This file is indexed.

/usr/share/julia/base/grisu/float.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# This file is a part of Julia, but is derived from
# https://github.com/floitsch/double-conversion which has the following license
#
# Copyright 2006-2014, the V8 project authors. All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above
#       copyright notice, this list of conditions and the following
#       disclaimer in the documentation and/or other materials provided
#       with the distribution.
#     * Neither the name of Google Inc. nor the names of its
#       contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

immutable Float
    s::UInt64
    e::Int32
    de::Int32
end

Float() = Float(0,0,0)
Float(x,y) = Float(x,y,Int32(0))
Float(d::AbstractFloat) = Float(_significand(d), _exponent(d))

# Consts
const Float10MSBits = 0xFFC0000000000000 # used normalize(Float)
const FloatSignMask = 0x8000000000000000 # used in normalize(Float)
const FloatSignificandSize = Int32(64)

function normalize(v::Float)
    f = v.s
    e = v.e
    while (f & Float10MSBits) == 0
        f <<= 10
        e -= 10
    end
    while (f & FloatSignMask) == 0
        f <<= 1
        e -= 1
    end
    return Float(f,e)
end
function normalize(v::Float64)
    s = _significand(v); e = _exponent(v)
    while (s & HiddenBit(Float64)) == 0
        s <<= UInt64(1)
        e -= Int32(1)
    end
    s <<= UInt64(FloatSignificandSize - SignificandSize(Float64))
    e -=  Int32( FloatSignificandSize - SignificandSize(Float64))
    return Float(s, e)
end

# Float128
#DenormalExponent(::Type{Float128}) = Int32(-ExponentBias(Float128) + 1)
#ExponentMask(::Type{Float128}) = 0x7fff0000000000000000000000000000
#PhysicalSignificandSize(::Type{Float128}) = Int32(112)
#SignificandSize(::Type{Float128}) = Int32(113)
#ExponentBias(::Type{Float128}) = Int32(0x00003fff + PhysicalSignificandSize(Float128))
#SignificandMask(::Type{Float128}) = 0x0000ffffffffffffffffffffffffffff
#HiddenBit(::Type{Float128}) = 0x00010000000000000000000000000000
#uint_t(d::Float128) = reinterpret(UInt128,d)
# Float64
DenormalExponent(::Type{Float64}) = Int32(-ExponentBias(Float64) + 1)
ExponentMask(::Type{Float64}) = 0x7FF0000000000000
PhysicalSignificandSize(::Type{Float64}) = Int32(52)
SignificandSize(::Type{Float64}) = Int32(53)
ExponentBias(::Type{Float64}) = Int32(0x3FF + PhysicalSignificandSize(Float64))
SignificandMask(::Type{Float64}) = 0x000FFFFFFFFFFFFF
HiddenBit(::Type{Float64}) = 0x0010000000000000
uint_t(d::Float64) = reinterpret(UInt64,d)
# Float32
DenormalExponent(::Type{Float32}) = Int32(-ExponentBias(Float32) + 1)
ExponentMask(::Type{Float32}) = 0x7F800000
PhysicalSignificandSize(::Type{Float32}) = Int32(23)
SignificandSize(::Type{Float32}) = Int32(24)
ExponentBias(::Type{Float32}) = Int32(0x7F + PhysicalSignificandSize(Float32))
SignificandMask(::Type{Float32}) = 0x007FFFFF
HiddenBit(::Type{Float32}) = 0x00800000
uint_t(d::Float32) = reinterpret(UInt32,d)
# Float16
DenormalExponent(::Type{Float16}) = Int32(-ExponentBias(Float16) + 1)
ExponentMask(::Type{Float16}) = 0x7c00
PhysicalSignificandSize(::Type{Float16}) = Int32(10)
SignificandSize(::Type{Float16}) = Int32(11)
ExponentBias(::Type{Float16}) = Int32(0x000f + PhysicalSignificandSize(Float16))
SignificandMask(::Type{Float16}) = 0x03ff
HiddenBit(::Type{Float16}) = 0x0400
uint_t(d::Float16) = reinterpret(UInt16,d)

