This file is indexed.

/usr/share/julia/base/linalg/svd.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# This file is a part of Julia. License is MIT: http://julialang.org/license

# Singular Value Decomposition
immutable SVD{T,Tr,M<:AbstractArray} <: Factorization{T}
    U::M
    S::Vector{Tr}
    Vt::M
    SVD(U::AbstractArray{T}, S::Vector{Tr}, Vt::AbstractArray{T}) = new(U, S, Vt)
end
SVD{T,Tr}(U::AbstractArray{T}, S::Vector{Tr}, Vt::AbstractArray{T}) = SVD{T,Tr,typeof(U)}(U, S, Vt)

function svdfact!{T<:BlasFloat}(A::StridedMatrix{T}; thin::Bool=true)
    m,n = size(A)
    if m == 0 || n == 0
        u,s,vt = (eye(T, m, thin ? n : m), real(zeros(T,0)), eye(T,n,n))
    else
        u,s,vt = LAPACK.gesdd!(thin ? 'S' : 'A', A)
    end
    SVD(u,s,vt)
end
function svdfact{T}(A::StridedVecOrMat{T};thin = true)
    S = promote_type(Float32, typeof(one(T)/norm(one(T))))
    svdfact!(copy_oftype(A, S), thin = thin)
end
svdfact(x::Number; thin::Bool=true) = SVD(x == 0 ? fill(one(x), 1, 1) : fill(x/abs(x), 1, 1), [abs(x)], fill(one(x), 1, 1))
svdfact(x::Integer; thin::Bool=true) = svdfact(float(x), thin=thin)

function svd(A::Union{Number, AbstractArray}; thin::Bool=true)
    F = svdfact(A, thin=thin)
    F.U, F.S, F.Vt'
end

function getindex(F::SVD, d::Symbol)
    if d == :U
        return F.U
    elseif d == :S
        return F.S
    elseif d == :Vt
        return F.Vt
    elseif d == :V
        return F.Vt'
    else
        throw(KeyError(d))
    end
end

svdvals!{T<:BlasFloat}(A::StridedMatrix{T}) = any([size(A)...].==0) ? zeros(T, 0) : LAPACK.gesdd!('N', A)[2]
svdvals{T<:BlasFloat}(A::AbstractMatrix{T}) = svdvals!(copy(A))
function svdvals{T}(A::AbstractMatrix{T})
    S = promote_type(Float32, typeof(one(T)/norm(one(T))))
    svdvals!(copy_oftype(A, S))
end
svdvals(x::Number) = abs(x)
svdvals{T, Tr}(S::SVD{T, Tr}) = (S[:S])::Vector{Tr}

# SVD least squares
function A_ldiv_B!{T<:BlasFloat}(A::SVD{T}, B::StridedVecOrMat{T})
    n = length(A.S)
    Sinv = zeros(T, n)
    k = length(find(A.S .> eps(real(float(one(T))))*maximum(A.S)))
    Sinv[1:k] = one(T) ./ A.S[1:k]
    A.Vt[1:k,:]' * (Sinv[1:k] .* (A.U[:,1:k]' * B))
end

# Generalized svd
immutable GeneralizedSVD{T,S} <: Factorization{T}
    U::S
    V::S
    Q::S
    a::Vector
    b::Vector
    k::Int
    l::Int
    R::S
    GeneralizedSVD(U::AbstractMatrix{T}, V::AbstractMatrix{T}, Q::AbstractMatrix{T}, a::Vector, b::Vector, k::Int, l::Int, R::AbstractMatrix{T}) = new(U, V, Q, a, b, k, l, R)
end
GeneralizedSVD{T}(U::AbstractMatrix{T}, V::AbstractMatrix{T}, Q::AbstractMatrix{T}, a::Vector, b::Vector, k::Int, l::Int, R::AbstractMatrix{T}) = GeneralizedSVD{T,typeof(U)}(U, V, Q, a, b, k, l, R)

