This file is indexed.

/usr/share/julia/base/inference.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
# This file is a part of Julia. License is MIT: http://julialang.org/license

# parameters limiting potentially-infinite types
const MAX_TYPEUNION_LEN = 3
const MAX_TYPE_DEPTH = 7
const MAX_TUPLETYPE_LEN  = 8
const MAX_TUPLE_DEPTH = 4

type NotFound
end

const NF = NotFound()

type StaticVarInfo
    sp::SimpleVector     # static parameters
    cenv::ObjectIdDict   # types of closed vars
    vars::Array{Any,1}   # names of args and locals
    gensym_types::Array{Any,1} # types of the GenSym's in this function
    vinfo::Array{Any,1}  # variable properties
    label_counter::Int   # index of the current highest label for this function
    fedbackvars::ObjectIdDict
end

type VarState
    typ
    undef::Bool
end

type EmptyCallStack
end

type CallStack
    ast
    mod::Module
    types::Type
    recurred::Bool
    cycleid::Int
    result
    prev::Union{EmptyCallStack,CallStack}
    sv::StaticVarInfo

    CallStack(ast, mod, types::ANY, prev) = new(ast, mod, types, false, 0, Bottom, prev)
end

inference_stack = EmptyCallStack()

function is_static_parameter(sv::StaticVarInfo, s::Symbol)
    sp = sv.sp
    for i=1:2:length(sp)
        if is(sp[i].name,s)
            return true
        end
    end
    return false
end

function contains_is(itr, x::ANY)
    for y in itr
        if is(y,x)
            return true
        end
    end
    return false
end

is_local(sv::StaticVarInfo, s::GenSym) = true
is_local(sv::StaticVarInfo, s::Symbol) = contains_is(sv.vars, s)
is_closed(sv::StaticVarInfo, s::Symbol) = haskey(sv.cenv, s)
function is_assigned_inner(sv::StaticVarInfo, s::Symbol)
    for vi in sv.vinfo
        if vi[1] === s
            return (vi[3]&4) != 0
        end
    end
    return false
end
is_global(sv::StaticVarInfo, s::Symbol) =
    !is_local(sv,s) && !is_closed(sv,s) && !is_static_parameter(sv,s)

function _iisconst(s::Symbol)
    m = (inference_stack::CallStack).mod
    isdefined(m,s) && (ccall(:jl_is_const, Int32, (Any, Any), m, s) != 0)
end
_iisconst(s::SymbolNode) = _iisconst(s.name)
_iisconst(s::TopNode) = isconst(_topmod(), s.name)
_iisconst(s::GlobalRef) = isconst(s.mod, s.name)
_iisconst(x::Expr) = false
_iisconst(x::ANY) = true

_ieval(x::ANY) =
    ccall(:jl_interpret_toplevel_expr_in, Any, (Any, Any, Ptr{Void}, Csize_t),
          (inference_stack::CallStack).mod, x, C_NULL, 0)
_iisdefined(x::ANY) = isdefined((inference_stack::CallStack).mod, x)

function _topmod()
    m = (inference_stack::CallStack).mod
    return ccall(:jl_base_relative_to, Any, (Any,), m)::Module
end

function istopfunction(topmod, f, sym)
    if isdefined(Main, :Base) && isdefined(Main.Base, sym) && f === getfield(Main.Base, sym)
        return true
    elseif isdefined(topmod, sym) && f === getfield(topmod, sym)
        return true
    end
    return false
end

cmp_tfunc = (x,y)->Bool

isType(t::ANY) = isa(t,DataType) && is((t::DataType).name,Type.name)

const IInf = typemax(Int) # integer infinity
const n_ifunc = reinterpret(Int32,llvmcall)+1
const t_ifunc = Array{Tuple{Int,Int,Function},1}(n_ifunc)
const t_ffunc_key = Array{Function,1}(0)
const t_ffunc_val = Array{Tuple{Int,Int,Function},1}(0)
function add_tfunc(f::IntrinsicFunction, minarg::Int, maxarg::Int, tfunc::Function)
    t_ifunc[reinterpret(Int32,f)+1] = (minarg, maxarg, tfunc)
end
function add_tfunc(f::Function, minarg::Int, maxarg::Int, tfunc::Function)
    push!(t_ffunc_key, f)
    push!(t_ffunc_val, (minarg, maxarg, tfunc))
end
add_tfunc(throw, 1, 1, x->Bottom)
add_tfunc(box, 2, 2, (t,v)->(isType(t) ? t.parameters[1] : Any))
add_tfunc(eq_int, 2, 2, cmp_tfunc)
add_tfunc(ne_int, 2, 2, cmp_tfunc)
add_tfunc(slt_int, 2, 2, cmp_tfunc)
add_tfunc(ult_int, 2, 2, cmp_tfunc)
add_tfunc(sle_int, 2, 2, cmp_tfunc)
add_tfunc(ule_int, 2, 2, cmp_tfunc)
add_tfunc(eq_float, 2, 2, cmp_tfunc)
add_tfunc(ne_float, 2, 2, cmp_tfunc)
add_tfunc(lt_float, 2, 2, cmp_tfunc)
add_tfunc(le_float, 2, 2, cmp_tfunc)
add_tfunc(fpiseq, 2, 2, cmp_tfunc)
add_tfunc(fpislt, 2, 2, cmp_tfunc)
add_tfunc(nan_dom_err, 2, 2, (a, b)->a)
add_tfunc(getfield(Core.Intrinsics,:ccall), 3, IInf,
    function(fptr, rt, at, a...)
        if !isType(rt)
            return Any
        end
        t = rt.parameters[1]
        if isa(t,DataType) && is((t::DataType).name,Ref.name)
            t = t.parameters[1]
            if is(t,Any)
                return Union{} # a return type of Box{Any} is invalid
            end
            return t
        end
        return t
    end)
add_tfunc(eval(Core.Intrinsics,:llvmcall), 3, IInf,
    (fptr, rt, at, a...)->(isType(rt) ? rt.parameters[1] : Any))
add_tfunc(eval(Core.Intrinsics,:cglobal), 1, 2,
    (fptr, t...)->(isempty(t) ? Ptr{Void} :
                   isType(t[1]) ? Ptr{t[1].parameters[1]} : Ptr))
add_tfunc(eval(Core.Intrinsics,:select_value), 3, 3,
    # TODO: return Bottom if cnd is definitely not a Bool
    (cnd, x, y)->Union{x,y})
add_tfunc(is, 2, 2, cmp_tfunc)
add_tfunc(issubtype, 2, 2, cmp_tfunc)
add_tfunc(isa, 2, 2, cmp_tfunc)
add_tfunc(isdefined, 1, IInf, (args...)->Bool)
add_tfunc(Core.sizeof, 1, 1, x->Int)
add_tfunc(nfields, 1, 1, x->Int)
add_tfunc(_expr, 1, IInf, (args...)->Expr)
add_tfunc(method_exists, 2, 2, cmp_tfunc)
add_tfunc(applicable, 1, IInf, (f, args...)->Bool)
add_tfunc(arraylen, 1, 1, x->Int)
#add_tfunc(arrayref, 2,IInf,(a,i...)->(isa(a,DataType) && a<:Array ?
#                                     a.parameters[1] : Any))
#add_tfunc(arrayset, 3, IInf, (a,v,i...)->a)
add_tfunc(arraysize, 2, 2, (a,d)->Int)
add_tfunc(pointerref, 2, 2, (a,i)->(isa(a,DataType) && a<:Ptr && isa(a.parameters[1],Union{Type,TypeVar}) ? a.parameters[1] : Any))
add_tfunc(pointerset, 3, 3, (a,v,i)->a)

const typeof_tfunc = function (t)
    if isType(t)
        t = t.parameters[1]
        if isa(t,TypeVar)
            DataType
        else
            Type{typeof(t)}
        end
    elseif isa(t,DataType)
        if isleaftype(t)
            Type{t}
        elseif t === Any
            DataType
        else
            Type{TypeVar(:_,t)}
        end
    elseif isa(t,Union)
        Union{map(typeof_tfunc, t.types)...}
    elseif isa(t,TypeVar) && !(Any <: t.ub)
        Type{t}
    else
        DataType
    end
end
add_tfunc(typeof, 1, 1, typeof_tfunc)
# involving constants: typeassert, getfield, fieldtype, apply_type
# therefore they get their arguments unevaluated
add_tfunc(typeassert, 2, 2,
    (A, v, t)->(isType(t) ? typeintersect(v,t.parameters[1]) : Any))

function limit_type_depth(t::ANY, d::Int, cov::Bool, vars)
    if isa(t,TypeVar) || isa(t,TypeConstructor)
        return t
    end
    inexact = !cov && d > MAX_TYPE_DEPTH
    if isa(t,Union)
        t === Bottom && return t
        if d > MAX_TYPE_DEPTH
            R = Any
        else
            R = Union{map(x->limit_type_depth(x, d+1, cov, vars), t.types)...}
        end
    elseif isa(t,DataType)
        P = t.parameters
        length(P) == 0 && return t
        if d > MAX_TYPE_DEPTH
            R = t.name.primary
        else
            stillcov = cov && (t.name === Tuple.name)
            Q = map(x->limit_type_depth(x, d+1, stillcov, vars), P)
            if !cov && any(p->contains_is(vars,p), Q)
                R = t.name.primary
                inexact = true
            else
                R = t.name.primary{Q...}
            end
        end
    else
        return t
    end
    if inexact
        R = TypeVar(:_,R)
        push!(vars, R)
    end
    return R
end

const getfield_tfunc = function (A, s0, name)
    s = s0
    if isType(s)
        s = typeof(s.parameters[1])
        if s === TypeVar
            return Any, false
        end
    end
    if isa(s,Union)
        return reduce(tmerge, Bottom, map(t->getfield_tfunc(A, t, name)[1], s.types)), false
    end
    if !isa(s,DataType)
        return Any, false
    end
    if is(s.name,NTuple.name)
        return (name == Symbol ? Bottom : s.parameters[2]), true
    end
    if s.abstract
        return Any, false
    end
    if s <: Tuple && name === Symbol
        return Bottom, true
    end
    haveargs = A !== nothing && length(A)>1
    if haveargs && isa(A[2],QuoteNode) && isa(A[2].value,Symbol)
        fld = A[2].value
        A1 = A[1]
        if isa(A1,Module) && isdefined(A1,fld) && isconst(A1, fld)
            return abstract_eval_constant(eval(A1,fld)), true
        end
        if s === Module
            return Any, false
        end
        if isType(s0)
            sp = s0.parameters[1]
            if isa(sp,DataType)
                # TODO
                #if fld === :parameters
                #    return Type{sp.parameters}, true
                #end
                #if fld === :types
                #    return Type{sp.types}, true
                #end
                if fld === :super
                    return Type{sp.super}, isleaftype(s)
                end
            end
        end
        snames = s.name.names
        for i=1:length(snames)
            if is(snames[i],fld)
                R = s.types[i]
                if length(s.parameters) == 0
                    return R, true
                else
                    typ = limit_type_depth(R, 0, true,
                                            filter!(x->isa(x,TypeVar), Any[s.parameters...]))
                    return typ, isleaftype(s) && typeseq(typ, R)
                end
            end
        end
        return Bottom, true
    elseif haveargs && isa(A[2],Int)
        if isa(A[1],Module) || s === Module
            return Bottom, true
        end
        i::Int = A[2]
        nf = s.types.length
        if isvatuple(s) && i >= nf
            return s.types[nf].parameters[1], false
        end
        if i < 1 || i > nf
            return Bottom, true
        end
        return s.types[i], false
    else
        return reduce(tmerge, Bottom, map(unwrapva,s.types)) #=Union{s.types...}=#, false
    end
end
add_tfunc(getfield, 2, 2, (A,s,name)->getfield_tfunc(A,s,name)[1])
add_tfunc(setfield!, 3, 3, (o, f, v)->v)
const fieldtype_tfunc = function (A, s, name)
    if isType(s)
        s = s.parameters[1]
    else
        return Type
    end
    t, exact = getfield_tfunc(A, s, name)
    if is(t,Bottom)
        return t
    end
    Type{exact || isleaftype(t) || isa(t,TypeVar) ? t : TypeVar(:_, t)}
end
add_tfunc(fieldtype, 2, 2, fieldtype_tfunc)

function valid_tparam(x::ANY)
    if isa(x,Tuple)
        for t in x
            !valid_tparam(t) && return false
        end
        return true
    end
    return isa(x,Int) || isa(x,Symbol) || isa(x,Bool) || (!isa(x,Type) && isbits(x))
end

