/usr/share/julia/base/intfuncs.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## number-theoretic functions ##
function gcd{T<:Integer}(a::T, b::T)
while b != 0
t = b
b = rem(a, b)
a = t
end
abs(a)
end
# binary GCD (aka Stein's) algorithm
# about 1.7x (2.1x) faster for random Int64s (Int128s)
function gcd{T<:Union{Int64,UInt64,Int128,UInt128}}(a::T, b::T)
a == 0 && return abs(b)
b == 0 && return abs(a)
za = trailing_zeros(a)
zb = trailing_zeros(b)
k = min(za, zb)
u = abs(a >> za)
v = abs(b >> zb)
while u != v
if u > v
u, v = v, u
end
v -= u
v >>= trailing_zeros(v)
end
u << k
end
# explicit a==0 test is to handle case of lcm(0,0) correctly
lcm{T<:Integer}(a::T, b::T) = a == 0 ? a : abs(a * div(b, gcd(b,a)))
gcd(a::Integer) = a
lcm(a::Integer) = a
gcd(a::Integer, b::Integer) = gcd(promote(a,b)...)
lcm(a::Integer, b::Integer) = lcm(promote(a,b)...)
gcd(a::Integer, b::Integer...) = gcd(a, gcd(b...))
lcm(a::Integer, b::Integer...) = lcm(a, lcm(b...))
gcd{T<:Integer}(abc::AbstractArray{T}) = reduce(gcd,abc)
lcm{T<:Integer}(abc::AbstractArray{T}) = reduce(lcm,abc)
# return (gcd(a,b),x,y) such that ax+by == gcd(a,b)
function gcdx{T<:Integer}(a::T, b::T)
s0, s1 = one(T), zero(T)
t0, t1 = s1, s0
while b != 0
q = div(a, b)
a, b = b, rem(a, b)
s0, s1 = s1, s0 - q*s1
t0, t1 = t1, t0 - q*t1
end
a < 0 ? (-a, -s0, -t0) : (a, s0, t0)
end
gcdx(a::Integer, b::Integer) = gcdx(promote(a,b)...)
# multiplicative inverse of n mod m, error if none
function invmod(n, m)
g, x, y = gcdx(n, m)
if g != 1 || m == 0
error("no inverse exists")
end
x < 0 ? abs(m) + x : x
end
# ^ for any x supporting *
to_power_type(x::Number) = oftype(x*x, x)
to_power_type(x) = x
function power_by_squaring(x_, p::Integer)
x = to_power_type(x_)
if p == 1
return copy(x)
elseif p == 0
return one(x)
elseif p == 2
return x*x
elseif p < 0
throw(DomainError())
end
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
x *= x
end
y = x
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) >= 0
x *= x
end
y *= x
end
return y
end
power_by_squaring(x::Bool, p::Unsigned) = ((p==0) | x)
function power_by_squaring(x::Bool, p::Integer)
p < 0 && throw(DomainError())
return (p==0) | x
end
^{T<:Integer}(x::T, p::T) = power_by_squaring(x,p)
^(x::Number, p::Integer) = power_by_squaring(x,p)
^(x, p::Integer) = power_by_squaring(x,p)
# b^p mod m
function powermod{T}(b::Integer, p::Integer, m::T)
p < 0 && throw(DomainError())
b = oftype(m,mod(b,m)) # this also checks for divide by zero
p == 0 && return mod(one(b),m)
(m == 1 || m == -1) && return zero(m)
t = prevpow2(p)
local r::T
r = 1
while true
if p >= t
r = mod(widemul(r,b),m)
p -= t
end
t >>>= 1
t <= 0 && break
r = mod(widemul(r,r),m)
end
return r
end
# smallest power of 2 >= x
nextpow2(x::Unsigned) = one(x)<<((sizeof(x)<<3)-leading_zeros(x-one(x)))
nextpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -nextpow2(unsigned(-x)) : nextpow2(unsigned(x)))
