This file is indexed.

/usr/share/julia/base/linalg/generic.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# This file is a part of Julia. License is MIT: http://julialang.org/license

## linalg.jl: Some generic Linear Algebra definitions

scale(X::AbstractArray, s::Number) = X*s
scale(s::Number, X::AbstractArray) = s*X

# For better performance when input and output are the same array
# See https://github.com/JuliaLang/julia/issues/8415#issuecomment-56608729
function generic_scale!(X::AbstractArray, s::Number)
    for I in eachindex(X)
        @inbounds X[I] *= s
    end
    X
end

function generic_scale!(C::AbstractArray, X::AbstractArray, s::Number)
    if length(C) != length(X)
        throw(DimensionMismatch("first array has length $(length(C)) which does not match the length of the second, $(length(X))."))
    end
    if size(C) == size(X)
        for I in eachindex(C, X)
            @inbounds C[I] = X[I]*s
        end
    else
        for (IC, IX) in zip(eachindex(C), eachindex(X))
            @inbounds C[IC] = X[IX]*s
        end
    end
    C
end
scale!(C::AbstractArray, s::Number, X::AbstractArray) = generic_scale!(C, X, s)
scale!(C::AbstractArray, X::AbstractArray, s::Number) = generic_scale!(C, X, s)
scale!(X::AbstractArray, s::Number) = generic_scale!(X, s)
scale!(s::Number, X::AbstractArray) = generic_scale!(X, s)

cross(a::AbstractVector, b::AbstractVector) = [a[2]*b[3]-a[3]*b[2], a[3]*b[1]-a[1]*b[3], a[1]*b[2]-a[2]*b[1]]

triu(M::AbstractMatrix) = triu!(copy(M))
tril(M::AbstractMatrix) = tril!(copy(M))
triu(M::AbstractMatrix,k::Integer) = triu!(copy(M),k)
tril(M::AbstractMatrix,k::Integer) = tril!(copy(M),k)
triu!(M::AbstractMatrix) = triu!(M,0)
tril!(M::AbstractMatrix) = tril!(M,0)

diff(a::AbstractMatrix) = diff(a, 1)
diff(a::AbstractVector) = [ a[i+1] - a[i] for i=1:length(a)-1 ]

function diff(A::AbstractMatrix, dim::Integer)
    if dim == 1
        [A[i+1,j] - A[i,j] for i=1:size(A,1)-1, j=1:size(A,2)]
    elseif dim == 2
        [A[i,j+1] - A[i,j] for i=1:size(A,1), j=1:size(A,2)-1]
    else
        throw(ArgumentError("dimension dim must be 1 or 2, got $dim"))
    end
end


gradient(F::AbstractVector) = gradient(F, [1:length(F);])
gradient(F::AbstractVector, h::Real) = gradient(F, [h*(1:length(F));])

diag(A::AbstractVector) = throw(ArgumentError("use diagm instead of diag to construct a diagonal matrix"))

#diagm{T}(v::AbstractVecOrMat{T})

###########################################################################################
# Inner products and norms

# special cases of vecnorm; note that they don't need to handle isempty(x)
function generic_vecnormMinusInf(x)
    s = start(x)
    (v, s) = next(x, s)
    minabs = norm(v)
    while !done(x, s)
        (v, s) = next(x, s)
        vnorm = norm(v)
        minabs = ifelse(isnan(minabs) | (minabs < vnorm), minabs, vnorm)
    end
    return float(minabs)
end

function generic_vecnormInf(x)
    s = start(x)
    (v, s) = next(x, s)
    maxabs = norm(v)
    while !done(x, s)
        (v, s) = next(x, s)
        vnorm = norm(v)
        maxabs = ifelse(isnan(maxabs) | (maxabs > vnorm), maxabs, vnorm)
    end
    return float(maxabs)
end

function generic_vecnorm1(x)
    s = start(x)
    (v, s) = next(x, s)
    av = float(norm(v))
    T = typeof(av)
    sum::promote_type(Float64, T) = av
    while !done(x, s)
        (v, s) = next(x, s)
        sum += norm(v)
    end
    return convert(T, sum)
end

# faster computation of norm(x)^2, avoiding overflow for integers
norm_sqr(x) = norm(x)^2
norm_sqr(x::Number) = abs2(x)
norm_sqr{T<:Integer}(x::Union{T,Complex{T},Rational{T}}) = abs2(float(x))

function generic_vecnorm2(x)
    maxabs = vecnormInf(x)
    (maxabs == 0 || isinf(maxabs)) && return maxabs
    s = start(x)
    (v, s) = next(x, s)
    T = typeof(maxabs)
    if isfinite(length(x)*maxabs*maxabs) && maxabs*maxabs != 0 # Scaling not necessary
        sum::promote_type(Float64, T) = norm_sqr(v)
        while !done(x, s)
            (v, s) = next(x, s)
            sum += norm_sqr(v)
        end
        return convert(T, sqrt(sum))
    else
        sum = abs2(norm(v)/maxabs)
        while !done(x, s)
            (v, s) = next(x, s)
            sum += (norm(v)/maxabs)^2
        end
        return convert(T, maxabs*sqrt(sum))
    end
end