function extract_simple_tparam(Ai)
    if !isa(Ai,Symbol) && valid_tparam(Ai)
        return Ai
    elseif isa(Ai,QuoteNode) && valid_tparam(Ai.value)
        return Ai.value
    elseif isa(inference_stack,CallStack) && isa(Ai,Expr) &&
            is_known_call(Ai,tuple,inference_stack.sv)
        tup = ()
        for arg in Ai.args[2:end]
            val = extract_simple_tparam(arg)
            if val === Bottom
                return val
            end
            tup = tuple(tup...,val)
        end
        return tup
    end
    return Bottom
end

has_typevars(t::ANY) = ccall(:jl_has_typevars, Cint, (Any,), t)!=0

# TODO: handle e.g. apply_type(T, R::Union{Type{Int32},Type{Float64}})
const apply_type_tfunc = function (A, args...)
    if !isType(args[1])
        return Any
    end
    headtype = args[1].parameters[1]
    if isa(headtype,Union) || isa(headtype,TypeVar)
        return args[1]
    end
    largs = length(args)
    if headtype === Union
        largs == 1 && return Type{Bottom}
        largs == 2 && return args[2]
        args = args[2:end]
        if all(isType, args)
            return Type{Union{map(t->t.parameters[1],args)...}}
        else
            return Any
        end
    elseif Union <: headtype
        return Any
    end
    istuple = (headtype === Tuple)
    uncertain = false
    lA = length(A)
    tparams = svec()
    for i=2:max(lA,largs)
        ai = args[i]
        if isType(ai)
            aip1 = ai.parameters[1]
            uncertain |= has_typevars(aip1)
            tparams = svec(tparams..., aip1)
        else
            if i<=lA
                val = extract_simple_tparam(A[i])
                if val !== Bottom
                    tparams = svec(tparams..., val)
                    continue
                elseif isa(inference_stack,CallStack) && isa(A[i],Symbol)
                    sp = inference_stack.sv.sp
                    s = A[i]
                    found = false
                    for j=1:2:length(sp)
                        if is(sp[j].name,s)
                            # static parameter
                            val = sp[j+1]
                            if valid_tparam(val)
                                tparams = svec(tparams..., val)
                                found = true
                                break
                            end
                        end
                    end
                    if found
                        continue
                    end
                end
            end
            if !istuple && i-1 > length(headtype.parameters)
                # too many parameters for type
                return Bottom
            end
            uncertain = true
            if istuple
                tparams = svec(tparams..., Any)
            else
                tparams = svec(tparams..., headtype.parameters[i-1])
            end
        end
    end
    local appl
    # good, all arguments understood
    try
        appl = apply_type(headtype, tparams...)
    catch
        # type instantiation might fail if one of the type parameters
        # doesn't match, which could happen if a type estimate is too coarse
        appl = headtype
        uncertain = true
    end
    if type_too_complex(appl,0)
        return Type{TypeVar(:_,headtype)}
    end
    uncertain && !isa(appl,TypeVar) ? Type{TypeVar(:_,appl)} : Type{appl}
end
add_tfunc(apply_type, 1, IInf, apply_type_tfunc)

function tuple_tfunc(argtype::ANY)
    if isa(argtype,DataType) && argtype.name === Tuple.name
        p = map(x->(isType(x) && !isa(x.parameters[1],TypeVar) ? typeof(x.parameters[1]) : x),
                argtype.parameters)
        return Tuple{p...}
    end
    argtype
end

function builtin_tfunction(f::ANY, args::ANY, argtype::ANY)
    isva = isvatuple(argtype)
    argtypes = argtype.parameters
    if is(f,tuple)
        return tuple_tfunc(limit_tuple_depth(argtype))
    elseif is(f,svec)
        return SimpleVector
    elseif is(f,arrayset)
        if length(argtypes) < 3 && !isva
            return Bottom
        end
        a1 = argtypes[1]
        if isvarargtype(a1)
            return a1.parameters[1]
        end
        return a1
    elseif is(f,arrayref)
        if length(argtypes) < 2 && !isva
            return Bottom
        end
        a = argtypes[1]
        return (isa(a,DataType) && a<:Array && isa(a.parameters[1],Union{Type,TypeVar}) ?
                a.parameters[1] : Any)
    elseif is(f,Expr)
        if length(argtypes) < 1 && !isva
            return Bottom
        end
        return Expr
    end
    if isa(f, IntrinsicFunction)
        iidx = Int(reinterpret(Int32, f::IntrinsicFunction))+1
        if !isdefined(t_ifunc, iidx)
            # unknown/unhandled intrinsic (most fall in this category since most return an unboxed value)
            return Any
        end
        tf = t_ifunc[iidx]
    else
        fidx = findfirst(t_ffunc_key, f::Function)
        if fidx == 0
            # unknown/unhandled builtin or anonymous function
            return Any
        end
        tf = t_ffunc_val[fidx]
    end
    tf = tf::Tuple{Real, Real, Function}
    if isva
        # only some t-funcs can handle varargs  (TODO)
        #if !is(f, apply_type)
        return Any
        #end
    elseif !(tf[1] <= length(argtypes) <= tf[2])
        # wrong # of args
        return Bottom
    end
    if is(f,typeassert) || is(f,getfield) || is(f,apply_type) || is(f,fieldtype)
        # TODO: case of apply(), where we do not have the args
        return tf[3](args, argtypes...)
    end
    return tf[3](argtypes...)
end

function isconstantfunc(f::ANY, sv::StaticVarInfo)
    if isa(f,TopNode)
        m = _topmod()
        return isconst(m, f.name) && isdefined(m, f.name) && f
    end
    if isa(f,GlobalRef)
        M = f.mod; s = f.name
        return isdefined(M,s) && isconst(M,s) && f
    end
    if isa(f,Expr) && is(f.head,:call)
        if length(f.args) == 3 && isa(f.args[1], TopNode) &&
            is(f.args[1].name,:getfield) && isa(f.args[3],QuoteNode)
            s = f.args[3].value
            if isa(f.args[2],Module)
                M = f.args[2]
            else
                M = isconstantfunc(f.args[2], sv)
                if M === false
                    return false
                end
                M = _ieval(M)
                if !isa(M,Module)
                    return false
                end
            end
            return isdefined(M,s) && isconst(M,s) && f
        end
    end

    if isa(f,QuoteNode) && (isa(f.value, Function) || isa(f.value, IntrinsicFunction))
        return f.value
    end
    if isa(f,Function) || isa(f,IntrinsicFunction)
        return f
    end
    if isa(f,SymbolNode)
        f = f.name
    end
    return isa(f,Symbol) && is_global(sv, f) && _iisconst(f) && f
end

const isconstantref = isconstantfunc

const limit_tuple_depth = t->limit_tuple_depth_(t,0)

const limit_tuple_depth_ = function (t,d::Int)
    if isa(t,Union)
        # also limit within Union types.
        # may have to recur into other stuff in the future too.
        return Union{map(x->limit_tuple_depth_(x,d+1), t.types)...}
    end
    if isa(t,TypeVar)
        return limit_tuple_depth_(t.ub, d)
    end
    if !(isa(t,DataType) && t.name === Tuple.name)
        return t
    end
    if d > MAX_TUPLE_DEPTH
        return Tuple
    end
    p = map(x->limit_tuple_depth_(x,d+1), t.parameters)
    Tuple{p...}
end

limit_tuple_type = t -> limit_tuple_type_n(t, MAX_TUPLETYPE_LEN)

const limit_tuple_type_n = function (t, lim::Int)
    p = t.parameters
    n = length(p)
    if n > lim
        tail = reduce(typejoin, Bottom, svec(p[lim:(n-1)]..., unwrapva(p[n])))
        return Tuple{p[1:(lim-1)]..., Vararg{tail}}
    end
    return t
end

let stagedcache=Dict{Any,Any}()
    global func_for_method
    function func_for_method(m::Method, tt, env)
        if !m.isstaged
            return m.func.code
        elseif haskey(stagedcache,(m,tt,env))
            return stagedcache[(m,tt,env)].code
        else
            if !isleaftype(tt)
                # don't call staged functions on abstract types.
                # (see issues #8504, #10230)
                # we can't guarantee that their type behavior is monotonic.
                return NF
            end
            f = ccall(:jl_instantiate_staged,Any,(Any,Any,Any),m,tt,env)
            stagedcache[(m,tt,env)] = f
            return f.code
        end
    end
end

function abstract_call_gf(f, fargs, argtype, e)
    argtypes = argtype.parameters
    tm = _topmod()
    if length(argtypes)>1 && argtypes[2]===Int && (argtypes[1] <: Tuple ||
       (isa(argtypes[1], DataType) && isdefined(Main, :Base) && isdefined(Main.Base, :Pair) &&
        (argtypes[1]::DataType).name === Main.Base.Pair.name))
        # allow tuple indexing functions to take advantage of constant
        # index arguments.
        if istopfunction(tm, f, :getindex)
            return getfield_tfunc(fargs, argtypes[1], argtypes[2])[1]
        elseif istopfunction(tm, f, :next)
            t1 = getfield_tfunc(fargs, argtypes[1], argtypes[2])[1]
            return t1===Bottom ? Bottom : Tuple{t1, Int}
        elseif istopfunction(tm, f, :indexed_next)
            t1 = getfield_tfunc(fargs, argtypes[1], argtypes[2])[1]
            return t1===Bottom ? Bottom : Tuple{t1, Int}
        end
    end
    if istopfunction(tm, f, :promote_type) || istopfunction(tm, f, :typejoin)
        la = length(argtypes)
        c = cell(la)
        for i = 1:la
            t = argtypes[i]
            if isType(t) && !isa(t.parameters[1],TypeVar)
                c[i] = t.parameters[1]
            else
                return Type
            end
        end
        if istopfunction(tm, f, :promote_type)
            try
                RT = Type{f(c...)}
                return RT
            catch
            end
        else
            return Type{f(c...)}
        end
    end
    # don't consider more than N methods. this trades off between
    # compiler performance and generated code performance.
    # typically, considering many methods means spending lots of time
    # obtaining poor type information.
    # It is important for N to be >= the number of methods in the error()
    # function, so we can still know that error() is always Bottom.
    # here I picked 4.
    argtype = limit_tuple_type(argtype)
    argtypes = argtype.parameters
    applicable = _methods(f, argtype, 4)
    rettype = Bottom
    if is(applicable,false)
        # this means too many methods matched
        isa(e,Expr) && (e.head = :call)
        return Any
    end
    x::Array{Any,1} = applicable
    if isempty(x)
        # no methods match
        # TODO: it would be nice to return Bottom here, but during bootstrap we
        # often compile code that calls methods not defined yet, so it is much
        # safer just to fall back on dynamic dispatch.
        return Any
    end
    for (m::SimpleVector) in x
        local linfo
        linfo = try
            func_for_method(m[3],argtype,m[2])
        catch
            NF
        end
        if linfo === NF
            rettype = Any
            break
        end
        linfo = linfo::LambdaStaticData
        sig = m[1]
        lsig = length(m[3].sig.parameters)
        # limit argument type tuple based on size of definition signature.
        # for example, given function f(T, Any...), limit to 3 arguments
        # instead of the default (MAX_TUPLETYPE_LEN)
        sp = inference_stack
        limit = false
        # look at the stack to detect recursive calls with growing argument lists
        while sp !== EmptyCallStack()
            if linfo.ast === sp.ast && length(argtypes) > length(sp.types.parameters)
                limit = true; break
            end
            sp = sp.prev
        end
        ls = length(sig.parameters)
        if limit && ls > lsig+1
            if !istopfunction(tm, f, :promote_typeof)
                fst = sig.parameters[lsig+1]
                allsame = true
                # allow specializing on longer arglists if all the trailing
                # arguments are the same, since there is no exponential
                # blowup in this case.
                for i = lsig+2:ls
                    if sig.parameters[i] != fst
                        allsame = false
                        break
                    end
                end
                if !allsame
                    sig = limit_tuple_type_n(sig, lsig+1)
                end
            end
        end
        #print(m,"\n")
        (_tree,rt) = typeinf(linfo, sig, m[2], linfo)
        rettype = tmerge(rettype, rt)
        if is(rettype,Any)
            break
        end
    end
    # if rettype is Bottom we've found a method not found error
    #print("=> ", rettype, "\n")
    return rettype
end

function invoke_tfunc(f, types, argtype)
    argtype = typeintersect(types,limit_tuple_type(argtype))
    if is(argtype,Bottom)
        return Bottom
    end
    meth = ccall(:jl_gf_invoke_lookup, Any, (Any, Any), f, types)
    if is(meth, nothing)
        return Any
    end
    (ti, env) = ccall(:jl_match_method, Any, (Any, Any, Any),
                      argtype, meth.sig, meth.tvars)::SimpleVector
    linfo = try
        func_for_method(meth, types, env)
    catch
        NF
    end
    if linfo === NF
        return Any
    end
    return typeinf(linfo::LambdaStaticData, ti, env, linfo)[2]
end

