/usr/share/julia/base/linalg/eigen.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | # This file is a part of Julia. License is MIT: http://julialang.org/license
# Eigendecomposition
immutable Eigen{T,V,S<:AbstractMatrix,U<:AbstractVector} <: Factorization{T}
values::U
vectors::S
Eigen(values::AbstractVector{V}, vectors::AbstractMatrix{T}) = new(values, vectors)
end
Eigen{T,V}(values::AbstractVector{V}, vectors::AbstractMatrix{T}) = Eigen{T,V,typeof(vectors),typeof(values)}(values, vectors)
# Generalized eigenvalue problem.
immutable GeneralizedEigen{T,V,S<:AbstractMatrix,U<:AbstractVector} <: Factorization{T}
values::U
vectors::S
GeneralizedEigen(values::AbstractVector{V}, vectors::AbstractMatrix{T}) = new(values, vectors)
end
GeneralizedEigen{T,V}(values::AbstractVector{V}, vectors::AbstractMatrix{T}) = GeneralizedEigen{T,V,typeof(vectors),typeof(values)}(values, vectors)
function getindex(A::Union{Eigen,GeneralizedEigen}, d::Symbol)
d == :values && return A.values
d == :vectors && return A.vectors
throw(KeyError(d))
end
isposdef(A::Union{Eigen,GeneralizedEigen}) = isreal(A.values) && all(A.values .> 0)
function eigfact!{T<:BlasReal}(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true)
n = size(A, 2)
n==0 && return Eigen(zeros(T, 0), zeros(T, 0, 0))
issym(A) && return eigfact!(Symmetric(A))
A, WR, WI, VL, VR, _ = LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'V', 'N', A)
all(WI .== 0.) && return Eigen(WR, VR)
evec = zeros(Complex{T}, n, n)
j = 1
while j <= n
if WI[j] == 0.0
evec[:,j] = VR[:,j]
else
evec[:,j] = VR[:,j] + im*VR[:,j+1]
evec[:,j+1] = VR[:,j] - im*VR[:,j+1]
j += 1
end
j += 1
end
return Eigen(complex(WR, WI), evec)
end
function eigfact!{T<:BlasComplex}(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true)
n = size(A, 2)
n == 0 && return Eigen(zeros(T, 0), zeros(T, 0, 0))
ishermitian(A) && return eigfact!(Hermitian(A))
return Eigen(LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'V', 'N', A)[[2,4]]...)
end
function eigfact{T}(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true)
S = promote_type(Float32, typeof(one(T)/norm(one(T))))
eigfact!(copy_oftype(A, S), permute = permute, scale = scale)
end
eigfact(x::Number) = Eigen([x], fill(one(x), 1, 1))
# function eig(A::Union{Number, AbstractMatrix}; permute::Bool=true, scale::Bool=true)
# F = eigfact(A, permute=permute, scale=scale)
# F[:values], F[:vectors]
# end
function eig(A::Union{Number, AbstractMatrix}; kwargs...)
F = eigfact(A; kwargs...)
F.values, F.vectors
end
#Calculates eigenvectors
eigvecs(A::Union{Number, AbstractMatrix}, args...; kwargs...) = eigvecs(eigfact(A, args...; kwargs...))
eigvecs{T,V,S,U}(F::Union{Eigen{T,V,S,U}, GeneralizedEigen{T,V,S,U}}) = F[:vectors]::S
eigvals{T,V,S,U}(F::Union{Eigen{T,V,S,U}, GeneralizedEigen{T,V,S,U}}) = F[:values]::U
doc"""
eigvals!(A,[irange,][vl,][vu]) -> values
Same as `eigvals`, but saves space by overwriting the input `A` (and `B`), instead of creating a copy.
