This file is indexed.

/usr/share/julia/base/linalg/dense.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# This file is a part of Julia. License is MIT: http://julialang.org/license

# Linear algebra functions for dense matrices in column major format

## BLAS cutoff threshold constants

const SCAL_CUTOFF = 2048
const DOT_CUTOFF = 128
const ASUM_CUTOFF = 32
const NRM2_CUTOFF = 32

function scale!{T<:BlasFloat}(X::Array{T}, s::T)
    if length(X) < SCAL_CUTOFF
        generic_scale!(X, s)
    else
        BLAS.scal!(length(X), s, X, 1)
    end
    X
end

scale!{T<:BlasFloat}(X::Array{T}, s::Number) = scale!(X, convert(T, s))
function scale!{T<:BlasComplex}(X::Array{T}, s::Real)
    R = typeof(real(zero(T)))
    BLAS.scal!(2*length(X), convert(R,s), convert(Ptr{R},pointer(X)), 1)
    X
end

#Test whether a matrix is positive-definite
isposdef!{T<:BlasFloat}(A::StridedMatrix{T}, UL::Symbol) = LAPACK.potrf!(char_uplo(UL), A)[2] == 0
isposdef!(A::StridedMatrix) = ishermitian(A) && isposdef!(A, :U)

isposdef{T}(A::AbstractMatrix{T}, UL::Symbol) = (S = typeof(sqrt(one(T))); isposdef!(S == T ? copy(A) : convert(AbstractMatrix{S}, A), UL))
isposdef{T}(A::AbstractMatrix{T}) = (S = typeof(sqrt(one(T))); isposdef!(S == T ? copy(A) : convert(AbstractMatrix{S}, A)))
isposdef(x::Number) = imag(x)==0 && real(x) > 0

stride1(x::Array) = 1
stride1(x::StridedVector) = stride(x, 1)::Int

import Base: mapreduce_seq_impl, AbsFun, Abs2Fun, AddFun

mapreduce_seq_impl{T<:BlasReal}(::AbsFun, ::AddFun, a::Union{Array{T},StridedVector{T}}, ifirst::Int, ilast::Int) =
    BLAS.asum(ilast-ifirst+1, pointer(a, ifirst), stride1(a))

function mapreduce_seq_impl{T<:BlasReal}(::Abs2Fun, ::AddFun, a::Union{Array{T},StridedVector{T}}, ifirst::Int, ilast::Int)
    n = ilast-ifirst+1
    px = pointer(a, ifirst)
    incx = stride1(a)
    BLAS.dot(n, px, incx, px, incx)
end

function mapreduce_seq_impl{T<:BlasComplex}(::Abs2Fun, ::AddFun, a::Union{Array{T},StridedVector{T}}, ifirst::Int, ilast::Int)
    n = ilast-ifirst+1
    px = pointer(a, ifirst)
    incx = stride1(a)
    real(BLAS.dotc(n, px, incx, px, incx))
end

function norm{T<:BlasFloat, TI<:Integer}(x::StridedVector{T}, rx::Union{UnitRange{TI},Range{TI}})
    if minimum(rx) < 1 || maximum(rx) > length(x)
        throw(BoundsError(x, rx))
    end
    BLAS.nrm2(length(rx), pointer(x)+(first(rx)-1)*sizeof(T), step(rx))
end

vecnorm1{T<:BlasReal}(x::Union{Array{T},StridedVector{T}}) =
    length(x) < ASUM_CUTOFF ? generic_vecnorm1(x) : BLAS.asum(x)

vecnorm2{T<:BlasFloat}(x::Union{Array{T},StridedVector{T}}) =
    length(x) < NRM2_CUTOFF ? generic_vecnorm2(x) : BLAS.nrm2(x)

function triu!(M::AbstractMatrix, k::Integer)
    m, n = size(M)
    if (k > 0 && k > n) || (k < 0 && -k > m)
        throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($m,$n)"))
    end
    idx = 1
    for j = 0:n-1
        ii = min(max(0, j+1-k), m)
        for i = (idx+ii):(idx+m-1)
            M[i] = zero(M[i])
        end
        idx += m
    end
    M
end

