This file is indexed.

/usr/share/julia/base/linalg/special.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# This file is a part of Julia. License is MIT: http://julialang.org/license

#Methods operating on different special matrix types

#Interconversion between special matrix types
convert{T}(::Type{Bidiagonal}, A::Diagonal{T})=Bidiagonal(A.diag, zeros(T, size(A.diag,1)-1), true)
convert{T}(::Type{SymTridiagonal}, A::Diagonal{T})=SymTridiagonal(A.diag, zeros(T, size(A.diag,1)-1))
convert{T}(::Type{Tridiagonal}, A::Diagonal{T})=Tridiagonal(zeros(T, size(A.diag,1)-1), A.diag, zeros(T, size(A.diag,1)-1))
convert(::Type{LowerTriangular}, A::Bidiagonal) = !A.isupper ? LowerTriangular(full(A)) : throw(ArgumentError("Bidiagonal matrix must have lower off diagonal to be converted to LowerTriangular"))
convert(::Type{UpperTriangular}, A::Bidiagonal) = A.isupper ? UpperTriangular(full(A)) : throw(ArgumentError("Bidiagonal matrix must have upper off diagonal to be converted to UpperTriangular"))
convert(::Type{Matrix}, D::Diagonal) = diagm(D.diag)

function convert(::Type{UnitUpperTriangular}, A::Diagonal)
    if !all(A.diag .== one(eltype(A)))
        throw(ArgumentError("matrix cannot be represented as UnitUpperTriangular"))
    end
    UnitUpperTriangular(full(A))
end

function convert(::Type{UnitLowerTriangular}, A::Diagonal)
    if !all(A.diag .== one(eltype(A)))
        throw(ArgumentError("matrix cannot be represented as UnitLowerTriangular"))
    end
    UnitLowerTriangular(full(A))
end

function convert(::Type{Diagonal}, A::Union{Bidiagonal, SymTridiagonal})
    if !all(A.ev .== 0)
        throw(ArgumentError("matrix cannot be represented as Diagonal"))
    end
    Diagonal(A.dv)
end

function convert(::Type{SymTridiagonal}, A::Bidiagonal)
    if !all(A.ev .== 0)
        throw(ArgumentError("matrix cannot be represented as SymTridiagonal"))
    end
    SymTridiagonal(A.dv, A.ev)
end

convert{T}(::Type{Tridiagonal}, A::Bidiagonal{T})=Tridiagonal(A.isupper?zeros(T, size(A.dv,1)-1):A.ev, A.dv, A.isupper?A.ev:zeros(T, size(A.dv,1)-1))

function convert(::Type{Bidiagonal}, A::SymTridiagonal)
    if !all(A.ev .== 0)
        throw(ArgumentError("matrix cannot be represented as Bidiagonal"))
    end
    Bidiagonal(A.dv, A.ev, true)
end

function convert(::Type{Diagonal}, A::Tridiagonal)
    if !(all(A.dl .== 0) && all(A.du .== 0))
        throw(ArgumentError("matrix cannot be represented as Diagonal"))
    end
    Diagonal(A.d)
end

function convert(::Type{Bidiagonal}, A::Tridiagonal)
    if all(A.dl .== 0) return Bidiagonal(A.d, A.du, true)
    elseif all(A.du .== 0) return Bidiagonal(A.d, A.dl, false)
    else throw(ArgumentError("matrix cannot be represented as Bidiagonal"))
    end
end

function convert(::Type{SymTridiagonal}, A::Tridiagonal)
    if !all(A.dl .== A.du)
        throw(ArgumentError("matrix cannot be represented as SymTridiagonal"))
    end
    SymTridiagonal(A.d, A.dl)
end

function convert(::Type{Tridiagonal}, A::SymTridiagonal)
    Tridiagonal(copy(A.ev), A.dv, A.ev)
end

function convert(::Type{Diagonal}, A::AbstractTriangular)
    if full(A) != diagm(diag(A))
        throw(ArgumentError("matrix cannot be represented as Diagonal"))
    end
    Diagonal(diag(A))
end

function convert(::Type{Bidiagonal}, A::AbstractTriangular)
    fA = full(A)
    if fA == diagm(diag(A)) + diagm(diag(fA, 1), 1)
        return Bidiagonal(diag(A), diag(fA,1), true)
    elseif fA == diagm(diag(A)) + diagm(diag(fA, -1), -1)
        return Bidiagonal(diag(A), diag(fA,-1), false)
    else
        throw(ArgumentError("matrix cannot be represented as Bidiagonal"))
    end
end

