This file is indexed.

/usr/share/julia/base/grisu/fastfixed.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# This file is a part of Julia, but is derived from
# https://github.com/floitsch/double-conversion which has the following license
#
# Copyright 2006-2014, the V8 project authors. All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above
#       copyright notice, this list of conditions and the following
#       disclaimer in the documentation and/or other materials provided
#       with the distribution.
#     * Neither the name of Google Inc. nor the names of its
#       contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

const kDoubleSignificandSize = 53

function filldigits32fixedlength(n1,requested_len,buffer,len)
    for i = (requested_len-1):-1:0
        buffer[len+i] = 0x30 + n1 % 10
        n1 = div(n1,10)
    end
    return len + requested_len
end

function filldigits32(n,buffer,len)
    n_len = 0
    while n != 0
        digit = n % 10
        n = div(n,10)
        buffer[len+n_len] = 0x30 + digit
        n_len += 1
    end
    i,j = len, len + n_len - 1
    while i < j
        buffer[i], buffer[j] = buffer[j], buffer[i]
        i += 1
        j -= 1
    end
    return len + n_len
end

function filldigits64fixedlength(n2,buffer,len)
    kTen7 = 10000000
    part2 = n2 % kTen7
    n2 = div(n2,kTen7)
    part0, part1 = divrem(n2,kTen7)
    len = filldigits32fixedlength(part0, 3, buffer, len)
    len = filldigits32fixedlength(part1, 7, buffer, len)
    len = filldigits32fixedlength(part2, 7, buffer, len)
    return len
end

function filldigits64(n3,buffer,len)
    kTen7 = 10000000
    part2 = n3 % kTen7
    n3 = div(n3,kTen7)
    part0, part1 = divrem(n3,kTen7)
    if part0 != 0
        len = filldigits32(part0, buffer, len)
        len = filldigits32fixedlength(part1, 7, buffer, len)
        len = filldigits32fixedlength(part2, 7, buffer, len)
    elseif part1 != 0
        len = filldigits32(part1, buffer, len)
        len = filldigits32fixedlength(part2, 7, buffer, len)
    else
        len = filldigits32(part2, buffer, len)
    end
    return len
end

function roundup(buffer, len, decimal_point)
    if len == 1
        buffer[1] = 0x31
        decimal_point = 1
        len = 2
        return len, decimal_point
    end
    buffer[len - 1] += 1
    for i = (len-1):-1:2
        buffer[i] != 0x30 + 10 && return len, decimal_point
        buffer[i] = 0x30
        buffer[i - 1] += 1
    end
    if buffer[1] == 0x30 + 10
        buffer[1] = 0x31
        decimal_point += 1
    end
    return len, decimal_point
end

function fillfractionals(fractionals, exponent,
                         fractional_count, buffer,
                         len, decimal_point)
    if -exponent <= 64
        point = -exponent
        for i = 1:fractional_count
            fractionals == 0 && break
            fractionals *= 5
            point -= 1
            digit = fractionals >> point
            buffer[len] = 0x30 + digit
            len += 1
            fractionals -= UInt64(digit) << point
        end
        if ((fractionals >> (point - 1)) & 1) == 1
            len, decimal_point = roundup(buffer, len, decimal_point)
        end
    else
        fract128 = UInt128(fractionals) << 64
        fract128 = shift(fract128,-exponent - 64)
        point = 128
        for i = 1:fractional_count
            fract128 == 0 && break
            fract128 *= 5
            point -= 1
            digit, fract128 = divrem2(fract128,point)
            buffer[len] = 0x30 + digit
            len += 1
        end
        if bitat(fract128,point - 1) == 1
            len, decimal_point = roundup(buffer, len, decimal_point)
        end
    end
    return len, decimal_point
end

low(x) = UInt64(x&0xffffffffffffffff)
high(x) = UInt64(x >>> 64)
bitat(x::UInt128,y) = y >= 64 ? (Int32(high(x) >> (y-64)) & 1) : (Int32(low(x) >> y) & 1)
function divrem2(x,power)
    h = high(x)
    l = low(x)
    if power >= 64
        result = Int32(h >> (power - 64))
        h -= UInt64(result) << (power - 64)
        return result, (UInt128(h) << 64) + l
    else
        part_low::UInt64 = l >> power
        part_high::UInt64 = h << (64 - power)
        result = Int32(part_low + part_high)
        return result, UInt128(l - (part_low << power))
    end
end
function shift(x::UInt128,amt)
    if amt == 0
      return x
    elseif amt == -64
        return x << 64
    elseif amt == 64
        return x >> 64
    elseif amt <= 0
        h = high(x); l = low(x)
        h <<= -amt
        h += l >> (64 + amt)
        l <<= -amt
        return (UInt128(h) << 64) + l
    else
        h = high(x); l = low(x)
        l >>= amt
        l += h << (64 - amt)
        h >>= amt
        return (UInt128(h) << 64) + l
    end
end

function trimzeros(buffer, len, decimal_point)
    while len > 1 && buffer[len - 1] == 0x30
        len -= 1
    end
    first_non_zero::Int32 = 1
    while first_non_zero < len && buffer[first_non_zero] == 0x30
        first_non_zero += 1
    end
    if first_non_zero != 1
        for i = first_non_zero:(len-1)
            buffer[i - first_non_zero + 1] = buffer[i]
        end
        len -= first_non_zero-1
        decimal_point -= first_non_zero-1
    end
    return len, decimal_point
end

function fastfixedtoa(v,mode,fractional_count,buffer)
    v = Float64(v)
    significand::UInt64 = _significand(v)
    exponent = _exponent(v)
    exponent > 20 && return false, 0, 0
    fractional_count > 20 && return false, 0, 0
    len = 1
    if exponent + kDoubleSignificandSize > 64
        kFive17 = divisor = Int64(5)^17
        divisor_power = 17
        dividend = significand
        if exponent > divisor_power
            dividend <<= exponent - divisor_power
            quotient = div(dividend,divisor)
            remainder = (dividend % divisor) << divisor_power
        else
            divisor <<= divisor_power - exponent
            quotient = div(dividend,divisor)
            remainder = (dividend % divisor) << exponent
        end
        len = filldigits32(quotient, buffer, len)
        len = filldigits64fixedlength(remainder, buffer, len)
        decimal_point = len-1
    elseif exponent >= 0
        significand <<= exponent
        len = filldigits64(significand, buffer, len)
        decimal_point = len-1
    elseif exponent > -kDoubleSignificandSize
        integrals = significand >> -exponent
        fractionals = significand - (integrals << -exponent)
        if integrals > 0xFFFFFFFF
            len = filldigits64(integrals,buffer,len)
        else
            len = filldigits32(integrals%UInt32,buffer,len)
        end
        decimal_point = len-1
        len, decimal_point = fillfractionals(fractionals,exponent,fractional_count,
                                             buffer,len, decimal_point)
    elseif exponent < -128
        len = 1
        decimal_point = -fractional_count
    else
        decimal_point = 0
        len, decimal_point = fillfractionals(significand,exponent,fractional_count,
                                             buffer,len, decimal_point)
    end
    len, decimal_point = trimzeros(buffer,len,decimal_point)
    buffer[len] = 0
    if (len-1) == 0
        decimal_point = -fractional_count
    end
    return true, len, decimal_point
end