# `types` is an array of inferred types for expressions in `args`.
# if an expression constructs a container (e.g. `svec(x,y,z)`),
# refine its type to an array of element types. returns an array of
# arrays of types, or `nothing`.
function precise_container_types(args, types, vtypes, sv)
    n = length(args)
    assert(n == length(types))
    result = cell(n)
    for i = 1:n
        ai = args[i]; ti = types[i]
        if isa(ai,Expr) && (is_known_call(ai, svec, sv) || is_known_call(ai, tuple, sv))
            aa = ai.args
            result[i] = Any[ (isa(aa[j],Expr) ? aa[j].typ : abstract_eval(aa[j],vtypes,sv)) for j=2:length(aa) ]
            if any(isvarargtype, result[i])
                return nothing
            end
        elseif isa(ti, Union)
            return nothing
        elseif ti<:Tuple && (i==n || !isvatuple(ti))
            result[i] = ti.parameters
        elseif ti<:AbstractArray && i==n
            result[i] = Any[Vararg{eltype(ti)}]
        else
            return nothing
        end
    end
    return result
end

# do apply(af, fargs...), where af is a function value
function abstract_apply(af, fargs, aargtypes::Vector{Any}, vtypes, sv, e)
    ctypes = precise_container_types(fargs, aargtypes, vtypes, sv)
    if ctypes !== nothing
        # apply with known func with known tuple types
        # can be collapsed to a call to the applied func
        at = append_any(ctypes...)
        n = length(at)
        if n > MAX_TUPLETYPE_LEN
            tail = foldl((a,b)->tmerge(a,unwrapva(b)), Bottom, at[MAX_TUPLETYPE_LEN:n])
            at = vcat(at[1:MAX_TUPLETYPE_LEN-1], Any[Vararg{tail}])
        end
        return abstract_call(af, (), at, vtypes, sv, ())
    end
    is(af,kwcall) && return Any
    # apply known function with unknown args => f(Any...)
    return abstract_call(af, (), Any[Vararg{Any}], vtypes, sv, ())
end

function abstract_call(f, fargs, argtypes::Vector{Any}, vtypes, sv::StaticVarInfo, e)
    if is(f,_apply) && length(fargs)>1
        af = isconstantfunc(fargs[2], sv)
        if !is(af,false)
            af = _ieval(af)
            if isa(af,Function)
                return abstract_apply(af, fargs[3:end], argtypes[3:end], vtypes, sv, e)
            end
        end
        # TODO: this slows down inference a lot
        a2type = argtypes[2]
        if a2type !== Function && isleaftype(a2type)
            # would definitely use call()
            call_func = _ieval(isconstantfunc(fargs[1], sv))
            if isa(call_func,Function)
                aargtypes = Any[ argtypes[i] for i=2:length(argtypes) ]
                aargtypes[1] = Tuple{aargtypes[1]}  # don't splat "function"
                fa = fargs[2:end]
                fa[1] = Expr(:call, top_tuple, fa[1])
                return abstract_apply(call_func, fa, aargtypes, vtypes, sv, e)
            end
        end
        return Any
    end
    for i=1:(length(argtypes)-1)
        if isvarargtype(argtypes[i])
            return Any
        end
    end
    if isgeneric(f)
        return abstract_call_gf(f, fargs, Tuple{argtypes...}, e)
    end
    if is(f,invoke) && length(fargs)>1
        af = isconstantfunc(fargs[1], sv)
        if !is(af,false) && (af=_ieval(af);isgeneric(af))
            sig = argtypes[2]
            if isType(sig) && sig.parameters[1] <: Tuple
                return invoke_tfunc(af, sig.parameters[1], Tuple{argtypes[3:end]...})
            end
        end
    end
    if is(f,getfield)
        val = isconstantref(e, sv)
        if !is(val,false)
            return abstract_eval_constant(_ieval(val))
        end
    end
    if is(f,kwcall)
        if length(argtypes) < 4
            return Bottom
        end
        if length(fargs) < 3
            return Any
        end
        kwcount = fargs[2]
        ff = isconstantfunc(fargs[3 + 2*kwcount], sv)
        if !(ff===false)
            ff = _ieval(ff)
            if isgeneric(ff) && isdefined(ff.env,:kwsorter)
                # use the fact that kwcall(...) calls ff.env.kwsorter
                posargt = argtypes[(5+2*kwcount):end]
                return abstract_call_gf(ff.env.kwsorter, (),
                                        Tuple{Array{Any,1}, posargt...}, e)
            end
        end
        # TODO: call() case
        return Any
    end
    if !isa(f,Function) && !isa(f,IntrinsicFunction)
        if !_iisdefined(:call)
            return Any
        end
        call_func = _ieval(:call)
        if isa(call_func,Function)
            return abstract_call(call_func, e.args,
                                 Any[abstract_eval_constant(f),argtypes...],
                                 vtypes, sv, e)
        else
            return Any
        end
    end
    rt = builtin_tfunction(f, fargs, Tuple{argtypes...})
    #print("=> ", rt, "\n")
    return rt
end

function abstract_eval_call(e, vtypes, sv::StaticVarInfo)
    fargs = e.args[2:end]
    argtypes = Any[abstract_eval(a, vtypes, sv) for a in fargs]
    if any(x->is(x,Bottom), argtypes)
        return Bottom
    end
    called = e.args[1]
    func = isconstantfunc(called, sv)
    if is(func,false)
        if isa(called, LambdaStaticData)
            # called lambda expression (let)
            (_, result) = typeinf(called, Tuple{argtypes...}, called.sparams, called)
            return result
        end
        ft = abstract_eval(called, vtypes, sv)
        if !(Function <: ft) && _iisdefined(:call)
            call_func = _ieval(:call)
            if isa(call_func,Function)
                return abstract_call(call_func, e.args, Any[ft,argtypes...], vtypes, sv, e)
            end
        end
        return Any
    end
    #print("call ", e.args[1], argtypes, "\n\n")
    f = _ieval(func)
    if isa(called, Expr)
        # if called thing is a constant, still make sure it gets annotated with a type.
        # issue #11997
        called.typ = abstract_eval_constant(f)
    end
    return abstract_call(f, fargs, argtypes, vtypes, sv, e)
end

function abstract_eval(e::ANY, vtypes, sv::StaticVarInfo)
    if isa(e,QuoteNode)
        return typeof((e::QuoteNode).value)
    elseif isa(e,TopNode)
        return abstract_eval_global(_topmod(), (e::TopNode).name)
    elseif isa(e,Symbol)
        return abstract_eval_symbol(e::Symbol, vtypes, sv)
    elseif isa(e,SymbolNode)
        return abstract_eval_symbol((e::SymbolNode).name, vtypes, sv)
    elseif isa(e,GenSym)
        return abstract_eval_gensym(e::GenSym, sv)
    elseif isa(e,LambdaStaticData)
        return Function
    elseif isa(e,GlobalRef)
        return abstract_eval_global(e.mod, e.name)
    end

    if !isa(e,Expr)
        return abstract_eval_constant(e)
    end
    e = e::Expr
    # handle:
    # call  null  new  &  static_typeof
    if is(e.head,:call)
        t = abstract_eval_call(e, vtypes, sv)
    elseif is(e.head,:null)
        t = Void
    elseif is(e.head,:new)
        t = abstract_eval(e.args[1], vtypes, sv)
        if isType(t)
            t = t.parameters[1]
        else
            t = Any
        end
        for i = 2:length(e.args)
            abstract_eval(e.args[i], vtypes, sv)
        end
    elseif is(e.head,:&)
        abstract_eval(e.args[1], vtypes, sv)
        t = Any
    elseif is(e.head,:static_typeof)
        var = e.args[1]
        t = abstract_eval(var, vtypes, sv)
        if isa(t,DataType) && typeseq(t,t.name.primary)
            # remove unnecessary typevars
            t = t.name.primary
        end
        if is(t,Bottom)
            # if we haven't gotten fed-back type info yet, return Bottom. otherwise
            # Bottom is the actual type of the variable, so return Type{Bottom}.
            if haskey(sv.fedbackvars, var)
                t = Type{Bottom}
            end
        elseif isleaftype(t)
            t = Type{t}
        elseif isleaftype(inference_stack.types)
            if isa(t,TypeVar)
                t = Type{t.ub}
            else
                t = Type{t}
            end
        else
            # if there is any type uncertainty in the arguments, we are
            # effectively predicting what static_typeof will say when
            # the function is compiled with actual arguments. in that case
            # abstract types yield Type{<:T} instead of Type{T}.
            # this doesn't really model the situation perfectly, but
            # "isleaftype(inference_stack.types)" should be good enough.
            if isa(t,TypeVar)
                t = Type{t}
            else
                t = Type{TypeVar(:_,t)}
            end
        end
    elseif is(e.head,:method)
        t = Function
    elseif is(e.head,:copyast)
        t = abstract_eval(e.args[1], vtypes, sv)
    else
        t = Any
    end
    if isa(t,TypeVar)
        # no need to use a typevar as the type of an expression
        t = t.ub
    end
    e.typ = t
    return t
end

const Type_Array = Type{Array}

function abstract_eval_constant(x::ANY)
    if isa(x,Type)
        if is(x,Array)
            return Type_Array
        end
        return Type{x}
    end
    return typeof(x)
end

abstract_eval_global(s::Symbol) =
    abstract_eval_global((inference_stack::CallStack).mod, s)

function abstract_eval_global(M, s::Symbol)
    if isconst(M,s)
        return abstract_eval_constant(eval(M,s))
    end
    return Any
end

function abstract_eval_gensym(s::GenSym, sv::StaticVarInfo)
    typ = sv.gensym_types[s.id+1]
    if typ === NF
        return Bottom
    end
    return typ
end

function abstract_eval_symbol(s::Symbol, vtypes::ObjectIdDict, sv::StaticVarInfo)
    if haskey(sv.cenv,s)
        # consider closed vars to always have their propagated (declared) type
        return sv.cenv[s]
    end
    t = get(vtypes,s,NF)
    if is(t,NF)
        sp = sv.sp
        for i=1:2:length(sp)
            if is(sp[i].name,s)
                # static parameter
                val = sp[i+1]
                if isa(val,TypeVar)
                    # static param bound to typevar
                    if Any <: val.ub
                        # if the tvar does not refer to anything more specific
                        # than Any, the static param might actually be an
                        # integer, symbol, etc.
                        return Any
                    end
                    return Type{val}
                end
                return abstract_eval_constant(val)
            end
        end
        if s in sv.vars
            # local variable use not reached
            return Bottom
        end
        # global
        return abstract_eval_global(s)
    end
    return t.typ
end

typealias VarTable ObjectIdDict

type StateUpdate
    var::Union{Symbol,GenSym}
    vtype
    state::VarTable
end

function getindex(x::StateUpdate, s::Symbol)
    if is(x.var,s)
        return x.vtype
    end
    return get(x.state,s,NF)
end

function abstract_interpret(e::ANY, vtypes, sv::StaticVarInfo)
    !isa(e,Expr) && return vtypes
    # handle assignment
    if is(e.head,:(=))
        t = abstract_eval(e.args[2], vtypes, sv)
        lhs = e.args[1]
        if isa(lhs,SymbolNode)
            lhs = lhs.name
        end
        if isa(lhs,Symbol) || isa(lhs,GenSym)
            # don't bother for GlobalRef
            return StateUpdate(lhs, VarState(t,false), vtypes)
        end
    elseif is(e.head,:call)
        abstract_eval(e, vtypes, sv)
    elseif is(e.head,:gotoifnot)
        abstract_eval(e.args[1], vtypes, sv)
    elseif is(e.head,:method)
        fname = e.args[1]
        if isa(fname,Symbol)
            return StateUpdate(fname, VarState(Function,false), vtypes)
        end
    end
    return vtypes
end

function type_too_complex(t::ANY, d)
    if d > MAX_TYPE_DEPTH
        return true
    end
    if isa(t,Union)
        p = t.types
    elseif isa(t,DataType)
        p = t.parameters
    elseif isa(t,TypeVar)
        return type_too_complex(t.lb,d+1) || type_too_complex(t.ub,d+1)
    else
        return false
    end
    for x in (p::SimpleVector)
        if type_too_complex(x, d+1)
            return true
        end
    end
    return false
end

function tmerge(typea::ANY, typeb::ANY)
    is(typea, NF)  && return typeb
    is(typeb, NF)  && return typea
    typea <: typeb && return typeb
    typeb <: typea && return typea
    if (typea <: Tuple) && (typeb <: Tuple)
        if length(typea.parameters) == length(typeb.parameters) && !isvatuple(typea) && !isvatuple(typeb)
            return typejoin(typea, typeb)
        end
        return Tuple
    end
    u = Union{typea, typeb}
    if length(u.types) > MAX_TYPEUNION_LEN || type_too_complex(u, 0)
        # don't let type unions get too big
        # TODO: something smarter, like a common supertype
        return Any
    end
    return u
end