# Compute L_p norm ‖x‖ₚ = sum(abs(x).^p)^(1/p)
# (Not technically a "norm" for p < 1.)
function generic_vecnormp(x, p)
    s = start(x)
    (v, s) = next(x, s)
    if p > 1 || p < -1 # might need to rescale to avoid overflow
        maxabs = p > 1 ? vecnormInf(x) : vecnormMinusInf(x)
        (maxabs == 0 || isinf(maxabs)) && return maxabs
        T = typeof(maxabs)
    else
        T = typeof(float(norm(v)))
    end
    spp::promote_type(Float64, T) = p
    if -1 <= p <= 1 || (isfinite(length(x)*maxabs^spp) && maxabs^spp != 0) # scaling not necessary
        sum::promote_type(Float64, T) = norm(v)^spp
        while !done(x, s)
            (v, s) = next(x, s)
            sum += norm(v)^spp
        end
        return convert(T, sum^inv(spp))
    else # rescaling
        sum = (norm(v)/maxabs)^spp
        while !done(x, s)
            (v, s) = next(x, s)
            sum += (norm(v)/maxabs)^spp
        end
        return convert(T, maxabs*sum^inv(spp))
    end
end

vecnormMinusInf(x) = generic_vecnormMinusInf(x)
vecnormInf(x) = generic_vecnormInf(x)
vecnorm1(x) = generic_vecnorm1(x)
vecnorm2(x) = generic_vecnorm2(x)
vecnormp(x, p) = generic_vecnormp(x, p)

function vecnorm(itr, p::Real=2)
    isempty(itr) && return float(real(zero(eltype(itr))))
    if p == 2
        return vecnorm2(itr)
    elseif p == 1
        return vecnorm1(itr)
    elseif p == Inf
        return vecnormInf(itr)
    elseif p == 0
        return convert(typeof(float(real(zero(eltype(itr))))),
               countnz(itr))
    elseif p == -Inf
        return vecnormMinusInf(itr)
    else
        vecnormp(itr,p)
    end
end
@inline vecnorm(x::Number, p::Real=2) = p == 0 ? real(x==0 ? zero(x) : one(x)) : abs(x)

norm(x::AbstractVector, p::Real=2) = vecnorm(x, p)

function norm1{T}(A::AbstractMatrix{T})
    m, n = size(A)
    Tnorm = typeof(float(real(zero(T))))
    Tsum = promote_type(Float64,Tnorm)
    nrm::Tsum = 0
    @inbounds begin
        for j = 1:n
            nrmj::Tsum = 0
            for i = 1:m
                nrmj += norm(A[i,j])
            end
            nrm = max(nrm,nrmj)
        end
    end
    return convert(Tnorm, nrm)
end
function norm2{T}(A::AbstractMatrix{T})
    m,n = size(A)
    if m == 1 || n == 1 return vecnorm2(A) end
    Tnorm = typeof(float(real(zero(T))))
    (m == 0 || n == 0) ? zero(Tnorm) : convert(Tnorm, svdvals(A)[1])
end
function normInf{T}(A::AbstractMatrix{T})
    m,n = size(A)
    Tnorm = typeof(float(real(zero(T))))
    Tsum = promote_type(Float64,Tnorm)
    nrm::Tsum = 0
    @inbounds begin
        for i = 1:m
            nrmi::Tsum = 0
            for j = 1:n
                nrmi += norm(A[i,j])
            end
            nrm = max(nrm,nrmi)
        end
    end
    return convert(Tnorm, nrm)
end
function norm{T}(A::AbstractMatrix{T}, p::Real=2)
    if p == 2
        return norm2(A)
    elseif p == 1
        return norm1(A)
    elseif p == Inf
        return normInf(A)
    else
        throw(ArgumentError("invalid p-norm p=$p. Valid: 1, 2, Inf"))
    end
end

