This file is indexed.

/usr/share/julia/base/irrationals.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# This file is a part of Julia. License is MIT: http://julialang.org/license

## general machinery for irrational mathematical constants

immutable Irrational{sym} <: Real end

show{sym}(io::IO, x::Irrational{sym}) = print(io, "$sym = $(string(float(x))[1:15])...")

promote_rule{s}(::Type{Irrational{s}}, ::Type{Float32}) = Float32
promote_rule{s,t}(::Type{Irrational{s}}, ::Type{Irrational{t}}) = Float64
promote_rule{s,T<:Number}(::Type{Irrational{s}}, ::Type{T}) = promote_type(Float64,T)

convert(::Type{AbstractFloat}, x::Irrational) = Float64(x)
convert(::Type{Float16}, x::Irrational) = Float16(Float32(x))
convert{T<:Real}(::Type{Complex{T}}, x::Irrational) = convert(Complex{T}, convert(T,x))
convert{T<:Integer}(::Type{Rational{T}}, x::Irrational) = convert(Rational{T}, Float64(x))

@generated function call{T<:Union{Float32,Float64},s}(t::Type{T},c::Irrational{s},r::RoundingMode)
    f = T(big(c()),r())
    :($f)
end

=={s}(::Irrational{s}, ::Irrational{s}) = true
==(::Irrational, ::Irrational) = false

# Irrationals, by definition, can't have a finite representation equal them exactly
==(x::Irrational, y::Real) = false
==(x::Real, y::Irrational) = false

# Irrational vs AbstractFloat
<(x::Irrational, y::Float64) = Float64(x,RoundUp) <= y
<(x::Float64, y::Irrational) = x <= Float64(y,RoundDown)
<(x::Irrational, y::Float32) = Float32(x,RoundUp) <= y
<(x::Float32, y::Irrational) = x <= Float32(y,RoundDown)
<(x::Irrational, y::Float16) = Float32(x,RoundUp) <= y
<(x::Float16, y::Irrational) = x <= Float32(y,RoundDown)
<(x::Irrational, y::BigFloat) = with_bigfloat_precision(precision(y)+32) do
    big(x) < y
end
<(x::BigFloat, y::Irrational) = with_bigfloat_precision(precision(x)+32) do
    x < big(y)
end

<=(x::Irrational,y::AbstractFloat) = x < y
<=(x::AbstractFloat,y::Irrational) = x < y

# Irrational vs Rational
@generated function <{T}(x::Irrational, y::Rational{T})
    bx = big(x())
    bx < 0 && T <: Unsigned && return true
    rx = rationalize(T,bx,tol=0)
    rx < bx ? :($rx < y) : :($rx <= y)
end
@generated function <{T}(x::Rational{T}, y::Irrational)
    by = big(y())
    by < 0 && T <: Unsigned && return false
    ry = rationalize(T,by,tol=0)
    ry < by ? :(x <= $ry) : :(x < $ry)
end
<(x::Irrational, y::Rational{BigInt}) = big(x) < y
<(x::Rational{BigInt}, y::Irrational) = x < big(y)

<=(x::Irrational,y::Rational) = x < y
<=(x::Rational,y::Irrational) = x < y

isfinite(::Irrational) = true

hash(x::Irrational, h::UInt) = 3*object_id(x) - h

-(x::Irrational) = -Float64(x)
for op in Symbol[:+, :-, :*, :/, :^]
    @eval $op(x::Irrational, y::Irrational) = $op(Float64(x),Float64(y))
end

macro irrational(sym, val, def)
    esym = esc(sym)
    qsym = esc(Expr(:quote, sym))
    bigconvert = isa(def,Symbol) ? quote
        function Base.convert(::Type{BigFloat}, ::Irrational{$qsym})
            c = BigFloat()
            ccall(($(string("mpfr_const_", def)), :libmpfr),
                  Cint, (Ptr{BigFloat}, Int32),
                  &c, MPFR.ROUNDING_MODE[end])
            return c
        end
    end : quote
        Base.convert(::Type{BigFloat}, ::Irrational{$qsym}) = $(esc(def))
    end
    quote
        const $esym = Irrational{$qsym}()
        $bigconvert
        Base.convert(::Type{Float64}, ::Irrational{$qsym}) = $val
        Base.convert(::Type{Float32}, ::Irrational{$qsym}) = $(Float32(val))
        @assert isa(big($esym), BigFloat)
        @assert Float64($esym) == Float64(big($esym))
        @assert Float32($esym) == Float32(big($esym))
    end
end

big(x::Irrational) = convert(BigFloat,x)

## specific irriational mathematical constants

@irrational π        3.14159265358979323846  pi
@irrational e        2.71828182845904523536  exp(big(1))
@irrational γ        0.57721566490153286061  euler
@irrational catalan  0.91596559417721901505  catalan
@irrational φ        1.61803398874989484820  (1+sqrt(big(5)))/2

# aliases
const pi = π
const eu = e
const eulergamma = γ
const golden = φ

# special behaviors

# use exp for e^x or e.^x, as in
#    ^(::Irrational{:e}, x::Number) = exp(x)
#    .^(::Irrational{:e}, x) = exp(x)
# but need to loop over types to prevent ambiguity with generic rules for ^(::Number, x) etc.
for T in (Irrational, Rational, Integer, Number)
    ^(::Irrational{:e}, x::T) = exp(x)
end
for T in (Range, BitArray, SparseMatrixCSC, StridedArray, AbstractArray)
    .^(::Irrational{:e}, x::T) = exp(x)
end
^(::Irrational{:e}, x::AbstractMatrix) = expm(x)

log(::Irrational{:e}) = 1 # use 1 to correctly promote expressions like log(x)/log(e)
log(::Irrational{:e}, x) = log(x)

# align along = for nice Array printing
function alignment(x::Irrational)
    m = match(r"^(.*?)(=.*)$", sprint(showcompact_lim, x))
    m === nothing ? (length(sprint(showcompact_lim, x)), 0) :
    (length(m.captures[1]), length(m.captures[2]))
end