triu(M::Matrix, k::Integer) = triu!(copy(M), k)

function tril!(M::AbstractMatrix, k::Integer)
    m, n = size(M)
    if (k > 0 && k > n) || (k < 0 && -k > m)
        throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($m,$n)"))
    end
    idx = 1
    for j = 0:n-1
        ii = min(max(0, j-k), m)
        for i = idx:(idx+ii-1)
            M[i] = zero(M[i])
        end
        idx += m
    end
    M
end

tril(M::Matrix, k::Integer) = tril!(copy(M), k)

function gradient(F::Vector, h::Vector)
    n = length(F)
    T = typeof(one(eltype(F))/one(eltype(h)))
    g = Array(T,n)
    if n == 1
        g[1] = zero(T)
    elseif n > 1
        g[1] = (F[2] - F[1]) / (h[2] - h[1])
        g[n] = (F[n] - F[n-1]) / (h[end] - h[end-1])
        if n > 2
            h = h[3:n] - h[1:n-2]
            g[2:n-1] = (F[3:n] - F[1:n-2]) ./ h
        end
    end
    g
end

function diagind(m::Integer, n::Integer, k::Integer=0)
    if !(-m <= k <= n)
        throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($m,$n)"))
    end
    k <= 0 ? range(1-k, m+1, min(m+k, n)) : range(k*m+1, m+1, min(m, n-k))
end

diagind(A::AbstractMatrix, k::Integer=0) = diagind(size(A,1), size(A,2), k)

diag(A::AbstractMatrix, k::Integer=0) = A[diagind(A,k)]

function diagm{T}(v::AbstractVector{T}, k::Integer=0)
    n = length(v) + abs(k)
    A = zeros(T,n,n)
    A[diagind(A,k)] = v
    A
end

diagm(x::Number) = (X = Array(typeof(x),1,1); X[1,1] = x; X)

function trace{T}(A::Matrix{T})
    n = chksquare(A)
    t = zero(T)
    for i=1:n
        t += A[i,i]
    end
    t
end

function kron{T,S}(a::Matrix{T}, b::Matrix{S})
    R = Array(promote_type(T,S), size(a,1)*size(b,1), size(a,2)*size(b,2))
    m = 1
    for j = 1:size(a,2), l = 1:size(b,2), i = 1:size(a,1)
        aij = a[i,j]
        for k = 1:size(b,1)
            R[m] = aij*b[k,l]
            m += 1
        end
    end
    R
end

kron(a::Number, b::Union{Number, Vector, Matrix}) = a * b
kron(a::Union{Vector, Matrix}, b::Number) = a * b
kron(a::Vector, b::Vector)=vec(kron(reshape(a,length(a),1),reshape(b,length(b),1)))
kron(a::Matrix, b::Vector)=kron(a,reshape(b,length(b),1))
kron(a::Vector, b::Matrix)=kron(reshape(a,length(a),1),b)

^(A::Matrix, p::Integer) = p < 0 ? inv(A^-p) : Base.power_by_squaring(A,p)

function ^(A::Matrix, p::Number)
    if isinteger(p)
        return A^Integer(real(p))
    end
    chksquare(A)
    v, X = eig(A)
    any(v.<0) && (v = complex(v))
    Xinv = ishermitian(A) ? X' : inv(X)
    scale(X, v.^p)*Xinv
end

# Matrix exponential
expm{T<:BlasFloat}(A::StridedMatrix{T}) = expm!(copy(A))
expm{T<:Integer}(A::StridedMatrix{T}) = expm!(float(A))
expm(x::Number) = exp(x)