issubstate(a::VarState,b::VarState) = (a.typ <: b.typ && a.undef <= b.undef)

function smerge(sa::Union{NotFound,VarState}, sb::Union{NotFound,VarState})
    is(sa, NF) && return sb
    is(sb, NF) && return sa
    issubstate(sa,sb) && return sb
    issubstate(sb,sa) && return sa
    VarState(tmerge(sa.typ, sb.typ), sa.undef | sb.undef)
end

tchanged(n::ANY, o::ANY) = is(o,NF) || (!is(n,NF) && !(n <: o))
schanged(n::ANY, o::ANY) = is(o,NF) || (!is(n,NF) && !issubstate(n, o))

stupdate(state::Tuple{}, changes::VarTable, vars) = copy(changes)
stupdate(state::Tuple{}, changes::StateUpdate, vars) = stupdate(ObjectIdDict(), changes, vars)

function stupdate(state::ObjectIdDict, changes::Union{StateUpdate,VarTable}, vars)
    for i = 1:length(vars)
        v = vars[i]
        newtype = changes[v]
        oldtype = get(state::ObjectIdDict,v,NF)
        if schanged(newtype, oldtype)
            state[v] = smerge(oldtype, newtype)
        end
    end
    state
end

function stchanged(new::Union{StateUpdate,VarTable}, old, vars)
    if is(old,())
        return true
    end
    for v in vars
        if schanged(new[v], get(old,v,NF))
            return true
        end
    end
    return false
end

function findlabel(labels, l)
    i = l+1 > length(labels) ? 0 : labels[l+1]
    if i == 0
        error("label ",l," not found")
    end
    return i
end

function label_counter(body)
    l = -1
    for b in body
        if isa(b,LabelNode) && (b::LabelNode).label > l
            l = (b::LabelNode).label
        end
    end
    return l
end
genlabel(sv) = LabelNode(sv.label_counter += 1)

function find_gensym_uses(body)
    uses = IntSet[]
    for line = 1:length(body)
        find_gensym_uses(body[line], uses, line)
    end
    return uses
end
function find_gensym_uses(e::ANY, uses, line)
    if isa(e,GenSym)
        id = (e::GenSym).id+1
        while length(uses) < id
            push!(uses, IntSet())
        end
        push!(uses[id], line)
    elseif isa(e,Expr)
        b = e::Expr
        head = b.head
        if head === :line
            return
        end
        if head === :(=)
            if isa(b.args[1],GenSym)
                id = (b.args[1]::GenSym).id+1
                while length(uses) < id
                    push!(uses, IntSet())
                end
            end
            find_gensym_uses(b.args[2], uses, line)
            return
        end
        for a in b.args
            find_gensym_uses(a, uses, line)
        end
    end
end

function newvar!(sv::StaticVarInfo, typ)
    id = length(sv.gensym_types)
    push!(sv.gensym_types, typ)
    return GenSym(id)
end

f_argnames(ast) =
    Any[(isa(x,Expr) ? x.args[1] : x) for x in ast.args[1]::Array{Any,1}]

is_rest_arg(arg::ANY) = (ccall(:jl_is_rest_arg,Int32,(Any,), arg) != 0)

function typeinf_ext(linfo, atypes::ANY, sparams::ANY, def)
    global inference_stack
    last = inference_stack
    inference_stack = EmptyCallStack()
    result = typeinf(linfo, atypes, sparams, def, true, true)
    inference_stack = last
    return result
end

typeinf(linfo,atypes::ANY,sparams::ANY) = typeinf(linfo,atypes,sparams,linfo,true,false)
typeinf(linfo,atypes::ANY,sparams::ANY,def) = typeinf(linfo,atypes,sparams,def,true,false)

CYCLE_ID = 1

#trace_inf = false
#enable_trace_inf() = (global trace_inf=true)

# def is the original unspecialized version of a method. we aggregate all
# saved type inference data there.
function typeinf(linfo::LambdaStaticData,atypes::ANY,sparams::SimpleVector, def, cop, needtree)
    if linfo.module === Core
        atypes = Tuple
    end
    #dbg =
    #dotrace = true
    local ast::Expr, tfunc_idx = -1
    curtype = Bottom
    redo = false
    # check cached t-functions
    tf = def.tfunc
    if !is(tf,nothing)
        tfarr = tf::Array{Any,1}
        for i = 1:3:length(tfarr)
            if typeseq(tfarr[i],atypes)
                code = tfarr[i+1]
                if tfarr[i+2]
                    redo = true
                    tfunc_idx = i+1
                    curtype = code
                    break
                end
                if isa(code,Type)
                    curtype = code
                    # sometimes just a return type is stored here. if a full AST
                    # is not needed, we can return it.
                    if !needtree
                        return (nothing, code)
                    end
                else
                    curtype = ccall(:jl_ast_rettype, Any, (Any,Any), def, code)
                    return (code, curtype)
                end
            end
        end
    end
    # TODO: typeinf currently gets stuck without this
    if linfo.name === :abstract_interpret || linfo.name === :tuple_elim_pass || linfo.name === :abstract_call_gf
        return (linfo.ast, Any)
    end

    (fulltree, result, rec) = typeinf_uncached(linfo, atypes, sparams, def, curtype, cop, true)
    if fulltree === ()
        return (fulltree,result)
    end

    if !redo
        if is(def.tfunc,nothing)
            def.tfunc = Any[]
        end
        tfarr = def.tfunc::Array{Any,1}
        idx = -1
        for i = 1:3:length(tfarr)
            if typeseq(tfarr[i],atypes)
                idx = i; break
            end
        end
        if idx == -1
            l = length(tfarr)
            idx = l+1
            resize!(tfarr, l+3)
        end
        tfarr[idx] = atypes
        # in the "rec" state this tree will not be used again, so store
        # just the return type in place of it.
        tfarr[idx+1] = rec ? result : fulltree
        tfarr[idx+2] = rec
    else
        def.tfunc[tfunc_idx] = rec ? result : fulltree
        def.tfunc[tfunc_idx+1] = rec
    end

    return (fulltree, result)
end

typeinf_uncached(linfo, atypes::ANY, sparams::ANY; optimize=true) =
    typeinf_uncached(linfo, atypes, sparams, linfo, Bottom, true, optimize)

# t[n:end]
tupletype_tail(t::ANY, n) = Tuple{t.parameters[n:end]...}

# compute an inferred (optionally optimized) AST without global effects (i.e. updating the cache)
function typeinf_uncached(linfo::LambdaStaticData, atypes::ANY, sparams::SimpleVector, def, curtype, cop, optimize)
    ast0 = def.ast
    #if dbg
    #    print("typeinf ", linfo.name, " ", object_id(ast0), "\n")
    #end
    # if isdefined(:STDOUT)
    #     write(STDOUT, "typeinf ")
    #     write(STDOUT, string(linfo.name))
    #     write(STDOUT, string(atypes))
    #     write(STDOUT, '\n')
    # end
    #print("typeinf ", ast0, " ", sparams, " ", atypes, "\n")

    global inference_stack, CYCLE_ID
    # check for recursion
    f = inference_stack
    while !isa(f,EmptyCallStack)
        if (is(f.ast,ast0) || f.ast==ast0) && typeseq(f.types, atypes)
            # return best guess so far
            (f::CallStack).recurred = true
            (f::CallStack).cycleid = CYCLE_ID
            r = inference_stack
            while !is(r, f)
                # mark all frames that are part of the cycle
                r.recurred = true
                r.cycleid = CYCLE_ID
                r = r.prev
            end
            CYCLE_ID += 1
            #print("*==> ", f.result,"\n")
            return ((),f.result,true)
        end
        f = f.prev
    end

    #if trace_inf
    #    print("typeinf ", linfo.name, " ", atypes, " ", linfo.file,":",linfo.line,"\n")
    #end

    #if dbg print("typeinf ", linfo.name, " ", atypes, "\n") end

    if cop
        sparams = svec(sparams..., linfo.sparams...)
        ast = ccall(:jl_prepare_ast, Any, (Any,Any), linfo, sparams)::Expr
    else
        ast = linfo.ast
    end

    args = f_argnames(ast)
    la = length(args)
    assert(is(ast.head,:lambda))
    vinflist = ast.args[2][1]::Array{Any,1}
    vars = map(vi->vi[1], vinflist)
    body = (ast.args[3].args)::Array{Any,1}
    n = length(body)

    labels = zeros(Int, label_counter(body)+1)
    for i=1:length(body)
        b = body[i]
        if isa(b,LabelNode)
            labels[b.label+1] = i
        end
    end

    # our stack frame
    frame = CallStack(ast0, linfo.module, atypes, inference_stack)
    inference_stack = frame
    frame.result = curtype

    rec = false
    toprec = false

    s = Any[ () for i=1:n ]
    # initial types
    s[1] = ObjectIdDict()
    for v in vars
        s[1][v] = VarState(Bottom,true)
    end
    if la > 0
        lastarg = ast.args[1][la]
        if is_rest_arg(lastarg)
            if atypes === Tuple
                if la > 1
                    atypes = Tuple{Any[Any for i=1:la-1]..., Tuple.parameters[1]}
                end
                s[1][args[la]] = VarState(Tuple,false)
            else
                s[1][args[la]] = VarState(limit_tuple_depth(tupletype_tail(atypes,la)),false)
            end
            la -= 1
        else
            if atypes === Tuple
                atypes = Tuple{Any[Any for i=1:la]..., Tuple.parameters[1]}
            end
        end
    end

    laty = length(atypes.parameters)
    if laty > 0
        lastatype = atypes.parameters[laty]
        if isvarargtype(lastatype)
            lastatype = lastatype.parameters[1]
            laty -= 1
        end
        if laty > la
            laty = la
        end
        for i=1:laty
            s[1][args[i]] = VarState(atypes.parameters[i],false)
        end
        for i=laty+1:la
            s[1][args[i]] = VarState(lastatype,false)
        end
    else
        @assert la == 0
    end

    # types of closed vars
    cenv = ObjectIdDict()
    for vi in (ast.args[2][2])::Array{Any,1}
        vi::Array{Any,1}
        vname = vi[1]
        vtype = vi[2]
        cenv[vname] = vtype
        s[1][vname] = VarState(vtype,false)
    end
    for vi in vinflist
        vi::Array{Any,1}
        if (vi[3]&4)!=0
            # variables assigned by inner functions are treated like
            # closed variables; we only use the declared type
            vname = vi[1]
            vtype = vi[2]
            cenv[vname] = vtype
            s[1][vname] = VarState(vtype,false)
        end
    end

    gensym_uses = find_gensym_uses(body)
    gensym_init = Any[ NF for i = 1:length(gensym_uses) ]
    gensym_types = copy(gensym_init)

    sv = StaticVarInfo(sparams, cenv, vars, gensym_types, vinflist, length(labels), ObjectIdDict())
    frame.sv = sv

    recpts = IntSet()  # statements that depend recursively on our value
    W = IntSet()