function _exponent{T<:AbstractFloat}(d::T)
  isdenormal(d) && return DenormalExponent(T)
  biased_e::Int32 = Int32((uint_t(d) & ExponentMask(T)) >> PhysicalSignificandSize(T))
  return Int32(biased_e - ExponentBias(T))
end
function _significand{T<:AbstractFloat}(d::T)
  s = uint_t(d) & SignificandMask(T)
  return !isdenormal(d) ? s + HiddenBit(T) : s
end
isdenormal{T<:AbstractFloat}(d::T) = (uint_t(d) & ExponentMask(T)) == 0

function normalizedbound(f::AbstractFloat)
    v = Float(_significand(f),_exponent(f))
    m_plus = normalize(Float((v.s << 1) + 1, v.e - 1))
    if lowerboundaryiscloser(f)
        m_minus = Float((v.s << 2) - 1, v.e - 2)
    else
        m_minus = Float((v.s << 1) - 1, v.e - 1)
    end
    return Float(m_minus.s << (m_minus.e - m_plus.e), m_plus.e), m_plus
end
function lowerboundaryiscloser{T<:AbstractFloat}(f::T)
    physical_significand_is_zero = (uint_t(f) & SignificandMask(T)) == 0
    return physical_significand_is_zero && (_exponent(f) != DenormalExponent(T))
end

(-)(a::Float,b::Float) = Float(a.s - b.s,a.e,a.de)

const FloatM32 = 0xFFFFFFFF

function (*)(this::Float,other::Float)
    a::UInt64 = this.s >> 32
    b::UInt64 = this.s & FloatM32
    c::UInt64 = other.s >> 32
    d::UInt64 = other.s & FloatM32
    ac::UInt64 = a * c
    bc::UInt64 = b * c
    ad::UInt64 = a * d
    bd::UInt64 = b * d
    tmp::UInt64 = (bd >> 32) + (ad & FloatM32) + (bc & FloatM32)
    # By adding 1U << 31 to tmp we round the final result.
    # Halfway cases will be round up.
    tmp += UInt64(1) << 31
    result_f::UInt64 = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32)
    return Float(result_f,this.e + other.e + 64,this.de)
end

