/usr/share/julia/base/grisu/float.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | # This file is a part of Julia, but is derived from
# https://github.com/floitsch/double-conversion which has the following license
#
# Copyright 2006-2014, the V8 project authors. All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
immutable Float
s::UInt64
e::Int32
de::Int32
end
Float() = Float(0,0,0)
Float(x,y) = Float(x,y,Int32(0))
Float(d::AbstractFloat) = Float(_significand(d), _exponent(d))
# Consts
const Float10MSBits = 0xFFC0000000000000 # used normalize(Float)
const FloatSignMask = 0x8000000000000000 # used in normalize(Float)
const FloatSignificandSize = Int32(64)
function normalize(v::Float)
f = v.s
e = v.e
while (f & Float10MSBits) == 0
f <<= 10
e -= 10
end
while (f & FloatSignMask) == 0
f <<= 1
e -= 1
end
return Float(f,e)
end
function normalize(v::Float64)
s = _significand(v); e = _exponent(v)
while (s & HiddenBit(Float64)) == 0
s <<= UInt64(1)
e -= Int32(1)
end
s <<= UInt64(FloatSignificandSize - SignificandSize(Float64))
e -= Int32( FloatSignificandSize - SignificandSize(Float64))
return Float(s, e)
end
# Float128
#DenormalExponent(::Type{Float128}) = Int32(-ExponentBias(Float128) + 1)
#ExponentMask(::Type{Float128}) = 0x7fff0000000000000000000000000000
#PhysicalSignificandSize(::Type{Float128}) = Int32(112)
#SignificandSize(::Type{Float128}) = Int32(113)
#ExponentBias(::Type{Float128}) = Int32(0x00003fff + PhysicalSignificandSize(Float128))
#SignificandMask(::Type{Float128}) = 0x0000ffffffffffffffffffffffffffff
#HiddenBit(::Type{Float128}) = 0x00010000000000000000000000000000
#uint_t(d::Float128) = reinterpret(UInt128,d)
# Float64
DenormalExponent(::Type{Float64}) = Int32(-ExponentBias(Float64) + 1)
ExponentMask(::Type{Float64}) = 0x7FF0000000000000
PhysicalSignificandSize(::Type{Float64}) = Int32(52)
SignificandSize(::Type{Float64}) = Int32(53)
ExponentBias(::Type{Float64}) = Int32(0x3FF + PhysicalSignificandSize(Float64))
SignificandMask(::Type{Float64}) = 0x000FFFFFFFFFFFFF
HiddenBit(::Type{Float64}) = 0x0010000000000000
uint_t(d::Float64) = reinterpret(UInt64,d)
# Float32
DenormalExponent(::Type{Float32}) = Int32(-ExponentBias(Float32) + 1)
ExponentMask(::Type{Float32}) = 0x7F800000
PhysicalSignificandSize(::Type{Float32}) = Int32(23)
SignificandSize(::Type{Float32}) = Int32(24)
ExponentBias(::Type{Float32}) = Int32(0x7F + PhysicalSignificandSize(Float32))
SignificandMask(::Type{Float32}) = 0x007FFFFF
HiddenBit(::Type{Float32}) = 0x00800000
uint_t(d::Float32) = reinterpret(UInt32,d)
# Float16
DenormalExponent(::Type{Float16}) = Int32(-ExponentBias(Float16) + 1)
ExponentMask(::Type{Float16}) = 0x7c00
PhysicalSignificandSize(::Type{Float16}) = Int32(10)
SignificandSize(::Type{Float16}) = Int32(11)