    @label typeinf_top

    typegotoredo = false

    # exception handlers
    cur_hand = ()
    handler_at = Any[ () for i=1:n ]

    push!(W,1) #initial pc to visit

    while !isempty(W)
        pc = first(W)
        while true
            #print(pc,": ",s[pc],"\n")
            delete!(W, pc)
            if is(handler_at[pc],())
                handler_at[pc] = cur_hand
            else
                cur_hand = handler_at[pc]
            end
            stmt = body[pc]
            changes = abstract_interpret(stmt, s[pc]::ObjectIdDict, sv)
            if frame.recurred
                rec = true
                if !(isa(frame.prev,CallStack) && frame.prev.cycleid == frame.cycleid)
                    toprec = true
                end
                push!(recpts, pc)
                #if dbg
                #    show(pc); print(" recurred\n")
                #end
                frame.recurred = false
            end
            if !is(cur_hand,())
                # propagate type info to exception handler
                l = cur_hand[1]::Int
                if stchanged(changes, s[l], vars)
                    push!(W, l)
                    s[l] = stupdate(s[l], changes, vars)
                end
            end
            pc´ = pc+1
            if isa(changes,StateUpdate) && isa((changes::StateUpdate).var, GenSym)
                changes = changes::StateUpdate
                id = (changes.var::GenSym).id+1
                new = changes.vtype.typ
                old = gensym_types[id]
                if old===NF || !(new <: old)
                    gensym_types[id] = tmerge(old, new)
                    for r in gensym_uses[id]
                        if !is(s[r],()) # s[r] === () => unreached statement
                            push!(W, r)
                        end
                    end
                end
            elseif isa(stmt,GotoNode)
                pc´ = findlabel(labels,stmt.label)
            elseif isa(stmt,Expr)
                hd = stmt.head
                if is(hd,:gotoifnot)
                    condexpr = stmt.args[1]
                    l = findlabel(labels,stmt.args[2])
                    # constant conditions
                    if is(condexpr,true)
                    elseif is(condexpr,false)
                        pc´ = l
                    else
                        # general case
                        handler_at[l] = cur_hand
                        if stchanged(changes, s[l], vars)
                            push!(W, l)
                            s[l] = stupdate(s[l], changes, vars)
                        end
                    end
                elseif is(hd,:type_goto)
                    for i = 2:length(stmt.args)
                        var = stmt.args[i]::GenSym
                        # Store types that need to be fed back via type_goto
                        # in gensym_init. After finishing inference, if any
                        # of these types changed, start over with the fed-back
                        # types known from the beginning.
                        # See issue #3821 (using !typeseq instead of !subtype),
                        # and issue #7810.
                        id = var.id+1
                        vt = gensym_types[id]
                        ot = gensym_init[id]
                        if ot===NF || !typeseq(vt,ot)
                            gensym_init[id] = vt
                            typegotoredo = true
                        end
                        sv.fedbackvars[var] = true
                    end
                elseif is(hd,:return)
                    pc´ = n+1
                    rt = abstract_eval(stmt.args[1], s[pc], sv)
                    if frame.recurred
                        rec = true
                        if !(isa(frame.prev,CallStack) && frame.prev.cycleid == frame.cycleid)
                            toprec = true
                        end
                        push!(recpts, pc)
                        #if dbg
                        #    show(pc); print(" recurred\n")
                        #end
                        frame.recurred = false
                    end
                    #if dbg
                    #    print("at "); show(pc)
                    #    print(" result is "); show(frame.result)
                    #    print(" and rt is "); show(rt)
                    #    print("\n")
                    #end
                    if tchanged(rt, frame.result)
                        frame.result = tmerge(frame.result, rt)
                        # revisit states that recursively depend on this
                        for r in recpts
                            #if dbg
                            #    print("will revisit ")
                            #    show(r)
                            #    print("\n")
                            #end
                            push!(W, r)
                        end
                    end
                elseif is(hd,:enter)
                    l = findlabel(labels,stmt.args[1]::Int)
                    cur_hand = (l,cur_hand)
                    handler_at[l] = cur_hand
                elseif is(hd,:leave)
                    for i=1:((stmt.args[1])::Int)
                        cur_hand = cur_hand[2]
                    end
                end
            end
            if pc´<=n && (handler_at[pc´] = cur_hand; true) &&
               stchanged(changes, s[pc´], vars)
                s[pc´] = stupdate(s[pc´], changes, vars)
                pc = pc´
            elseif pc´ in W
                pc = pc´
            else
                break
            end
        end
    end

    if typegotoredo
        # if any type_gotos changed, clear state and restart.
        for ll = 2:length(s)
            s[ll] = ()
        end
        empty!(W)
        gensym_types[:] = gensym_init
        frame.result = curtype
        @goto typeinf_top
    end
    for i = 1:length(gensym_types)
        if gensym_types[i] === NF
            gensym_types[i] = Union{}
        end
    end

    #print("\n",ast,"\n")
    #if dbg print("==> ", frame.result,"\n") end
    if (toprec && typeseq(curtype, frame.result)) || !isa(frame.prev,CallStack)
        rec = false
    end
    fulltree = type_annotate(ast, s, sv, frame.result, args)

    if !rec
        @assert fulltree.args[3].head === :body
        if optimize
            if JLOptions().can_inline == 1
                fulltree.args[3] = inlining_pass(fulltree.args[3], sv, fulltree)[1]
                # inlining can add variables
                sv.vars = append_any(f_argnames(fulltree), fulltree.args[2][1])
            end
            tuple_elim_pass(fulltree, sv)
            getfield_elim_pass(fulltree.args[3], sv)
        end
        linfo.inferred = true
        fulltree = ccall(:jl_compress_ast, Any, (Any,Any), def, fulltree)
    end

    inference_stack = (inference_stack::CallStack).prev
    return (fulltree, frame.result, rec)
end

function record_var_type(e::Symbol, t::ANY, decls)
    otherTy = get(decls::ObjectIdDict, e, false)
    # keep track of whether a variable is always the same type
    if !is(otherTy,false)
        if !typeseq(otherTy, t)
            decls[e] = Any
        end
    else
        decls[e] = t
    end
end

function eval_annotate(e::ANY, vtypes::ANY, sv::StaticVarInfo, decls, clo, undefs)
    if isa(e, Symbol)
        e = e::Symbol

        if !is_local(sv, e) && !is_closed(sv, e)
            # can get types of globals and static params from the environment
            return e
        end
        t = abstract_eval(e, vtypes, sv)
        s = get(vtypes, e, NF)
        if s !== NF && s.undef
            undefs[e] = true
        end
        record_var_type(e, t, decls)
        return (is(t,Any) || is(t,IntrinsicFunction)) ? e : SymbolNode(e, t)
    end

    if isa(e, SymbolNode)
        e = e::SymbolNode
        curtype = e.typ
        t = abstract_eval(e.name, vtypes, sv)
        s = get(vtypes, e.name, NF)
        if s !== NF && s.undef
            undefs[e] = true
        end
        if !(curtype <: t) || typeseq(curtype, t)
            record_var_type(e.name, t, decls)
            e.typ = t
        end
        return e
    end

    if isa(e, LambdaStaticData)
        push!(clo, e)
        return e
    end

    if !isa(e,Expr)
        return e
    end

    e = e::Expr
    head = e.head
    if is(head,:static_typeof) || is(head,:line) || is(head,:const)
        return e
    #elseif is(head,:gotoifnot) || is(head,:return)
    #    e.typ = Any
    elseif is(head,:(=))
    #    e.typ = Any
        s = e.args[1]
        # assignment LHS not subject to all-same-type variable checking,
        # but the type of the RHS counts as one of its types.
        if isa(s,SymbolNode)
            # we don't use types on assignment LHS
            s = s.name
        end
        e.args[2] = eval_annotate(e.args[2], vtypes, sv, decls, clo, undefs)
        if isa(s,Symbol)
            # TODO: if this def does not reach any uses, maybe don't do this
            rhstype = exprtype(e.args[2], sv)
            if !is(rhstype,Bottom)
                record_var_type(s, rhstype, decls)
            end
        end
        return e
    end
    i0 = is(head,:method) ? 2 : 1
    for i=i0:length(e.args)
        subex = e.args[i]
        if !(isa(subex,Number) || isa(subex,AbstractString))
            e.args[i] = eval_annotate(subex, vtypes, sv, decls, clo, undefs)
        end
    end
    if head === :call && isa(e.args[1],LambdaStaticData)
        called = e.args[1]
        fargs = e.args[2:end]
        argtypes = Tuple{[abstract_eval(a, vtypes, sv) for a in fargs]...}
        # recur inside inner functions once we have all types
        tr,ty = typeinf(called, argtypes, called.sparams, called, false, true)
        called.ast = tr
    end
    return e
end

# annotate types of all symbols in AST
function type_annotate(ast::Expr, states::Array{Any,1}, sv::ANY, rettype::ANY, args)
    decls = ObjectIdDict()
    undefs = ObjectIdDict()
    # initialize decls with argument types
    for arg in args
        decls[arg] = states[1][arg].typ
    end
    closures = []
    body = ast.args[3].args::Array{Any,1}
    for i=1:length(body)
        st_i = states[i]
        if st_i !== ()
            # st_i === ()  =>  unreached statement  (see issue #7836)
            body[i] = eval_annotate(body[i], st_i, sv, decls, closures, undefs)
        end
    end
    ast.args[3].typ = rettype

    # add declarations for variables that are always the same type
    for vi in ast.args[2][1]::Array{Any,1}
        if (vi[3]&4)==0
            vi[2] = get(decls, vi[1], vi[2])
        end
        if haskey(undefs, vi[1])
            vi[3] |= 32
        end
    end
    for vi in ast.args[2][2]::Array{Any,1}
        if (vi[3]&4)==0
            vi[2] = get(decls, vi[1], vi[2])
        end
        if haskey(undefs, vi[1])
            vi[3] |= 32
        end
    end
    ast.args[2][3] = sv.gensym_types

    for (li::LambdaStaticData) in closures
        if !li.inferred
            a = li.ast
            # pass on declarations of captured vars
            for vi in a.args[2][2]::Array{Any,1}
                if (vi[3]&4)==0
                    vi[2] = get(decls, vi[1], vi[2])
                end
            end
            # NOTE: this is disabled, as it leads to inlining too early.
            # See issue #4688. We should wait until inner functions are called
            # to optimize them; this will be done by the method cache or
            # builtins.c:jl_trampoline. However if jl_trampoline is changed then
            # this code will need to be restored.
            #na = length(a.args[1])
            #li.ast, _ = typeinf(li, ntuple(i->(i>na ? (Tuple)[1] : Any), na+1),
            #                    li.sparams, li, false)
        end
    end

    return ast
end

function sym_replace(e::ANY, from1, from2, to1, to2)
    if isa(e,Symbol) || isa(e,GenSym)
        return _sym_repl(e::Union{Symbol,GenSym}, from1, from2, to1, to2, e)
    end
    if isa(e,SymbolNode)
        e2 = _sym_repl(e.name, from1, from2, to1, to2, e)
        if isa(e2, SymbolNode) || !isa(e2, Symbol)
            return e2
        else
            return SymbolNode(e2, e.typ)
        end
    end
    if isa(e,NewvarNode)
        e2 = _sym_repl(e.name::Symbol, from1, from2, to1, to2, e)
        if isa(e2, NewvarNode) || !isa(e2, Symbol)
             return e2
        else
            return NewvarNode(e2)
        end
    end
    if !isa(e,Expr)
        return e
    end
    e = e::Expr
    if e.head === :(=)
        s = e.args[1]
        if isa(s, Symbol) || isa(s, GenSym)
            e2 = _sym_repl(s, from1, from2, to1, to2, s)
            # remove_redundant_temp_vars can only handle Symbols
            # on the LHS of assignments, so we make sure not to put
            # something else there
            if isa(e2, SymbolNode)
                e2 = e2.name
            end
            e.args[1] = e2::Union{Symbol,GenSym}
        end
        e.args[2] = sym_replace(e.args[2], from1, from2, to1, to2)
    elseif e.head !== :line
        for i=1:length(e.args)
            e.args[i] = sym_replace(e.args[i], from1, from2, to1, to2)
        end
    end
    return e
end

function _sym_repl(s::Union{Symbol,GenSym}, from1, from2, to1, to2, deflt)
    for i=1:length(from1)
        if is(from1[i],s)
            return to1[i]
        end
    end
    for i=1:length(from2)
        if is(from2[i],s)
            return to2[i]
        end
    end
    return deflt
end

# count occurrences up to n+1
function occurs_more(e::ANY, pred, n)
    if isa(e,Expr)
        e = e::Expr
        c = 0
        for a = e.args
            c += occurs_more(a, pred, n)
            if c>n
                return c
            end
        end
        return c
    end
    if pred(e) || (isa(e,SymbolNode) && pred(e.name))
        return 1
    end
    return 0
end

const emptydict = ObjectIdDict()

function exprtype(x::ANY, sv::StaticVarInfo)
    if isa(x,Expr)
        return (x::Expr).typ
    elseif isa(x,SymbolNode)
        return (x::SymbolNode).typ
    elseif isa(x,GenSym)
        return abstract_eval_gensym(x::GenSym, sv)
    elseif isa(x,TopNode)
        return abstract_eval_global(_topmod(), (x::TopNode).name)
    elseif isa(x,Symbol)
        sv = inference_stack.sv
        if is_local(sv, x::Symbol)
            return Any
        end
        return abstract_eval(x::Symbol, emptydict, sv)
    elseif isa(x,QuoteNode)
        v = (x::QuoteNode).value
        if isa(v,Type)
            return Type{v}
        end
        return typeof(v)
    elseif isa(x,Type)
        return Type{x}
    elseif isa(x,LambdaStaticData)
        return Function
    elseif isa(x,GlobalRef)
        return abstract_eval_global(x.mod, (x::GlobalRef).name)
    else
        return typeof(x)
    end
end

# known affect-free calls (also effect-free)
const _pure_builtins = Any[tuple, svec, fieldtype, apply_type, is, isa, typeof, typeassert]