## Destructive matrix exponential using algorithm from Higham, 2008,
## "Functions of Matrices: Theory and Computation", SIAM
function expm!{T<:BlasFloat}(A::StridedMatrix{T})
    n = chksquare(A)
    if ishermitian(A)
        return full(expm(Hermitian(A)))
    end
    ilo, ihi, scale = LAPACK.gebal!('B', A)    # modifies A
    nA   = norm(A, 1)
    I    = eye(T,n)
    ## For sufficiently small nA, use lower order Padé-Approximations
    if (nA <= 2.1)
        if nA > 0.95
            C = T[17643225600.,8821612800.,2075673600.,302702400.,
                     30270240.,   2162160.,    110880.,     3960.,
                           90.,         1.]
        elseif nA > 0.25
            C = T[17297280.,8648640.,1995840.,277200.,
                     25200.,   1512.,     56.,     1.]
        elseif nA > 0.015
            C = T[30240.,15120.,3360.,
                    420.,   30.,   1.]
        else
            C = T[120.,60.,12.,1.]
        end
        A2 = A * A
        P  = copy(I)
        U  = C[2] * P
        V  = C[1] * P
        for k in 1:(div(size(C, 1), 2) - 1)
            k2 = 2 * k
            P *= A2
            U += C[k2 + 2] * P
            V += C[k2 + 1] * P
        end
        U = A * U
        X = V + U
        LAPACK.gesv!(V-U, X)
    else
        s  = log2(nA/5.4)               # power of 2 later reversed by squaring
        if s > 0
            si = ceil(Int,s)
            A /= convert(T,2^si)
        end
        CC = T[64764752532480000.,32382376266240000.,7771770303897600.,
                1187353796428800.,  129060195264000.,  10559470521600.,
                    670442572800.,      33522128640.,      1323241920.,
                        40840800.,           960960.,           16380.,
                             182.,                1.]
        A2 = A * A
        A4 = A2 * A2
        A6 = A2 * A4
        U  = A * (A6 * (CC[14]*A6 + CC[12]*A4 + CC[10]*A2) +
                  CC[8]*A6 + CC[6]*A4 + CC[4]*A2 + CC[2]*I)
        V  = A6 * (CC[13]*A6 + CC[11]*A4 + CC[9]*A2) +
                   CC[7]*A6 + CC[5]*A4 + CC[3]*A2 + CC[1]*I

        X = V + U
        LAPACK.gesv!(V-U, X)

        if s > 0            # squaring to reverse dividing by power of 2
            for t=1:si X *= X end
        end
    end

    # Undo the balancing
    for j = ilo:ihi
        scj = scale[j]
        for i = 1:n
            X[j,i] *= scj
        end
        for i = 1:n
            X[i,j] /= scj
        end
    end

    if ilo > 1       # apply lower permutations in reverse order
        for j in (ilo-1):-1:1 rcswap!(j, Int(scale[j]), X) end
    end
    if ihi < n       # apply upper permutations in forward order
        for j in (ihi+1):n    rcswap!(j, Int(scale[j]), X) end
    end
    X
end

## Swap rows i and j and columns i and j in X
function rcswap!{T<:Number}(i::Integer, j::Integer, X::StridedMatrix{T})
    for k = 1:size(X,1)
        X[k,i], X[k,j] = X[k,j], X[k,i]
    end
    for k = 1:size(X,2)
        X[i,k], X[j,k] = X[j,k], X[i,k]
    end
end

function logm(A::StridedMatrix)
    # If possible, use diagonalization
    if ishermitian(A)
        return full(logm(Hermitian(A)))
    end

    # Use Schur decomposition
    n = chksquare(A)
    if istriu(A)
        retmat = full(logm(UpperTriangular(complex(A))))
        d = diag(A)
    else
        S,Q,d = schur(complex(A))
        R = logm(UpperTriangular(S))
        retmat = Q * R * Q'
    end