@inline norm(x::Number, p::Real=2) = vecnorm(x, p)

function vecdot(x::AbstractVector, y::AbstractVector)
    lx = length(x)
    if lx != length(y)
        throw(DimensionMismatch("vector x has length $lx, but vector y has length $(length(y))"))
    end
    if lx == 0
        return dot(zero(eltype(x)), zero(eltype(y)))
    end
    s = dot(x[1], y[1])
    @inbounds for i = 2:lx
        s += dot(x[i], y[i])
    end
    s
end

function vecdot(x, y) # arbitrary iterables
    ix = start(x)
    if done(x, ix)
        if !isempty(y)
            throw(DimensionMismatch("x and y are of different lengths!"))
        end
        return dot(zero(eltype(x)), zero(eltype(y)))
    end
    iy = start(y)
    if done(y, iy)
        throw(DimensionMismatch("x and y are of different lengths!"))
    end
    (vx, ix) = next(x, ix)
    (vy, iy) = next(y, iy)
    s = dot(vx, vy)
    while !done(x, ix)
        if done(y, iy)
            throw(DimensionMismatch("x and y are of different lengths!"))
        end
        (vx, ix) = next(x, ix)
        (vy, iy) = next(y, iy)
        s += dot(vx, vy)
    end
    if !done(y, iy)
            throw(DimensionMismatch("x and y are of different lengths!"))
    end
    return s
end

vecdot(x::Number, y::Number) = conj(x) * y

dot(x::Number, y::Number) = vecdot(x, y)
dot(x::AbstractVector, y::AbstractVector) = vecdot(x, y)

###########################################################################################

rank(A::AbstractMatrix, tol::Real) = sum(svdvals(A) .> tol)
function rank(A::AbstractMatrix)
    m,n = size(A)
    (m == 0 || n == 0) && return 0
    sv = svdvals(A)
    return sum(sv .> maximum(size(A))*eps(sv[1]))
end
rank(x::Number) = x==0 ? 0 : 1

function trace(A::AbstractMatrix)
    chksquare(A)
    sum(diag(A))
end
trace(x::Number) = x

#kron(a::AbstractVector, b::AbstractVector)
#kron{T,S}(a::AbstractMatrix{T}, b::AbstractMatrix{S})

#det(a::AbstractMatrix)

inv(a::StridedMatrix) = throw(ArgumentError("argument must be a square matrix"))
function inv{T}(A::AbstractMatrix{T})
    S = typeof(zero(T)/one(T))
    A_ldiv_B!(factorize(convert(AbstractMatrix{S}, A)), eye(S, chksquare(A)))
end

function \{T}(A::AbstractMatrix{T}, B::AbstractVecOrMat{T})
    if size(A,1) != size(B,1)
        throw(DimensionMismatch("left and right hand sides should have the same number of rows, left hand side has $(size(A,1)) rows, but right hand side has $(size(B,1)) rows."))
    end
    factorize(A)\B
end
function \{TA,TB}(A::AbstractMatrix{TA}, B::AbstractVecOrMat{TB})
    TC = typeof(one(TA)/one(TB))
    convert(AbstractMatrix{TC}, A)\convert(AbstractArray{TC}, B)
end

\(a::AbstractVector, b::AbstractArray) = reshape(a, length(a), 1) \ b
/(A::AbstractVecOrMat, B::AbstractVecOrMat) = (B' \ A')'
# \(A::StridedMatrix,x::Number) = inv(A)*x Should be added at some point when the old elementwise version has been deprecated long enough
# /(x::Number,A::StridedMatrix) = x*inv(A)

cond(x::Number) = x == 0 ? Inf : 1.0
cond(x::Number, p) = cond(x)

#Skeel condition numbers
condskeel(A::AbstractMatrix, p::Real=Inf) = norm(abs(inv(A))*abs(A), p)
condskeel{T<:Integer}(A::AbstractMatrix{T}, p::Real=Inf) = norm(abs(inv(float(A)))*abs(A), p)
condskeel(A::AbstractMatrix, x::AbstractVector, p::Real=Inf) = norm(abs(inv(A))*abs(A)*abs(x), p)
condskeel{T<:Integer}(A::AbstractMatrix{T}, x::AbstractVector, p::Real=Inf) = norm(abs(inv(float(A)))*abs(A)*abs(x), p)

function issym(A::AbstractMatrix)
    m, n = size(A)
    if m != n
        return false
    end
    for i = 1:(n-1), j = (i+1):n
        if A[i,j] != transpose(A[j,i])
            return false
        end
    end
    return true
end

issym(x::Number) = true

function ishermitian(A::AbstractMatrix)
    m, n = size(A)
    if m != n
        return false
    end
    for i = 1:n, j = i:n
        if A[i,j] != ctranspose(A[j,i])
            return false
        end
    end
    return true
end

ishermitian(x::Number) = (x == conj(x))

function istriu(A::AbstractMatrix)
    m, n = size(A)
    for j = 1:min(n,m-1), i = j+1:m
        if A[i,j] != 0
            return false
        end
    end
    return true
end

function istril(A::AbstractMatrix)
    m, n = size(A)
    for j = 2:n, i = 1:min(j-1,m)
        if A[i,j] != 0
            return false
        end
    end
    return true
end

isdiag(A::AbstractMatrix) = istril(A) && istriu(A)

istriu(x::Number) = true
istril(x::Number) = true
isdiag(x::Number) = true

linreg{T<:Number}(X::StridedVecOrMat{T}, y::Vector{T}) = [ones(T, size(X,1)) X] \ y