# known effect-free calls (might not be affect-free)
const _pure_builtins_volatile = Any[getfield, arrayref]

function is_pure_builtin(f)
    if contains_is(_pure_builtins, f)
        return true
    end
    if contains_is(_pure_builtins_volatile, f)
        return true
    end
    if isa(f,IntrinsicFunction)
        if !(f === Intrinsics.pointerref || # this one is volatile
             f === Intrinsics.pointerset || # this one is never effect-free
             f === Intrinsics.ccall ||      # this one is never effect-free
             f === Intrinsics.llvmcall ||   # this one is never effect-free
             f === Intrinsics.jl_alloca)
            return true
        end
    end
    return false
end

# detect some important side-effect-free calls (allow_volatile=true)
# and some affect-free calls (allow_volatile=false) -- affect_free means the call
# cannot be affected by previous calls, except assignment nodes
function effect_free(e::ANY, sv, allow_volatile::Bool)
    if isa(e,SymbolNode)
        allow_volatile && return true
        if is_assigned_inner(sv, (e::SymbolNode).name) || is_global(sv, (e::SymbolNode).name)
            return false
        end
        return true
    end
    if isa(e,Symbol)
        allow_volatile && return true
        if is_assigned_inner(sv, e::Symbol) || is_global(sv, e::Symbol)
            return false
        end
        return true
    end
    if isa(e,Number) || isa(e,AbstractString) || isa(e,GenSym) ||
        isa(e,TopNode) || isa(e,QuoteNode) || isa(e,Type) || isa(e,Tuple)
        return true
    end
    if isa(e,GlobalRef)
        allow_volatile && return true
        return isconst(e.mod, e.name)
    end
    if isconstantfunc(e, sv) !== false
        return true
    end
    if isa(e,Expr)
        e = e::Expr
        if e.head === :static_typeof
            return true
        end
        ea = e.args
        if e.head === :call
            if is_known_call_p(e, is_pure_builtin, sv)
                if !allow_volatile
                    if is_known_call(e, arrayref, sv)
                        return false
                    elseif is_known_call(e, getfield, sv)
                        # arguments must be immutable to ensure e is affect_free
                        first = true
                        for a in ea
                            if first # first "arg" is the function name
                                first = false
                                continue
                            end
                            if isa(a,Symbol)
                                return false
                            end
                            if isa(a,SymbolNode)
                                typ = (a::SymbolNode).typ
                                if !isa(typ,DataType) || typ.mutable
                                    return false
                                end
                            end
                            if isa(a,GenSym)
                                typ = exprtype(a,sv)
                                if !isa(typ,DataType) || typ.mutable
                                    return false
                                end
                            end
                            if !effect_free(a,sv,allow_volatile)
                                return false
                            end
                        end
                        return true
                    end
                end
                # fall-through
            else
                return false
            end
        elseif e.head === :new
            if !allow_volatile
                a = ea[1]
                typ = exprtype(a,sv)
                if !isType(typ) || !isa((typ::Type).parameters[1],DataType) || ((typ::Type).parameters[1]::DataType).mutable
                    return false
                end
            end
            # fall-through
        elseif e.head === :return
            # fall-through
        else
            return false
        end
        for a in ea
            if !effect_free(a,sv,allow_volatile)
                return false
            end
        end
        return true
    end
    return false
end

function ast_localvars(ast)
    args = ObjectIdDict()
    for argname in (ast.args[1]::Array{Any,1})
        args[argname] = true
    end
    locals = Any[]
    for vi in (ast.args[2][1]::Array{Any,1})
        if !haskey(args, vi[1])
            push!(locals, vi[1])
        end
    end
    locals
end

# inline functions whose bodies "inline_worthy"
# where the function body doesn't contain any argument more than once.
# functions with closure environments or varargs are also excluded.
# static parameters are ok if all the static parameter values are leaf types,
# meaning they are fully known.
function inlineable(f::ANY, e::Expr, atype::ANY, sv::StaticVarInfo, enclosing_ast::Expr)
    if !(isa(f,Function) || isa(f,IntrinsicFunction))
        return NF
    end
    atypes = atype.parameters
    argexprs = e.args[2:end]

    if is(f, typeassert) && length(atypes)==2
        # typeassert(x::S, T) => x, when S<:T
        if isType(atypes[2]) && isleaftype(atypes[2]) &&
            atypes[1] <: atypes[2].parameters[1]
            return (e.args[2],())
        end
    end
    if length(atypes)==2 && is(f,unbox) && isa(atypes[2],DataType) && !atypes[2].mutable && atypes[2].pointerfree
        # remove redundant unbox
        return (e.args[3],())
    end
    topmod = _topmod()
    if istopfunction(topmod, f, :isbits) && length(atypes)==1 && isType(atypes[1]) &&
        effect_free(argexprs[1],sv,true) && isleaftype(atypes[1].parameters[1])
        return (isbits(atypes[1].parameters[1]),())
    end
    # special-case inliners for known pure functions that compute types
    if isType(e.typ)
        if (is(f,apply_type) || is(f,fieldtype) ||
            istopfunction(topmod, f, :typejoin) ||
            istopfunction(topmod, f, :promote_type)) &&
                isleaftype(e.typ.parameters[1])
            return (e.typ.parameters[1],())
        end
    end
    if isa(f,IntrinsicFunction)
        return NF
    end

    meth = _methods(f, atype, 1)
    if meth === false || length(meth) != 1
        return NF
    end
    meth = meth[1]::SimpleVector

    local linfo
    linfo = try
        func_for_method(meth[3],atype,meth[2])
    catch
        NF
    end
    if linfo === NF
        return NF
    end
    linfo = linfo::LambdaStaticData

    ## This code tries to limit the argument list length only when it is
    ## growing due to recursion.
    ## It might be helpful for some things, but turns out not to be
    ## necessary to get max performance from recursive varargs functions.
    # if length(atypes) > MAX_TUPLETYPE_LEN
    #     # check call stack to see if this argument list is growing
    #     st = inference_stack
    #     while !isa(st, EmptyCallStack)
    #         if st.ast === linfo.def.ast && length(atypes) > length(st.types)
    #             atypes = limit_tuple_type(atypes)
    #             meth = _methods(f, atypes, 1)
    #             if meth === false || length(meth) != 1
    #                 return NF
    #             end
    #             meth = meth[1]::Tuple
    #             linfo2 = meth[3].func.code
    #             if linfo2 !== linfo
    #                 return NF
    #             end
    #             linfo = linfo2
    #             break
    #         end
    #         st = st.prev
    #     end
    # end

    if !isa(linfo,LambdaStaticData) || length(meth[3].func.env) > 0
        return NF
    end

    sp = meth[2]::SimpleVector
    sp = svec(sp..., linfo.sparams...)
    spvals = Any[ sp[i] for i in 2:2:length(sp) ]
    for i=1:length(spvals)
        si = spvals[i]
        if isa(si, TypeVar)
            return NF
        end
        if isa(si,Symbol) || isa(si,GenSym)
            spvals[i] = QuoteNode(si)
        end
    end

    metharg = meth[1]::Type
    methargs = metharg.parameters
    nm = length(methargs)
    if !(atype <: metharg)
        incompletematch = true
        if !inline_incompletematch_allowed || !isdefined(Main,:Base)
            # provide global disable if this optimization is not desirable
            # need Main.Base defined for MethodError
            return NF
        end
    else
        incompletematch = false
    end

    (ast, ty) = typeinf(linfo, metharg, meth[2], linfo, true, true)
    if is(ast,())
        return NF
    end
    needcopy = true
    if !isa(ast,Expr)
        ast = ccall(:jl_uncompress_ast, Any, (Any,Any), linfo, ast)
        needcopy = false
    end
    ast = ast::Expr
    vinflist = ast.args[2][1]::Array{Any,1}
    for vi in vinflist
        if (vi[3]&1)!=0
            # captures variables (TODO)
            return NF
        end
    end

    body = Expr(:block)
    body.args = filter(x->!((isa(x,Expr) && is(x.head,:line)) || isa(x,LineNumberNode)),
                       ast.args[3].args::Array{Any,1})
    cost::Int = 1000
    if incompletematch
        cost *= 4
    end
    if istopfunction(topmod, f, :next) || istopfunction(topmod, f, :done) ||
       istopfunction(topmod, f, :unsafe_convert) || istopfunction(topmod, f, :cconvert)
        cost ÷= 4
    end
    inline_op = (istopfunction(topmod, f, :+) || istopfunction(topmod, f, :*) ||
        istopfunction(topmod, f, :min) || istopfunction(topmod, f, :max)) &&
        (3 <= length(argexprs) <= 9) && meth[3].sig == Tuple{Any,Any,Any,Vararg{Any}}
    if !inline_op && !inline_worthy(body, cost)
        if incompletematch
            # inline a typeassert-based call-site, rather than a
            # full generic lookup, using the inliner to handle
            # all the fiddly details
            numarg = length(argexprs)
            newnames = unique_names(ast,numarg)
            sp = ()
            spvals = []
            meth = svec(metharg, sp)
            locals = []
            newcall = Expr(:call, e.args[1])
            newcall.typ = ty
            for i = 1:numarg
                name = newnames[i]
                argtype = exprtype(argexprs[i],sv)
                push!(locals, Any[name,argtype,0])
                push!(newcall.args, argtype===Any ? name : SymbolNode(name, argtype))
            end
            body.args = Any[Expr(:return, newcall)]
            ast = Expr(:lambda, newnames, Any[[], locals, [], 0], body)
            needcopy = false
        else
            return NF
        end
    end
    # remove empty meta
    body.args = filter(x->!(isa(x,Expr) && x.head === :meta && isempty(x.args)),
                       body.args)

    spnames = Any[ sp[i].name for i=1:2:length(sp) ]
    enc_vinflist = enclosing_ast.args[2][1]::Array{Any,1}
    enc_locllist = ast_localvars(enclosing_ast)
    locllist = ast_localvars(ast)

    # check for vararg function
    args = f_argnames(ast)
    na = length(args)

    isva = false
    if na>0 && is_rest_arg(ast.args[1][na])
        vaname = args[na]
        len_argexprs = length(argexprs)
        valen = len_argexprs-na+1
        if valen>0 && !occurs_outside_getfield(body, vaname, sv, valen)
            # argument tuple is not used as a whole, so convert function body
            # to one accepting the exact number of arguments we have.
            newnames = unique_names(ast,valen)
            if needcopy
                body = astcopy(body)
                needcopy = false
            end
            replace_getfield!(ast, body, vaname, newnames, sv, 1)
            args = vcat(args[1:na-1], newnames)
            na = length(args)

            # if the argument name is also used as a local variable,
            # we need to keep it around as a variable name
            for vi in vinflist
                if vi[1] === vaname
                    if vi[3] != 0
                        vnew = unique_name(enclosing_ast, ast)
                        push!(enc_vinflist, Any[vnew, vi[2], vi[3]])
                        push!(spnames, vaname)
                        push!(spvals, vnew)
                        push!(enc_locllist, vnew)
                    end
                    break
                end
            end
        else
            # construct tuple-forming expression for argument tail
            vararg = mk_tuplecall(argexprs[na:end], sv)
            argexprs = Any[argexprs[1:(na-1)]..., vararg]
            isva = true
        end
    elseif na != length(argexprs)
        # we have a method match only because an earlier
        # inference step shortened our call args list, even
        # though we have too many arguments to actually
        # call this function
        @assert isvarargtype(atypes[na])
        return NF
    end

    @assert na == length(argexprs)

    if needcopy
        body = astcopy(body)
    end

    # avoid capturing free variables in enclosing function with the same name as in our function
    for localval in locllist
        localval = localval::Symbol
        vnew = gensym(localval)
        push!(spnames, localval)
        push!(spvals, vnew)
        push!(enc_locllist, vnew)
        for vi in vinflist
            if vi[1] === localval
                push!(enc_vinflist, Any[vnew, vi[2], vi[3]])
                break
            end
        end
    end

    # see if each argument occurs only once in the body expression
    stmts = []
    stmts_free = true # true = all entries of stmts are effect_free