convert(::Type{SymTridiagonal}, A::AbstractTriangular) = convert(SymTridiagonal, convert(Tridiagonal, A))

function convert(::Type{Tridiagonal}, A::AbstractTriangular)
    fA = full(A)
    if fA == diagm(diag(A)) + diagm(diag(fA, 1), 1) + diagm(diag(fA, -1), -1)
        return Tridiagonal(diag(fA, -1), diag(A), diag(fA,1))
    else
        throw(ArgumentError("matrix cannot be represented as Tridiagonal"))
    end
end

#Constructs two method definitions taking into account (assumed) commutativity
# e.g. @commutative f{S,T}(x::S, y::T) = x+y is the same is defining
#     f{S,T}(x::S, y::T) = x+y
#     f{S,T}(y::T, x::S) = f(x, y)
macro commutative(myexpr)
    @assert myexpr.head===:(=) || myexpr.head===:function #Make sure it is a function definition
    y = copy(myexpr.args[1].args[2:end])
    reverse!(y)
    reversed_call = Expr(:(=), Expr(:call,myexpr.args[1].args[1],y...), myexpr.args[1])
    esc(Expr(:block, myexpr, reversed_call))
end

for op in (:+, :-)
    SpecialMatrices = [:Diagonal, :Bidiagonal, :Tridiagonal, :Matrix]
    for (idx, matrixtype1) in enumerate(SpecialMatrices) #matrixtype1 is the sparser matrix type
        for matrixtype2 in SpecialMatrices[idx+1:end] #matrixtype2 is the denser matrix type
            @eval begin #TODO quite a few of these conversions are NOT defined...
                ($op)(A::($matrixtype1), B::($matrixtype2)) = ($op)(convert(($matrixtype2), A), B)
                ($op)(A::($matrixtype2), B::($matrixtype1)) = ($op)(A, convert(($matrixtype2), B))
            end
        end
    end

    for  matrixtype1 in (:SymTridiagonal,)                      #matrixtype1 is the sparser matrix type
        for matrixtype2 in (:Tridiagonal, :Matrix) #matrixtype2 is the denser matrix type
            @eval begin
                ($op)(A::($matrixtype1), B::($matrixtype2)) = ($op)(convert(($matrixtype2), A), B)
                ($op)(A::($matrixtype2), B::($matrixtype1)) = ($op)(A, convert(($matrixtype2), B))
            end
        end
    end

    for matrixtype1 in (:Diagonal, :Bidiagonal) #matrixtype1 is the sparser matrix type
        for matrixtype2 in (:SymTridiagonal,)   #matrixtype2 is the denser matrix type
            @eval begin
                ($op)(A::($matrixtype1), B::($matrixtype2)) = ($op)(convert(($matrixtype2), A), B)
                ($op)(A::($matrixtype2), B::($matrixtype1)) = ($op)(A, convert(($matrixtype2), B))
            end
        end
    end

    for matrixtype1 in (:Diagonal,)
        for (matrixtype2,matrixtype3) in ((:UpperTriangular,:UpperTriangular),
                                          (:UnitUpperTriangular,:UpperTriangular),
                                          (:LowerTriangular,:LowerTriangular),
                                          (:UnitLowerTriangular,:LowerTriangular))
            @eval begin
                ($op)(A::($matrixtype1), B::($matrixtype2)) = ($op)(convert(($matrixtype3), A), B)
                ($op)(A::($matrixtype2), B::($matrixtype1)) = ($op)(A, convert(($matrixtype3), B))
            end
        end
    end
    for matrixtype in (:SymTridiagonal,:Tridiagonal,:Bidiagonal,:Matrix)
        @eval begin
            ($op)(A::AbstractTriangular, B::($matrixtype)) = ($op)(full(A), B)
            ($op)(A::($matrixtype), B::AbstractTriangular) = ($op)(A, full(B))
        end
    end
end

A_mul_Bc!(A::AbstractTriangular, B::QRCompactWYQ) = A_mul_Bc!(full!(A),B)
A_mul_Bc!(A::AbstractTriangular, B::QRPackedQ) = A_mul_Bc!(full!(A),B)
A_mul_Bc(A::AbstractTriangular, B::Union{QRCompactWYQ,QRPackedQ}) = A_mul_Bc(full(A), B)