    # Check whether the matrix has nonpositive real eigs
    np_real_eigs = false
    for i = 1:n
        if imag(d[i]) < eps() && real(d[i]) <= 0
            np_real_eigs = true
            break
        end
    end
    if np_real_eigs
        warn("Matrix with nonpositive real eigenvalues, a nonprincipal matrix logarithm will be returned.")
    end

    if isreal(A) && ~np_real_eigs
        return real(retmat)
    else
        return retmat
    end
end
logm(a::Number) = (b = log(complex(a)); imag(b) == 0 ? real(b) : b)
logm(a::Complex) = log(a)

function sqrtm{T<:Real}(A::StridedMatrix{T})
    if issym(A)
        return full(sqrtm(Symmetric(A)))
    end
    n = chksquare(A)
    if istriu(A)
        return full(sqrtm(UpperTriangular(A)))
    else
        SchurF = schurfact(complex(A))
        R = full(sqrtm(UpperTriangular(SchurF[:T])))
        return SchurF[:vectors] * R * SchurF[:vectors]'
    end
end
function sqrtm{T<:Complex}(A::StridedMatrix{T})
    if ishermitian(A)
        return full(sqrtm(Hermitian(A)))
    end
    n = chksquare(A)
    if istriu(A)
        return full(sqrtm(UpperTriangular(A)))
    else
        SchurF = schurfact(A)
        R = full(sqrtm(UpperTriangular(SchurF[:T])))
        return SchurF[:vectors] * R * SchurF[:vectors]'
    end
end
sqrtm(a::Number) = (b = sqrt(complex(a)); imag(b) == 0 ? real(b) : b)
sqrtm(a::Complex) = sqrt(a)

function inv{T}(A::StridedMatrix{T})
    S = typeof((one(T)*zero(T) + one(T)*zero(T))/one(T))
    AA = convert(AbstractArray{S}, A)
    if istriu(AA)
        Ai = inv(UpperTriangular(AA))
    elseif istril(AA)
        Ai = inv(LowerTriangular(AA))
    else
        Ai = inv(lufact(AA))
    end
    return convert(typeof(AA), Ai)
end

function factorize{T}(A::Matrix{T})
    m, n = size(A)
    if m == n
        if m == 1 return A[1] end
        utri    = true
        utri1   = true
        herm    = true
        sym     = true
        for j = 1:n-1, i = j+1:m
            if utri1
                if A[i,j] != 0
                    utri1 = i == j + 1
                    utri = false
                end
            end
            if sym
                sym &= A[i,j] == A[j,i]
            end
            if herm
                herm &= A[i,j] == conj(A[j,i])
            end
            if !(utri1|herm|sym) break end
        end
        ltri = true
        ltri1 = true
        for j = 3:n, i = 1:j-2
            ltri1 &= A[i,j] == 0
            if !ltri1 break end
        end
        if ltri1
            for i = 1:n-1
                if A[i,i+1] != 0
                    ltri &= false
                    break
                end
            end
            if ltri
                if utri
                    return Diagonal(A)
                end
                if utri1
                    return Bidiagonal(diag(A), diag(A, -1), false)
                end
                return LowerTriangular(A)
            end
            if utri
                return Bidiagonal(diag(A), diag(A, 1), true)
            end
            if utri1
                if (herm & (T <: Complex)) | sym
                    try
                        return ldltfact!(SymTridiagonal(diag(A), diag(A, -1)))
                    end
                end
                return lufact(Tridiagonal(diag(A, -1), diag(A), diag(A, 1)))
            end
        end
        if utri
            return UpperTriangular(A)
        end
        if herm
            try
                return cholfact(A)
            end
            return factorize(Hermitian(A))
        end
        if sym
            return factorize(Symmetric(A))
        end
        return lufact(A)
    end
    qrfact(A,typeof(zero(T)/sqrt(zero(T) + zero(T)))<:BlasFloat?Val{true}:Val{false}) # Generic pivoted QR not implemented yet
end