prevpow2(x::Unsigned) = (one(x)>>(x==0)) << ((sizeof(x)<<3)-leading_zeros(x)-1)
prevpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -prevpow2(unsigned(-x)) : prevpow2(unsigned(x)))
ispow2(x::Integer) = x > 0 && count_ones(x) == 1
# smallest a^n >= x, with integer n
function nextpow(a::Real, x::Real)
(a <= 1 || x <= 0) && throw(DomainError())
x <= 1 && return one(a)
n = ceil(Integer,log(a, x))
p = a^(n-1)
# guard against roundoff error, e.g., with a=5 and x=125
p >= x ? p : a^n
end
# largest a^n <= x, with integer n
function prevpow(a::Real, x::Real)
(a <= 1 || x < 1) && throw(DomainError())
n = floor(Integer,log(a, x))
p = a^(n+1)
p <= x ? p : a^n
end
# decimal digits in an unsigned integer
const powers_of_ten = [
0x0000000000000001, 0x000000000000000a, 0x0000000000000064, 0x00000000000003e8,
0x0000000000002710, 0x00000000000186a0, 0x00000000000f4240, 0x0000000000989680,
0x0000000005f5e100, 0x000000003b9aca00, 0x00000002540be400, 0x000000174876e800,
0x000000e8d4a51000, 0x000009184e72a000, 0x00005af3107a4000, 0x00038d7ea4c68000,
0x002386f26fc10000, 0x016345785d8a0000, 0x0de0b6b3a7640000, 0x8ac7230489e80000,
]
function ndigits0z(x::Union{UInt8,UInt16,UInt32,UInt64})
lz = (sizeof(x)<<3)-leading_zeros(x)
nd = (1233*lz)>>12+1
nd -= x < powers_of_ten[nd]
end
function ndigits0z(x::UInt128)
n = 0
while x > 0x8ac7230489e80000
x = div(x,0x8ac7230489e80000)
n += 19
end
return n + ndigits0z(UInt64(x))
end
ndigits0z(x::Integer) = ndigits0z(unsigned(abs(x)))
const ndigits_max_mul = WORD_SIZE==32 ? 69000000 : 290000000000000000
function ndigits0znb(n::Int, b::Int)
d = 0
while n != 0
n = cld(n,b)
d += 1
end
return d
end
function ndigits0z(n::Unsigned, b::Int)
d = 0
if b < 0
d = ndigits0znb(signed(n), b)
else
b == 2 && return (sizeof(n)<<3-leading_zeros(n))
b == 8 && return div((sizeof(n)<<3)-leading_zeros(n)+2,3)
b == 16 && return (sizeof(n)<<1)-(leading_zeros(n)>>2)
b == 10 && return ndigits0z(n)
while ndigits_max_mul < n
n = div(n,b)
d += 1
end
m = 1
while m <= n
m *= b
d += 1
end
end
return d
end
ndigits0z(x::Integer, b::Integer) = ndigits0z(unsigned(abs(x)),Int(b))
ndigitsnb(x::Integer, b::Integer) = x==0 ? 1 : ndigits0znb(x, b)
ndigits(x::Unsigned, b::Integer) = x==0 ? 1 : ndigits0z(x,Int(b))
ndigits(x::Unsigned) = x==0 ? 1 : ndigits0z(x)
ndigits(x::Integer, b::Integer) = b >= 0 ? ndigits(unsigned(abs(x)),Int(b)) : ndigitsnb(x, b)
ndigits(x::Integer) = ndigits(unsigned(abs(x)))
## integer to string functions ##
function bin(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,sizeof(x)<<3-leading_zeros(x))
a = Array(UInt8,i)
while i > neg
a[i] = '0'+(x&0x1)
x >>= 1
i -= 1
end
if neg; a[1]='-'; end
ASCIIString(a)
end
function oct(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,div((sizeof(x)<<3)-leading_zeros(x)+2,3))
a = Array(UInt8,i)
while i > neg
a[i] = '0'+(x&0x7)
x >>= 3
i -= 1
end
if neg; a[1]='-'; end
ASCIIString(a)
end
function dec(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,ndigits0z(x))