    # when 1 method matches the inferred types, there is still a chance
    # of a no-method error at run time, unless the inferred types are a
    # subset of the method signature.
    if incompletematch
        t = Expr(:call) # tuple(args...)
        t.typ = Tuple
        argexprs2 = t.args
        icall = LabelNode(label_counter(body.args)+1)
        partmatch = Expr(:gotoifnot, false, icall.label)
        thrw = Expr(:call, :throw, Expr(:call, GlobalRef(Main.Base,:MethodError), Expr(:call, top_tuple, e.args[1], QuoteNode(:inline)), t))
        thrw.typ = Bottom
    end

    for i=na:-1:1 # stmts_free needs to be calculated in reverse-argument order
        a = args[i]
        aei = argexprs[i]
        aeitype = argtype = exprtype(aei,sv)
        needtypeassert = false
        if incompletematch
            if isva
                if nm == 0
                    methitype = Tuple{}
                elseif i > nm
                    methitype = methargs[end]
                    if isvarargtype(methitype)
                        methitype = Tuple{methitype}
                    else
                        methitype = Tuple{}
                    end
                else
                    methitype = tupletype_tail(metharg,i)
                end
                isva = false
            else
                if i < nm
                    methitype = methargs[i]
                else
                    methitype = methargs[end]
                    if isvarargtype(methitype)
                        methitype = methitype.parameters[1]
                    else
                        @assert i==nm
                    end
                end
            end
            if isa(methitype, TypeVar)
                methitype = methitype.ub
            end
            if !(aeitype <: methitype)
                #TODO: make Undef a faster special-case?
                needtypeassert = true
                aeitype = methitype
            end
        end

        islocal = false # if the argument name is also used as a local variable,
                        # we need to keep it as a variable name
        for vi in vinflist
            if vi[1] === a && vi[3] != 0
                islocal = true
                aeitype = tmerge(aeitype, vi[2])
                if aeitype === Any
                    break
                end
            end
        end

        # ok for argument to occur more than once if the actual argument
        # is a symbol or constant, or is not affected by previous statements
        # that will exist after the inlining pass finishes
        if needtypeassert
            vnew1 = unique_name(enclosing_ast, ast)
            add_variable(enclosing_ast, vnew1, aeitype, !islocal)
            v1 = (aeitype===Any ? vnew1 : SymbolNode(vnew1,aeitype))
            push!(spnames, a)
            push!(spvals, v1)
            vnew2 = unique_name(enclosing_ast, ast)
            v2 = (argtype===Any ? vnew2 : SymbolNode(vnew2,argtype))
            unshift!(body.args, Expr(:(=), a, v2))
            args[i] = a = vnew2
            islocal = false
            aeitype = argtype
            affect_free = stmts_free
            occ = 3
            # it's really late in codegen, so we expand the typeassert manually: cond = !isa(vnew2, methitype) | cond
            cond = Expr(:call, Intrinsics.isa, v2, methitype)
            cond.typ = Bool
            cond = Expr(:call, Intrinsics.not_int, cond)
            cond.typ = Bool
            cond = Expr(:call, Intrinsics.or_int, cond, partmatch.args[1])
            cond.typ = Bool
            cond = Expr(:call, Intrinsics.box, Bool, cond)
            cond.typ = Bool
            partmatch.args[1] = cond
        else
            affect_free = stmts_free && !islocal # false = previous statements might affect the result of evaluating argument
            occ = 0
            for j = length(body.args):-1:1
                b = body.args[j]
                if occ < 6
                    occ += occurs_more(b, x->is(x,a), 6)
                end
                if occ > 0 && affect_free && !effect_free(b, sv, true) #TODO: we could short-circuit this test better by memoizing effect_free(b) in the for loop over i
                    affect_free = false
                end
                if occ > 5 && !affect_free
                    break
                end
            end
        end
        free = effect_free(aei,sv,true)
        if ((occ==0 && is(aeitype,Bottom)) || islocal || (occ > 1 && !inline_worthy(aei, occ*2000)) ||
                (affect_free && !free) || (!affect_free && !effect_free(aei,sv,false)))
            if occ != 0 # islocal=true is implied by occ!=0
                if !islocal
                    vnew = newvar!(sv, aeitype)
                    argexprs[i] = vnew
                else
                    vnew = unique_name(enclosing_ast, ast)
                    add_variable(enclosing_ast, vnew, aeitype, #=SSA=#false)
                    argexprs[i] = aeitype===Any ? vnew : SymbolNode(vnew,aeitype)
                end
                unshift!(stmts, Expr(:(=), vnew, aei))
                stmts_free &= free
            elseif !free && !isType(aeitype)
                unshift!(stmts, aei)
                stmts_free = false
            end
        end
        if incompletematch
            unshift!(argexprs2, (argtype===Any ? a : SymbolNode(a,argtype)))
        end
    end
    if incompletematch && partmatch.args[1] != false
        unshift!(body.args, icall)
        unshift!(body.args, thrw)
        unshift!(body.args, partmatch)
        unshift!(argexprs2, top_tuple)
    end

    # re-number the GenSyms and copy their type-info to the new ast
    gensym_types = ast.args[2][3]
    if gensym_types != 0
        if (isa(gensym_types,Integer))
            gensym_types = Any[Any for i = 1:ast.args[2][3]]
        end
        if !isempty(gensym_types)
            incr = length(sv.gensym_types)
            if incr != 0
                body = gensym_increment(body, incr)
            end
            append!(sv.gensym_types, ast.args[2][3])
        end
    end

    # ok, substitute argument expressions for argument names in the body
    body = sym_replace(body, args, spnames, argexprs, spvals)

    # make labels / goto statements unique
    newlabels = zeros(Int,label_counter(body.args)+1)
    for i = 1:length(body.args)
        a = body.args[i]
        if isa(a,LabelNode)
            a = a::LabelNode
            newlabel = genlabel(sv)
            newlabels[a.label+1] = newlabel.label
            body.args[i] = newlabel
        end
    end
    for i = 1:length(body.args)
        a = body.args[i]
        if isa(a,GotoNode)
            a = a::GotoNode
            body.args[i] = GotoNode(newlabels[a.label+1])
        elseif isa(a,Expr)
            a = a::Expr
            if a.head === :enter
                a.args[1] = newlabels[a.args[1]+1]
            elseif a.head === :gotoifnot
                a.args[2] = newlabels[a.args[2]+1]
            end
        end
    end

    # convert return statements into a series of goto's
    retstmt = genlabel(sv)
    retval = unique_name(enclosing_ast, ast)
    multiret = false
    lastexpr = pop!(body.args)
    if isa(lastexpr,LabelNode)
        push!(body.args, lastexpr)
        push!(body.args, Expr(:call,:error,"fatal error in type inference"))
        lastexpr = nothing
    else
        @assert isa(lastexpr,Expr) "inference.jl:1774"
        @assert is(lastexpr.head,:return) "inference.jl:1775"
    end
    for a in body.args
        push!(stmts, a)
        if isa(a,Expr)
            a = a::Expr
            if a.head === :return
                multiret = true
                unshift!(a.args, retval)
                a.head = :(=)
                push!(stmts, GotoNode(retstmt.label))
            end
        end
    end

    if multiret
        rettype = (ast.args[3]::Expr).typ
        add_variable(enclosing_ast, retval, rettype, #=SSA=#false)
        if lastexpr !== nothing
            unshift!(lastexpr.args, retval)
            lastexpr.head = :(=)
            push!(stmts, lastexpr)
        end
        push!(stmts, retstmt)
        expr = rettype===Any ? retval : SymbolNode(retval,rettype)
    else
        expr = lastexpr.args[1]
    end

    if isa(expr,Expr)
        old_t = e.typ
        if old_t <: expr.typ
            expr.typ = old_t
        end
    end
    return (expr, stmts)
end
# The inlining incomplete matches optimization currently
# doesn't work on Tuples of TypeVars
const inline_incompletematch_allowed = false

inline_worthy(body, cost::Integer) = true
function inline_worthy(body::Expr, cost::Integer=1000) # precondition: 0 < cost; nominal cost = 1000
    if popmeta!(body, :inline)[1]
        return true
    end
    if popmeta!(body, :noinline)[1]
        return false
    end
    symlim = 1000 + 5_000_000 ÷ cost
    if length(body.args) < (symlim + 500) ÷ 1000
        symlim *= 16
        symlim ÷= 1000
        if occurs_more(body, e->true, symlim) < symlim
            return true
        end
    end
    return false
end

gensym_increment(body, incr) = body
gensym_increment(body::GenSym, incr) = GenSym(body.id + incr)
function gensym_increment(body::Expr, incr)
    if body.head === :line
        return body
    end
    for i in 1:length(body.args)
        body.args[i] = gensym_increment(body.args[i], incr)
    end
    return body
end

const top_setfield = TopNode(:setfield)
const top_getfield = TopNode(:getfield)
const top_tuple = TopNode(:tuple)

function mk_getfield(texpr, i, T)
    e = :(($top_getfield)($texpr, $i))
    e.typ = T
    e
end

function mk_tuplecall(args, sv::StaticVarInfo)
    e = Expr(:call, top_tuple, args...)
    e.typ = tuple_tfunc(Tuple{Any[exprtype(x,sv) for x in args]...})
    e
end

const corenumtype = Union{Int32,Int64,Float32,Float64}

function inlining_pass(e::Expr, sv, ast)
    if e.head == :method
        # avoid running the inlining pass on function definitions
        return (e,())
    end
    eargs = e.args
    if length(eargs)<1
        return (e,())
    end
    stmts = []
    if e.head === :body
        i = 1
        while i <= length(eargs)
            ei = eargs[i]
            if isa(ei,Expr)
                res = inlining_pass(ei, sv, ast)
                eargs[i] = res[1]
                if isa(res[2],Array)
                    sts = res[2]::Array{Any,1}
                    for j = 1:length(sts)
                        insert!(eargs, i, sts[j])
                        i += 1
                    end
                end
            end
            i += 1
        end
        return (e, stmts)
    end
    arg1 = eargs[1]
    # don't inline first (global) arguments of ccall, as this needs to be evaluated
    # by the interpreter and inlining might put in something it can't handle,
    # like another ccall (or try to move the variables out into the function)
    if is_known_call(e, Core.Intrinsics.ccall, sv)
        i0 = 5
        isccall = true
    elseif is_known_call(e, Core.Intrinsics.llvmcall, sv)
        i0 = 5
        isccall = false
    else
        i0 = 1
        isccall = false
    end
    has_stmts = false # needed to preserve order-of-execution
    for i=length(eargs):-1:i0
        ei = eargs[i]
        if isa(ei,Expr)
            if ei.head === :&
                argloc = (ei::Expr).args
                i = 1
                ei = argloc[1]
                if !isa(ei,Expr)
                    continue
                end
            else
                argloc = eargs
            end
            res = inlining_pass(ei::Expr, sv, ast)
            res1 = res[1]
            if has_stmts && !effect_free(res1, sv, false)
                restype = exprtype(res1,sv)
                vnew = newvar!(sv, restype)
                argloc[i] = vnew
                unshift!(stmts, Expr(:(=), vnew, res1))
            else
                argloc[i] = res1
            end
            if isa(res[2],Array)
                res2 = res[2]::Array{Any,1}
                if length(res2) > 0
                    prepend!(stmts,res2)
                    if !has_stmts
                        for stmt in res2
                            if !effect_free(stmt, sv, true)
                                has_stmts = true
                            end
                        end
                    end
                end
            end
        end
    end
    if e.head !== :call
        return (e, stmts)
    end
    if isccall
        le = length(eargs)
        for i=5:2:le-1
            if eargs[i] === eargs[i+1]
                eargs[i+1] = 0
            end
        end
    end
    f1 = f = isconstantfunc(arg1, sv)
    if !is(f,false)
        f = _ieval(f)
    end
    if (!isa(f,Function) && !isa(f,IntrinsicFunction) &&
        (f1 !== false || typeintersect(exprtype(arg1,sv), Function) === Bottom))
        modu = (inference_stack::CallStack).mod
        if !_iisdefined(:call)
            return (e,stmts)
        end
        f = _ieval(:call)
        e.args = Any[is_global(sv,:call) ? (:call) : GlobalRef(modu, :call), e.args...]
    end

    if isdefined(Main, :Base) &&
        ((isdefined(Main.Base, :^) && is(f, Main.Base.(:^))) ||
         (isdefined(Main.Base, :.^) && is(f, Main.Base.(:.^))))
        if length(e.args) == 3 && isa(e.args[3],Union{Int32,Int64})
            a1 = e.args[2]
            basenumtype = Union{corenumtype, Main.Base.Complex64, Main.Base.Complex128, Main.Base.Rational}
            if isa(a1,basenumtype) || ((isa(a1,Symbol) || isa(a1,SymbolNode) || isa(a1,GenSym)) &&
                                       exprtype(a1,sv) <: basenumtype)
                if e.args[3]==2
                    e.args = Any[GlobalRef(Main.Base,:*), a1, a1]
                    f = Main.Base.(:*)
                elseif e.args[3]==3
                    e.args = Any[GlobalRef(Main.Base,:*), a1, a1, a1]
                    f = Main.Base.(:*)
                end
            end
        end
    end

    for ninline = 1:100
        ata = Any[exprtype(e.args[i],sv) for i in 2:length(e.args)]
        for a in ata
            (a === Bottom || isvarargtype(a)) && return (e, stmts)
        end
        atype = Tuple{ata...}
        if length(atype.parameters) > MAX_TUPLETYPE_LEN
            atype = limit_tuple_type(atype)
        end
        res = inlineable(f, e, atype, sv, ast)
        if isa(res,Tuple)
            if isa(res[2],Array)
                append!(stmts,res[2])
            end
            res = res[1]
        end

        if !is(res,NF)
            # iteratively inline apply(f, tuple(...), tuple(...), ...) in order
            # to simplify long vararg lists as in multi-arg +
            if isa(res,Expr) && is_known_call(res, _apply, sv)
                e = res::Expr
                f = _apply
            else
                return (res,stmts)
            end
        end

        if is(f,_apply)
            na = length(e.args)
            newargs = cell(na-3)
            for i = 4:na
                aarg = e.args[i]
                t = exprtype(aarg,sv)
                if isa(aarg,Expr) && (is_known_call(aarg, tuple, sv) || is_known_call(aarg, svec, sv))
                    # apply(f,tuple(x,y,...)) => f(x,y,...)
                    newargs[i-3] = aarg.args[2:end]
                elseif isa(aarg, Tuple)
                    newargs[i-3] = Any[ QuoteNode(x) for x in aarg ]
                elseif (t<:Tuple) && !isa(t,Union) && !isvatuple(t) && effect_free(aarg,sv,true)
                    # apply(f,t::(x,y)) => f(t[1],t[2])
                    tp = t.parameters
                    newargs[i-3] = Any[ mk_getfield(aarg,j,tp[j]) for j=1:length(tp) ]
                else
                    # not all args expandable
                    return (e,stmts)
                end
            end
            e.args = [Any[e.args[3]]; newargs...]