ExponentBias(::Type{Float16}) = Int32(0x000f + PhysicalSignificandSize(Float16))
SignificandMask(::Type{Float16}) = 0x03ff
HiddenBit(::Type{Float16}) = 0x0400
uint_t(d::Float16) = reinterpret(UInt16,d)
function _exponent{T<:AbstractFloat}(d::T)
isdenormal(d) && return DenormalExponent(T)
biased_e::Int32 = Int32((uint_t(d) & ExponentMask(T)) >> PhysicalSignificandSize(T))
return Int32(biased_e - ExponentBias(T))
end
function _significand{T<:AbstractFloat}(d::T)
s = uint_t(d) & SignificandMask(T)
return !isdenormal(d) ? s + HiddenBit(T) : s
end
isdenormal{T<:AbstractFloat}(d::T) = (uint_t(d) & ExponentMask(T)) == 0
function normalizedbound(f::AbstractFloat)
v = Float(_significand(f),_exponent(f))
m_plus = normalize(Float((v.s << 1) + 1, v.e - 1))
if lowerboundaryiscloser(f)
m_minus = Float((v.s << 2) - 1, v.e - 2)
else
m_minus = Float((v.s << 1) - 1, v.e - 1)
end
return Float(m_minus.s << (m_minus.e - m_plus.e), m_plus.e), m_plus
end
function lowerboundaryiscloser{T<:AbstractFloat}(f::T)
physical_significand_is_zero = (uint_t(f) & SignificandMask(T)) == 0
return physical_significand_is_zero && (_exponent(f) != DenormalExponent(T))
end
(-)(a::Float,b::Float) = Float(a.s - b.s,a.e,a.de)
const FloatM32 = 0xFFFFFFFF
function (*)(this::Float,other::Float)
a::UInt64 = this.s >> 32
b::UInt64 = this.s & FloatM32
c::UInt64 = other.s >> 32
d::UInt64 = other.s & FloatM32
ac::UInt64 = a * c
bc::UInt64 = b * c
ad::UInt64 = a * d
bd::UInt64 = b * d
tmp::UInt64 = (bd >> 32) + (ad & FloatM32) + (bc & FloatM32)
# By adding 1U << 31 to tmp we round the final result.
# Halfway cases will be round up.
tmp += UInt64(1) << 31
result_f::UInt64 = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32)
return Float(result_f,this.e + other.e + 64,this.de)
end
const CachedPowers = Float[
Float(0xfa8fd5a0081c0288, -1220, -348),
Float(0xbaaee17fa23ebf76, -1193, -340),
Float(0x8b16fb203055ac76, -1166, -332),
Float(0xcf42894a5dce35ea, -1140, -324),
Float(0x9a6bb0aa55653b2d, -1113, -316),
Float(0xe61acf033d1a45df, -1087, -308),
Float(0xab70fe17c79ac6ca, -1060, -300),
Float(0xff77b1fcbebcdc4f, -1034, -292),
Float(0xbe5691ef416bd60c, -1007, -284),
Float(0x8dd01fad907ffc3c, -980, -276),
Float(0xd3515c2831559a83, -954, -268),
Float(0x9d71ac8fada6c9b5, -927, -260),
Float(0xea9c227723ee8bcb, -901, -252),
Float(0xaecc49914078536d, -874, -244),
Float(0x823c12795db6ce57, -847, -236),
Float(0xc21094364dfb5637, -821, -228),
Float(0x9096ea6f3848984f, -794, -220),
Float(0xd77485cb25823ac7, -768, -212),
Float(0xa086cfcd97bf97f4, -741, -204),
Float(0xef340a98172aace5, -715, -196),
Float(0xb23867fb2a35b28e, -688, -188),
Float(0x84c8d4dfd2c63f3b, -661, -180),
Float(0xc5dd44271ad3cdba, -635, -172),
Float(0x936b9fcebb25c996, -608, -164),
Float(0xdbac6c247d62a584, -582, -156),
Float(0xa3ab66580d5fdaf6, -555, -148),