a = Array(UInt8,i)
while i > neg
a[i] = '0'+rem(x,10)
x = oftype(x,div(x,10))
i -= 1
end
if neg; a[1]='-'; end
ASCIIString(a)
end
function hex(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,(sizeof(x)<<1)-(leading_zeros(x)>>2))
a = Array(UInt8,i)
while i > neg
d = x & 0xf
a[i] = '0'+d+39*(d>9)
x >>= 4
i -= 1
end
if neg; a[1]='-'; end
ASCIIString(a)
end
num2hex(n::Integer) = hex(n, sizeof(n)*2)
const base36digits = ['0':'9';'a':'z']
const base62digits = ['0':'9';'A':'Z';'a':'z']
function base(b::Int, x::Unsigned, pad::Int, neg::Bool)
2 <= b <= 62 || throw(ArgumentError("base must be 2 ≤ base ≤ 62, got $b"))
digits = b <= 36 ? base36digits : base62digits
i = neg + max(pad,ndigits0z(x,b))
a = Array(UInt8,i)
while i > neg
a[i] = digits[1+rem(x,b)]
x = div(x,b)
i -= 1
end
if neg; a[1]='-'; end
ASCIIString(a)
end
base(b::Integer, n::Integer, pad::Integer=1) = base(Int(b), unsigned(abs(n)), pad, n<0)
for sym in (:bin, :oct, :dec, :hex)
@eval begin
($sym)(x::Unsigned, p::Int) = ($sym)(x,p,false)
($sym)(x::Unsigned) = ($sym)(x,1,false)
($sym)(x::Char, p::Int) = ($sym)(unsigned(x),p,false)
($sym)(x::Char) = ($sym)(unsigned(x),1,false)
($sym)(x::Integer, p::Int) = ($sym)(unsigned(abs(x)),p,x<0)
($sym)(x::Integer) = ($sym)(unsigned(abs(x)),1,x<0)
end
end
bits(x::Union{Bool,Int8,UInt8}) = bin(reinterpret(UInt8,x),8)
bits(x::Union{Int16,UInt16,Float16}) = bin(reinterpret(UInt16,x),16)
bits(x::Union{Char,Int32,UInt32,Float32}) = bin(reinterpret(UInt32,x),32)
bits(x::Union{Int64,UInt64,Float64}) = bin(reinterpret(UInt64,x),64)
bits(x::Union{Int128,UInt128}) = bin(reinterpret(UInt128,x),128)
function digits{T<:Integer}(n::Integer, base::T=10, pad::Integer=1)
2 <= base || throw(ArgumentError("base must be ≥ 2, got $base"))
m = max(pad,ndigits0z(n,base))
a = zeros(T,m)
digits!(a, n, base)
return a
end
function digits!{T<:Integer}(a::AbstractArray{T,1}, n::Integer, base::T=10)
2 <= base || throw(ArgumentError("base must be ≥ 2, got $base"))
for i = 1:length(a)
a[i] = rem(n, base)
n = div(n, base)
end
return a
end
isqrt(x::Integer) = oftype(x, trunc(sqrt(x)))
function isqrt(x::Union{Int64,UInt64,Int128,UInt128})
x==0 && return x
s = oftype(x, trunc(sqrt(x)))
# fix with a Newton iteration, since conversion to float discards
# too many bits.
s = (s + div(x,s)) >> 1
s*s > x ? s-1 : s
end
function factorial(n::Integer)
n < 0 && throw(DomainError())
local f::typeof(n*n), i::typeof(n*n)
f = 1
for i = 2:n
f *= i
end
return f
end
function binomial{T<:Integer}(n::T, k::T)
k < 0 && return zero(T)
sgn = one(T)
if n < 0
n = -n + k -1
if isodd(k)
sgn = -sgn
end
end
k > n && return zero(T)
(k == 0 || k == n) && return sgn
k == 1 && return sgn*n
if k > (n>>1)
k = (n - k)
end
x::T = nn = n - k + 1
nn += 1
rr = 2
while rr <= k
xt = div(widemul(x, nn), rr)
x = xt
x == xt || throw(OverflowError())
rr += 1
nn += 1
end
convert(T, copysign(x, sgn))
end
|