            # now try to inline the simplified call
            f = isconstantfunc(e.args[1], sv)
            if f===false
                return (e,stmts)
            end
            f = _ieval(f)
        else
            return (e,stmts)
        end
    end
    return (e,stmts)
end

function add_variable(ast, name, typ, is_sa)
    vinf = Any[name, typ, 2+16*is_sa]
    vinflist = ast.args[2][1]::Array{Any,1}
    push!(vinflist, vinf)
end

const some_names = Symbol[:_var0, :_var1, :_var2, :_var3, :_var4, :_var5, :_var6,
                          :_var7, :_var8, :_var9, :_var10, :_var11, :_var12,
                          :_var13, :_var14, :_var15, :_var16, :_var17, :_var18,
                          :_var19, :_var20, :_var21, :_var22, :_var23, :_var24]
function contains_is1(vinflist::Array{Any,1}, x::Symbol)
    for y in vinflist
        if is(y[1],x)
            return true
        end
    end
    return false
end
function unique_name(ast)
    locllist = ast.args[2][1]::Array{Any,1}
    for g in some_names
        if !contains_is1(locllist, g)
            return g
        end
    end
    g = gensym()
    while contains_is1(locllist, g)
        g = gensym()
    end
    g
end
function unique_name(ast1, ast2)
    locllist1 = ast1.args[2][1]::Array{Any,1}
    locllist2 = ast2.args[2][1]::Array{Any,1}
    for g in some_names
        if !contains_is1(locllist1, g) &&
           !contains_is1(locllist2, g)
            return g
        end
    end
    g = gensym()
    while contains_is1(locllist1, g) |
          contains_is1(locllist2, g)
        g = gensym()
    end
    g
end

function unique_names(ast, n)
    ns = []
    locllist = ast.args[2][1]::Array{Any,1}
    for g in some_names
        if !contains_is1(locllist, g)
            push!(ns, g)
            if length(ns)==n
                return ns
            end
        end
    end
    while length(ns)<n
        g = gensym()
        while contains_is1(locllist, g) || contains_is(ns, g)
            g = gensym()
        end
        push!(ns, g)
    end
    ns
end

function is_known_call(e::Expr, func, sv)
    if e.head !== :call
        return false
    end
    f = isconstantfunc(e.args[1], sv)
    return !is(f,false) && is(_ieval(f), func)
end

function is_known_call_p(e::Expr, pred::Function, sv)
    if e.head !== :call
        return false
    end
    f = isconstantfunc(e.args[1], sv)
    return !is(f,false) && pred(_ieval(f))
end

function is_var_assigned(ast, v)
    for vi in ast.args[2][1]
        if symequal(vi[1], v) && (vi[3]&2)!=0
            return true
        end
    end
    return false
end

function delete_var!(ast, v)
    if !isa(v, GenSym)
        filter!(vi->!symequal(vi[1],v), ast.args[2][1])
    end
    filter!(x->!(isa(x,Expr) && (x.head === :(=) || x.head === :const) &&
                 symequal(x.args[1],v)),
            ast.args[3].args)
    ast
end

# remove all single-assigned vars v in "v = x" where x is an argument
# and not assigned.
# "sa" is the result of find_sa_vars
function remove_redundant_temp_vars(ast, sa)
    varinfo = ast.args[2][1]
    gensym_types = ast.args[2][3]
    body = ast.args[3]
    for (v,init) in sa
        if ((isa(init,Symbol) || isa(init,SymbolNode)) &&
            any(vi->symequal(vi[1],init), varinfo) &&
            !is_var_assigned(ast, init))

            # this transformation is not valid for vars used before def.
            # we need to preserve the point of assignment to know where to
            # throw errors (issue #4645).
            if !occurs_undef(v, body, varinfo)

                # the transformation is not ideal if the assignment
                # is present for the auto-unbox functionality
                # (from inlining improved type inference information)
                # and this transformation would worsen the type information
                # everywhere later in the function
                if (isa(init,SymbolNode) ? (init.typ <: (isa(v,GenSym)?gensym_types[(v::GenSym).id+1]:local_typeof(v, varinfo))) : true)
                    delete_var!(ast, v)
                    sym_replace(body, Any[v], Void[], Any[init], Void[])
                end
            end
        end
    end
    ast
end

function local_typeof(v, varinfo)
    for (v2, typ, info) in varinfo
        v === v2 && return typ
    end
    @assert false "v not in varinfo"
end
function var_infobits(v, varinfo)
    for (v2, typ, info) in varinfo
        v === v2 && return info
    end
    @assert false "v not in varinfo"
end

occurs_undef(var::GenSym, expr, varinfo) = false

occurs_undef(var, expr, varinfo) =
    occurs_more(expr, e->(isa(e,SymbolNode) && symequal(var,e) &&
                          ((var_infobits(e.name,varinfo)&32)!=0)), 0)>0

# compute set of vars assigned once
function find_sa_vars(ast)
    body = ast.args[3].args
    av = ObjectIdDict()
    av2 = ObjectIdDict()
    vinfos = ast.args[2][1]::Array{Any,1}
    args = ast.args[1]
    for i = 1:length(body)
        e = body[i]
        if isa(e,Expr) && is(e.head,:(=))
            lhs = e.args[1]
            if isa(lhs,GenSym)
                av[lhs] = e.args[2]
            elseif isa(lhs,SymbolNode)
                av2[(lhs::SymbolNode).name] = true
            elseif isa(lhs, Symbol)
                lhs = lhs::Symbol
                if contains_is1(vinfos,lhs) && !contains_is(args,lhs) # exclude globals & args
                    if !haskey(av, lhs)
                        av[lhs] = e.args[2]
                    else
                        av2[lhs] = true
                    end
                end
            end
        end
    end
    filter!((var,_)->!haskey(av2,var), av)
    for vi in vinfos
        if (vi[3]&1)!=0
            # remove captured vars
            delete!(av, vi[1])
        end
    end
    av
end

symequal(x::SymbolNode, y::SymbolNode) = is(x.name,y.name)
symequal(x::SymbolNode, y::Symbol)     = is(x.name,y)
symequal(x::Symbol    , y::SymbolNode) = is(x,y.name)
symequal(x::GenSym    , y::GenSym)     = is(x.id,y.id)
symequal(x::ANY       , y::ANY)        = is(x,y)

function occurs_outside_getfield(e::ANY, sym::ANY, sv::StaticVarInfo, tuplen::Int)
    if is(e, sym) || (isa(e, SymbolNode) && is(e.name, sym))
        return true
    end
    if isa(e,Expr)
        e = e::Expr
        if is_known_call(e, getfield, sv) && symequal(e.args[2],sym)
            targ = e.args[2]
            if !(exprtype(targ,sv) <: Tuple)
                return true
            end
            idx = e.args[3]
            if !isa(idx,Int) || !(1 <= idx <= tuplen)
                return true
            end
            return false
        end
        if is(e.head,:(=))
            return occurs_outside_getfield(e.args[2], sym, sv, tuplen)
        else
            for a in e.args
                if occurs_outside_getfield(a, sym, sv, tuplen)
                    return true
                end
            end
        end
    end
    return false
end

# replace getfield(tuple(exprs...), i) with exprs[i]
function getfield_elim_pass(e::Expr, sv)
    for i = 1:length(e.args)
        ei = e.args[i]
        if isa(ei,Expr)
            getfield_elim_pass(ei, sv)
            if is_known_call(ei, getfield, sv) && length(ei.args)==3 &&
                isa(ei.args[3],Int)
                e1 = ei.args[2]
                j = ei.args[3]
                if isa(e1,Expr)
                    if is_known_call(e1, tuple, sv) && (1 <= j < length(e1.args))
                        ok = true
                        for k = 2:length(e1.args)
                            k == j+1 && continue
                            if !effect_free(e1.args[k], sv, true)
                                ok = false; break
                            end
                        end
                        if ok
                            e.args[i] = e1.args[j+1]
                        end
                    end
                elseif isa(e1,Tuple) && (1 <= j <= length(e1))
                    e1j = e1[j]
                    if !(isa(e1j,Number) || isa(e1j,AbstractString) || isa(e1j,Tuple) ||
                         isa(e1j,Type))
                        e1j = QuoteNode(e1j)
                    end
                    e.args[i] = e1j
                elseif isa(e1,QuoteNode) && isa(e1.value,Tuple) && (1 <= j <= length(e1.value))
                    e.args[i] = QuoteNode(e1.value[j])
                end
            end
        end
    end
end

# eliminate allocation of unnecessary tuples
function tuple_elim_pass(ast::Expr, sv::StaticVarInfo)
    bexpr = ast.args[3]::Expr
    body = (ast.args[3].args)::Array{Any,1}
    vs = find_sa_vars(ast)
    remove_redundant_temp_vars(ast, vs)
    i = 1
    while i < length(body)
        e = body[i]
        if !(isa(e,Expr) && is(e.head,:(=)) && (isa(e.args[1], GenSym) || haskey(vs, e.args[1])))
            i += 1
            continue
        end
        var = e.args[1]
        rhs = e.args[2]
        if isa(rhs,Expr) && is_known_call(rhs, tuple, sv)
            tup = rhs.args
            nv = length(tup)-1
            if occurs_outside_getfield(bexpr, var, sv, nv) || !is_local(sv, var)
                i += 1
                continue
            end

            deleteat!(body, i)  # remove tuple allocation
            # convert tuple allocation to a series of local var assignments
            vals = cell(nv)
            n_ins = 0
            for j=1:nv
                tupelt = tup[j+1]
                if isa(tupelt,Number) || isa(tupelt,AbstractString) || isa(tupelt,QuoteNode)
                    vals[j] = tupelt
                else
                    elty = exprtype(tupelt,sv)
                    tmpv = newvar!(sv, elty)
                    tmp = Expr(:(=), tmpv, tupelt)
                    insert!(body, i+n_ins, tmp)
                    vals[j] = tmpv
                    n_ins += 1
                end
            end
            i += n_ins
            replace_getfield!(ast, bexpr, var, vals, sv, i)
        else
            i += 1
        end
    end
end

function replace_getfield!(ast, e::ANY, tupname, vals, sv, i0)
    if !isa(e,Expr)
        return
    end
    for i = i0:length(e.args)
        a = e.args[i]
        if isa(a,Expr) && is_known_call(a, getfield, sv) &&
            symequal(a.args[2],tupname)
            val = vals[a.args[3]]
            # original expression might have better type info than
            # the tuple element expression that's replacing it.
            if isa(val,SymbolNode)
                val = val::SymbolNode
                if a.typ <: val.typ && !typeseq(a.typ,val.typ)
                    val.typ = a.typ
                    for vi in ast.args[2][1]::Array{Any,1}
                        if vi[1] === val.name
                            vi[2] = a.typ
                            break
                        end
                    end
                end
            elseif isa(val,GenSym)
                val = val::GenSym
                typ = exprtype(val, sv)
                if a.typ <: typ && !typeseq(a.typ,typ)
                    sv.gensym_types[val.id+1] = a.typ
                end
            end
            e.args[i] = val
        else
            replace_getfield!(ast, a, tupname, vals, sv, 1)
        end
    end
end

#tfunc(f,t) = methods(f,t)[1].func.code.tfunc

ccall(:jl_set_typeinf_func, Void, (Any,), typeinf_ext)