function svdfact!{T<:BlasFloat}(A::StridedMatrix{T}, B::StridedMatrix{T})
    # xggsvd3 replaced xggsvd in LAPACK 3.6.0
    if LAPACK.laver() < (3, 6, 0)
        U, V, Q, a, b, k, l, R = LAPACK.ggsvd!('U', 'V', 'Q', A, B)
    else
        U, V, Q, a, b, k, l, R = LAPACK.ggsvd3!('U', 'V', 'Q', A, B)
    end
    GeneralizedSVD(U, V, Q, a, b, Int(k), Int(l), R)
end
svdfact{T<:BlasFloat}(A::StridedMatrix{T}, B::StridedMatrix{T}) = svdfact!(copy(A),copy(B))
function svdfact{TA,TB}(A::StridedMatrix{TA}, B::StridedMatrix{TB})
    S = promote_type(Float32, typeof(one(TA)/norm(one(TA))),TB)
    return svdfact!(copy_oftype(A, S), copy_oftype(B, S))
end

function svd(A::AbstractMatrix, B::AbstractMatrix)
    F = svdfact(A, B)
    F[:U], F[:V], F[:Q], F[:D1], F[:D2], F[:R0]
end

function getindex{T}(obj::GeneralizedSVD{T}, d::Symbol)
    if d == :U
        return obj.U
    elseif d == :V
        return obj.V
    elseif d == :Q
        return obj.Q
    elseif d == :alpha || d == :a
        return obj.a
    elseif d == :beta || d == :b
        return obj.b
    elseif d == :vals || d == :S
        return obj.a[1:obj.k + obj.l] ./ obj.b[1:obj.k + obj.l]
    elseif d == :D1
        m = size(obj.U, 1)
        if m - obj.k - obj.l >= 0
            return [eye(T, obj.k) zeros(T, obj.k, obj.l); zeros(T, obj.l, obj.k) diagm(obj.a[obj.k + 1:obj.k + obj.l]); zeros(T, m - obj.k - obj.l, obj.k + obj.l)]
        else
            return [eye(T, m, obj.k) [zeros(T, obj.k, m - obj.k); diagm(obj.a[obj.k + 1:m])] zeros(T, m, obj.k + obj.l - m)]
        end
    elseif d == :D2
        m = size(obj.U, 1)
        p = size(obj.V, 1)
        if m - obj.k - obj.l >= 0
            return [zeros(T, obj.l, obj.k) diagm(obj.b[obj.k + 1:obj.k + obj.l]); zeros(T, p - obj.l, obj.k + obj.l)]
        else
            return [zeros(T, p, obj.k) [diagm(obj.b[obj.k + 1:m]); zeros(T, obj.k + p - m, m - obj.k)] [zeros(T, m - obj.k, obj.k + obj.l - m); eye(T, obj.k + p - m, obj.k + obj.l - m)]]
        end
    elseif d == :R
        return obj.R
    elseif d == :R0
        n = size(obj.Q, 1)
        return [zeros(T, obj.k + obj.l, n - obj.k - obj.l) obj.R]
    else
        throw(KeyError(d))
    end
end

function svdvals!{T<:BlasFloat}(A::StridedMatrix{T}, B::StridedMatrix{T})
    # xggsvd3 replaced xggsvd in LAPACK 3.6.0
    if LAPACK.laver() < (3, 6, 0)
        _, _, _, a, b, k, l, _ = LAPACK.ggsvd!('N', 'N', 'N', A, B)
    else
        _, _, _, a, b, k, l, _ = LAPACK.ggsvd3!('N', 'N', 'N', A, B)
    end
    a[1:k + l] ./ b[1:k + l]
end
svdvals{T<:BlasFloat}(A::StridedMatrix{T},B::StridedMatrix{T}) = svdvals!(copy(A),copy(B))
function svdvals{TA,TB}(A::StridedMatrix{TA}, B::StridedMatrix{TB})
    S = promote_type(Float32, typeof(one(TA)/norm(one(TA))), TB)
    return svdvals!(copy_oftype(A, S), copy_oftype(B, S))
end

full(F::SVD) = (F.U * Diagonal(F.S)) * F.Vt