"""
function eigvals!{T<:BlasReal}(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true)
issym(A) && return eigvals!(Symmetric(A))
_, valsre, valsim, _ = LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'N', 'N', A)
return all(valsim .== 0) ? valsre : complex(valsre, valsim)
end
function eigvals!{T<:BlasComplex}(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true)
ishermitian(A) && return eigvals(Hermitian(A))
return LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'N', 'N', A)[2]
end
function eigvals{T}(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true)
S = promote_type(Float32, typeof(one(T)/norm(one(T))))
return eigvals!(copy_oftype(A, S), permute = permute, scale = scale)
end
function eigvals{T<:Number}(x::T; kwargs...)
val = convert(promote_type(Float32, typeof(one(T)/norm(one(T)))), x)
return imag(val) == 0 ? [real(val)] : [val]
end
# TO DO: Put message about not being able to sort complex numbers back in!
#Computes maximum and minimum eigenvalue
function eigmax(A::Union{Number, StridedMatrix}; permute::Bool=true, scale::Bool=true)
v = eigvals(A, permute = permute, scale = scale)
if eltype(v)<:Complex
throw(DomainError())
end
maximum(v)
end
function eigmin(A::Union{Number, StridedMatrix}; permute::Bool=true, scale::Bool=true)
v = eigvals(A, permute = permute, scale = scale)
if eltype(v)<:Complex
throw(DomainError())
end
minimum(v)
end
inv(A::Eigen) = A.vectors * inv(Diagonal(A.values)) / A.vectors
det(A::Eigen) = prod(A.values)
# Generalized eigenproblem
function eigfact!{T<:BlasReal}(A::StridedMatrix{T}, B::StridedMatrix{T})
issym(A) && isposdef(B) && return eigfact!(Symmetric(A), Symmetric(B))
n = size(A, 1)
alphar, alphai, beta, _, vr = LAPACK.ggev!('N', 'V', A, B)
all(alphai .== 0) && return GeneralizedEigen(alphar ./ beta, vr)
vecs = zeros(Complex{T}, n, n)
j = 1
while j <= n
if alphai[j] == 0.0
vecs[:,j] = vr[:,j]
else
vecs[:,j ] = vr[:,j] + im*vr[:,j+1]
vecs[:,j+1] = vr[:,j] - im*vr[:,j+1]
j += 1
end
j += 1
end
return GeneralizedEigen(complex(alphar, alphai)./beta, vecs)
end
function eigfact!{T<:BlasComplex}(A::StridedMatrix{T}, B::StridedMatrix{T})
ishermitian(A) && isposdef(B) && return eigfact!(Hermitian(A), Hermitian(B))
alpha, beta, _, vr = LAPACK.ggev!('N', 'V', A, B)
return GeneralizedEigen(alpha./beta, vr)
end
function eigfact{TA,TB}(A::AbstractMatrix{TA}, B::AbstractMatrix{TB})
S = promote_type(Float32, typeof(one(TA)/norm(one(TA))),TB)
return eigfact!(copy_oftype(A, S), copy_oftype(B, S))
end
function eig(A::Union{Number, AbstractMatrix}, B::Union{Number, AbstractMatrix})
F = eigfact(A,B)
F.values, F.vectors
end
function eigvals!{T<:BlasReal}(A::StridedMatrix{T}, B::StridedMatrix{T})
issym(A) && isposdef(B) && return eigvals!(Symmetric(A), Symmetric(B))
alphar, alphai, beta, vl, vr = LAPACK.ggev!('N', 'N', A, B)
return (all(alphai .== 0) ? alphar : complex(alphar, alphai))./beta
end
function eigvals!{T<:BlasComplex}(A::StridedMatrix{T}, B::StridedMatrix{T})
ishermitian(A) && isposdef(B) && return eigvals!(Hermitian(A), Hermitian(B))
alpha, beta, vl, vr = LAPACK.ggev!('N', 'N', A, B)
alpha./beta
end
function eigvals{TA,TB}(A::AbstractMatrix{TA}, B::AbstractMatrix{TB})
S = promote_type(Float32, typeof(one(TA)/norm(one(TA))),TB)
return eigvals!(copy_oftype(A, S), copy_oftype(B, S))
end
## Can we determine the source/result is Real? This is not stored in the type Eigen
full(F::Eigen) = F.vectors * Diagonal(F.values) / F.vectors
|