(\)(a::Vector, B::StridedVecOrMat) = (\)(reshape(a, length(a), 1), B)

function (\)(A::StridedMatrix, B::StridedVecOrMat)
    m, n = size(A)
    if m == n
        if istril(A)
            return istriu(A) ? \(Diagonal(A),B) : \(LowerTriangular(A),B)
        end
        istriu(A) && return \(UpperTriangular(A),B)
        return \(lufact(A),B)
    end
    return qrfact(A,Val{true})\B
end

## Moore-Penrose pseudoinverse
function pinv{T}(A::StridedMatrix{T}, tol::Real)
    m, n = size(A)
    Tout = typeof(zero(T)/sqrt(one(T) + one(T)))
    if m == 0 || n == 0
        return Array(Tout, n, m)
    end
    if istril(A)
        if istriu(A)
            maxabsA = maximum(abs(diag(A)))
            B = zeros(Tout, n, m);
            for i = 1:min(m, n)
                if abs(A[i,i]) > tol*maxabsA
                    Aii = inv(A[i,i])
                    if isfinite(Aii)
                        B[i,i] = Aii
                    end
                end
            end
            return B;
        end
    end
    SVD         = svdfact(A, thin=true)
    Stype       = eltype(SVD.S)
    Sinv        = zeros(Stype, length(SVD.S))
    index       = SVD.S .> tol*maximum(SVD.S)
    Sinv[index] = one(Stype) ./ SVD.S[index]
    Sinv[find(!isfinite(Sinv))] = zero(Stype)
    return SVD.Vt'scale(Sinv, SVD.U')
end
function pinv{T}(A::StridedMatrix{T})
    tol = eps(real(float(one(T))))*maximum(size(A))
    return pinv(A, tol)
end
pinv(a::StridedVector) = pinv(reshape(a, length(a), 1))
function pinv(x::Number)
    xi = inv(x)
    return ifelse(isfinite(xi), xi, zero(xi))
end

## Basis for null space
function nullspace{T}(A::StridedMatrix{T})
    m, n = size(A)
    (m == 0 || n == 0) && return eye(T, n)
    SVD = svdfact(A, thin = false)
    indstart = sum(SVD.S .> max(m,n)*maximum(SVD.S)*eps(eltype(SVD.S))) + 1
    return SVD.Vt[indstart:end,:]'
end
nullspace(a::StridedVector) = nullspace(reshape(a, length(a), 1))

function cond(A::AbstractMatrix, p::Real=2)
    if p == 2
        v = svdvals(A)
        maxv = maximum(v)
        return maxv == 0.0 ? oftype(real(A[1,1]),Inf) : maxv / minimum(v)
    elseif p == 1 || p == Inf
        chksquare(A)
        return cond(lufact(A), p)
    end
    throw(ArgumentError("p-norm must be 1, 2 or Inf, got $p"))
end

## Lyapunov and Sylvester equation

# AX + XB + C = 0
function sylvester{T<:BlasFloat}(A::StridedMatrix{T},B::StridedMatrix{T},C::StridedMatrix{T})
    RA, QA = schur(A)
    RB, QB = schur(B)

    D = -Ac_mul_B(QA,C*QB)
    Y, scale = LAPACK.trsyl!('N','N', RA, RB, D)
    scale!(QA*A_mul_Bc(Y,QB), inv(scale))
end
sylvester{T<:Integer}(A::StridedMatrix{T},B::StridedMatrix{T},C::StridedMatrix{T}) = sylvester(float(A), float(B), float(C))

# AX + XA' + C = 0
function lyap{T<:BlasFloat}(A::StridedMatrix{T},C::StridedMatrix{T})
    R, Q = schur(A)

    D = -Ac_mul_B(Q,C*Q)
    Y, scale = LAPACK.trsyl!('N', T <: Complex ? 'C' : 'T', R, R, D)
    scale!(Q*A_mul_Bc(Y,Q), inv(scale))
end
lyap{T<:Integer}(A::StridedMatrix{T},C::StridedMatrix{T}) = lyap(float(A), float(C))
lyap{T<:Number}(a::T, c::T) = -c/(2a)