const CachedPowers = Float[
  Float(0xfa8fd5a0081c0288, -1220, -348),
  Float(0xbaaee17fa23ebf76, -1193, -340),
  Float(0x8b16fb203055ac76, -1166, -332),
  Float(0xcf42894a5dce35ea, -1140, -324),
  Float(0x9a6bb0aa55653b2d, -1113, -316),
  Float(0xe61acf033d1a45df, -1087, -308),
  Float(0xab70fe17c79ac6ca, -1060, -300),
  Float(0xff77b1fcbebcdc4f, -1034, -292),
  Float(0xbe5691ef416bd60c, -1007, -284),
  Float(0x8dd01fad907ffc3c, -980, -276),
  Float(0xd3515c2831559a83, -954, -268),
  Float(0x9d71ac8fada6c9b5, -927, -260),
  Float(0xea9c227723ee8bcb, -901, -252),
  Float(0xaecc49914078536d, -874, -244),
  Float(0x823c12795db6ce57, -847, -236),
  Float(0xc21094364dfb5637, -821, -228),
  Float(0x9096ea6f3848984f, -794, -220),
  Float(0xd77485cb25823ac7, -768, -212),
  Float(0xa086cfcd97bf97f4, -741, -204),
  Float(0xef340a98172aace5, -715, -196),
  Float(0xb23867fb2a35b28e, -688, -188),
  Float(0x84c8d4dfd2c63f3b, -661, -180),
  Float(0xc5dd44271ad3cdba, -635, -172),
  Float(0x936b9fcebb25c996, -608, -164),
  Float(0xdbac6c247d62a584, -582, -156),
  Float(0xa3ab66580d5fdaf6, -555, -148),
  Float(0xf3e2f893dec3f126, -529, -140),
  Float(0xb5b5ada8aaff80b8, -502, -132),
  Float(0x87625f056c7c4a8b, -475, -124),
  Float(0xc9bcff6034c13053, -449, -116),
  Float(0x964e858c91ba2655, -422, -108),
  Float(0xdff9772470297ebd, -396, -100),
  Float(0xa6dfbd9fb8e5b88f, -369, -92),
  Float(0xf8a95fcf88747d94, -343, -84),
  Float(0xb94470938fa89bcf, -316, -76),
  Float(0x8a08f0f8bf0f156b, -289, -68),
  Float(0xcdb02555653131b6, -263, -60),
  Float(0x993fe2c6d07b7fac, -236, -52),
  Float(0xe45c10c42a2b3b06, -210, -44),
  Float(0xaa242499697392d3, -183, -36),
  Float(0xfd87b5f28300ca0e, -157, -28),
  Float(0xbce5086492111aeb, -130, -20),
  Float(0x8cbccc096f5088cc, -103, -12),
  Float(0xd1b71758e219652c, -77, -4),
  Float(0x9c40000000000000, -50, 4),
  Float(0xe8d4a51000000000, -24, 12),
  Float(0xad78ebc5ac620000, 3, 20),
  Float(0x813f3978f8940984, 30, 28),
  Float(0xc097ce7bc90715b3, 56, 36),
  Float(0x8f7e32ce7bea5c70, 83, 44),
  Float(0xd5d238a4abe98068, 109, 52),
  Float(0x9f4f2726179a2245, 136, 60),
  Float(0xed63a231d4c4fb27, 162, 68),
  Float(0xb0de65388cc8ada8, 189, 76),
  Float(0x83c7088e1aab65db, 216, 84),
  Float(0xc45d1df942711d9a, 242, 92),
  Float(0x924d692ca61be758, 269, 100),
  Float(0xda01ee641a708dea, 295, 108),
  Float(0xa26da3999aef774a, 322, 116),
  Float(0xf209787bb47d6b85, 348, 124),
  Float(0xb454e4a179dd1877, 375, 132),
  Float(0x865b86925b9bc5c2, 402, 140),
  Float(0xc83553c5c8965d3d, 428, 148),
  Float(0x952ab45cfa97a0b3, 455, 156),
  Float(0xde469fbd99a05fe3, 481, 164),
  Float(0xa59bc234db398c25, 508, 172),
  Float(0xf6c69a72a3989f5c, 534, 180),
  Float(0xb7dcbf5354e9bece, 561, 188),
  Float(0x88fcf317f22241e2, 588, 196),
  Float(0xcc20ce9bd35c78a5, 614, 204),
  Float(0x98165af37b2153df, 641, 212),
  Float(0xe2a0b5dc971f303a, 667, 220),
  Float(0xa8d9d1535ce3b396, 694, 228),
  Float(0xfb9b7cd9a4a7443c, 720, 236),
  Float(0xbb764c4ca7a44410, 747, 244),
  Float(0x8bab8eefb6409c1a, 774, 252),
  Float(0xd01fef10a657842c, 800, 260),
  Float(0x9b10a4e5e9913129, 827, 268),
  Float(0xe7109bfba19c0c9d, 853, 276),
  Float(0xac2820d9623bf429, 880, 284),
  Float(0x80444b5e7aa7cf85, 907, 292),
  Float(0xbf21e44003acdd2d, 933, 300),
  Float(0x8e679c2f5e44ff8f, 960, 308),
  Float(0xd433179d9c8cb841, 986, 316),
  Float(0x9e19db92b4e31ba9, 1013, 324),
  Float(0xeb96bf6ebadf77d9, 1039, 332),
  Float(0xaf87023b9bf0ee6b, 1066, 340)]

const CachedPowersLength = length(CachedPowers)
const CachedPowersOffset = 348  # -1 * the first decimal_exponent.
const D_1_LOG2_10 = 0.30102999566398114  #  1 / lg(10)
# Difference between the decimal exponents in the table above.
const DecimalExponentDistance = 8
const MinDecimalExponent = -348
const MaxDecimalExponent = 340

function binexp_cache(min_exponent,max_exponent)
    k = ceil(Integer,(min_exponent+63)*D_1_LOG2_10)
    index = div(CachedPowersOffset+k-1,DecimalExponentDistance) + 1
    cp = CachedPowers[index+1]
    return cp
end