# weighted least squares
function linreg(x::AbstractVector, y::AbstractVector, w::AbstractVector)
    sw = sqrt(w)
    [sw sw.*x] \ (sw.*y)
end

# multiply by diagonal matrix as vector
#diagmm!(C::AbstractMatrix, A::AbstractMatrix, b::AbstractVector)

#diagmm!(C::AbstractMatrix, b::AbstractVector, A::AbstractMatrix)

scale!(A::AbstractMatrix, b::AbstractVector) = scale!(A,A,b)
scale!(b::AbstractVector, A::AbstractMatrix) = scale!(A,b,A)

#diagmm(A::AbstractMatrix, b::AbstractVector)
#diagmm(b::AbstractVector, A::AbstractMatrix)

#^(A::AbstractMatrix, p::Number)

#findmax(a::AbstractArray)
#findmin(a::AbstractArray)

function peakflops(n::Integer=2000; parallel::Bool=false)
    a = ones(Float64,100,100)
    t = @elapsed a2 = a*a
    a = ones(Float64,n,n)
    t = @elapsed a2 = a*a
    @assert a2[1,1] == n
    parallel ? sum(pmap(peakflops, [ n for i in 1:nworkers()])) : (2*Float64(n)^3/t)
end

# BLAS-like in-place y = x*α+y function (see also the version in blas.jl
#                                          for BlasFloat Arrays)
function axpy!(α, x::AbstractArray, y::AbstractArray)
    n = length(x)
    if n != length(y)
        throw(DimensionMismatch("x has length $n, but y has length $(length(y))"))
    end
    for i = 1:n
        @inbounds y[i] += x[i]*α
    end
    y
end

function axpy!{Ti<:Integer,Tj<:Integer}(α, x::AbstractArray, rx::AbstractArray{Ti}, y::AbstractArray, ry::AbstractArray{Tj})
    if length(rx) != length(ry)
        throw(DimensionMismatch("rx has length $(length(rx)), but ry has length $(length(ry))"))
    elseif minimum(rx) < 1 || maximum(rx) > length(x)
        throw(BoundsError(x, rx))
    elseif minimum(ry) < 1 || maximum(ry) > length(y)
        throw(BoundsError(y, ry))
    end
    for i = 1:length(rx)
        @inbounds y[ry[i]] += x[rx[i]]*α
    end
    y
end


# Elementary reflection similar to LAPACK. The reflector is not Hermitian but ensures that tridiagonalization of Hermitian matrices become real. See lawn72
@inline function reflector!(x::AbstractVector)
    n = length(x)
    @inbounds begin
        ξ1 = x[1]
        normu = abs2(ξ1)
        for i = 2:n
            normu += abs2(x[i])
        end
        if normu == zero(normu)
            return zero(ξ1/normu)
        end
        normu = sqrt(normu)
        ν = copysign(normu, real(ξ1))
        ξ1 += ν
        x[1] = -ν
        for i = 2:n
            x[i] /= ξ1
        end
    end
    ξ1/ν
end

@inline function reflectorApply!(x::AbstractVector, τ::Number, A::StridedMatrix) # apply reflector from left
    m, n = size(A)
    if length(x) != m
        throw(DimensionMismatch("reflector must have same length as first dimension of matrix"))
    end
    @inbounds begin
        for j = 1:n
            vAj = A[1, j]
            for i = 2:m
                vAj += x[i]'*A[i, j]
            end
            vAj = τ'*vAj
            A[1, j] -= vAj
            for i = 2:m
                A[i, j] -= x[i]*vAj
            end
        end
    end
    return A
end

function det{T}(A::AbstractMatrix{T})
    if istriu(A) || istril(A)
        S = typeof((one(T)*zero(T) + zero(T))/one(T))
        return convert(S, det(UpperTriangular(A)))
    end
    return det(lufact(A))
end
det(x::Number) = x

logdet(A::AbstractMatrix) = logdet(lufact(A))
logabsdet(A::AbstractMatrix) = logabsdet(lufact(A))

# isapprox: approximate equality of arrays [like isapprox(Number,Number)]
function isapprox{T<:Number,S<:Number}(x::AbstractArray{T}, y::AbstractArray{S}; rtol::Real=Base.rtoldefault(T,S), atol::Real=0, norm::Function=vecnorm)
    d = norm(x - y)
    return isfinite(d) ? d <= atol + rtol*max(norm(x), norm(y)) : x == y
end