Float(0xf3e2f893dec3f126, -529, -140),
Float(0xb5b5ada8aaff80b8, -502, -132),
Float(0x87625f056c7c4a8b, -475, -124),
Float(0xc9bcff6034c13053, -449, -116),
Float(0x964e858c91ba2655, -422, -108),
Float(0xdff9772470297ebd, -396, -100),
Float(0xa6dfbd9fb8e5b88f, -369, -92),
Float(0xf8a95fcf88747d94, -343, -84),
Float(0xb94470938fa89bcf, -316, -76),
Float(0x8a08f0f8bf0f156b, -289, -68),
Float(0xcdb02555653131b6, -263, -60),
Float(0x993fe2c6d07b7fac, -236, -52),
Float(0xe45c10c42a2b3b06, -210, -44),
Float(0xaa242499697392d3, -183, -36),
Float(0xfd87b5f28300ca0e, -157, -28),
Float(0xbce5086492111aeb, -130, -20),
Float(0x8cbccc096f5088cc, -103, -12),
Float(0xd1b71758e219652c, -77, -4),
Float(0x9c40000000000000, -50, 4),
Float(0xe8d4a51000000000, -24, 12),
Float(0xad78ebc5ac620000, 3, 20),
Float(0x813f3978f8940984, 30, 28),
Float(0xc097ce7bc90715b3, 56, 36),
Float(0x8f7e32ce7bea5c70, 83, 44),
Float(0xd5d238a4abe98068, 109, 52),
Float(0x9f4f2726179a2245, 136, 60),
Float(0xed63a231d4c4fb27, 162, 68),
Float(0xb0de65388cc8ada8, 189, 76),
Float(0x83c7088e1aab65db, 216, 84),
Float(0xc45d1df942711d9a, 242, 92),
Float(0x924d692ca61be758, 269, 100),
Float(0xda01ee641a708dea, 295, 108),
Float(0xa26da3999aef774a, 322, 116),
Float(0xf209787bb47d6b85, 348, 124),
Float(0xb454e4a179dd1877, 375, 132),
Float(0x865b86925b9bc5c2, 402, 140),
Float(0xc83553c5c8965d3d, 428, 148),
Float(0x952ab45cfa97a0b3, 455, 156),
Float(0xde469fbd99a05fe3, 481, 164),
Float(0xa59bc234db398c25, 508, 172),
Float(0xf6c69a72a3989f5c, 534, 180),
Float(0xb7dcbf5354e9bece, 561, 188),
Float(0x88fcf317f22241e2, 588, 196),
Float(0xcc20ce9bd35c78a5, 614, 204),
Float(0x98165af37b2153df, 641, 212),
Float(0xe2a0b5dc971f303a, 667, 220),
Float(0xa8d9d1535ce3b396, 694, 228),
Float(0xfb9b7cd9a4a7443c, 720, 236),
Float(0xbb764c4ca7a44410, 747, 244),
Float(0x8bab8eefb6409c1a, 774, 252),
Float(0xd01fef10a657842c, 800, 260),
Float(0x9b10a4e5e9913129, 827, 268),
Float(0xe7109bfba19c0c9d, 853, 276),
Float(0xac2820d9623bf429, 880, 284),
Float(0x80444b5e7aa7cf85, 907, 292),
Float(0xbf21e44003acdd2d, 933, 300),
Float(0x8e679c2f5e44ff8f, 960, 308),
Float(0xd433179d9c8cb841, 986, 316),
Float(0x9e19db92b4e31ba9, 1013, 324),
Float(0xeb96bf6ebadf77d9, 1039, 332),
Float(0xaf87023b9bf0ee6b, 1066, 340)]
const CachedPowersLength = length(CachedPowers)
const CachedPowersOffset = 348 # -1 * the first decimal_exponent.
const D_1_LOG2_10 = 0.30102999566398114 # 1 / lg(10)
# Difference between the decimal exponents in the table above.
const DecimalExponentDistance = 8
const MinDecimalExponent = -348
const MaxDecimalExponent = 340
function binexp_cache(min_exponent,max_exponent)
k = ceil(Integer,(min_exponent+63)*D_1_LOG2_10)
index = div(CachedPowersOffset+k-1,DecimalExponentDistance) + 1
cp = CachedPowers[index+1]
return cp
end
|