # convert(Float64, pi * BigFloat(1) - pi2o2_h)
const pi3o2_h = 4.71238898038469 # convert(Float64, pi * BigFloat(3/2))
const pi3o2_l = 1.8369701987210297e-16 # convert(Float64, pi * BigFloat(3/2) - pi3o2_h)
const pi4o2_h = 6.283185307179586 # convert(Float64, pi * BigFloat(2))
const pi4o2_l = 2.4492935982947064e-16 # convert(Float64, pi * BigFloat(2) - pi4o2_h)
function mod2pi(x::Float64) # or modtau(x)
# with r = mod2pi(x)
# a) 0 <= r < 2π (note: boundary open or closed - a bit fuzzy, due to rem_pio2 implementation)
# b) r-x = k*2π with k integer
# note: mod(n,4) is 0,1,2,3; while mod(n-1,4)+1 is 1,2,3,4.
# We use the latter to push negative y in quadrant 0 into the positive (one revolution, + 4*pi/2)
if x < pi4o2_h
if 0.0 <= x return x end
if x > -pi4o2_h
return add22condh(x,0.0,pi4o2_h,pi4o2_l)
end
end
(n,y) = ieee754_rem_pio2(x)
if iseven(n)
if n & 2 == 2 # add pi
return add22condh(y[1],y[2],pi2o2_h,pi2o2_l)
else # add 0 or 2pi
if y[1] > 0.0
return y[1]
else # else add 2pi
return add22condh(y[1],y[2],pi4o2_h,pi4o2_l)
end
end
else # add pi/2 or 3pi/2
if n & 2 == 2 # add 3pi/2
return add22condh(y[1],y[2],pi3o2_h,pi3o2_l)
else # add pi/2
return add22condh(y[1],y[2],pi1o2_h,pi1o2_l)
end
end
end
mod2pi(x::Float32) = Float32(mod2pi(Float64(x)))
mod2pi(x::Int32) = mod2pi(Float64(x))
function mod2pi(x::Int64)
fx = Float64(x)
fx == x || throw(ArgumentError("Int64 argument to mod2pi is too large: $x"))
mod2pi(fx)
end
# More special functions
include("special/trig.jl")
include("special/bessel.jl")
include("special/erf.jl")
include("special/gamma.jl")
module JuliaLibm
include("special/log.jl")
end
end # module
|