This file is indexed.

/usr/share/julia/base/gmp.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# This file is a part of Julia. License is MIT: http://julialang.org/license

module GMP

export BigInt

import Base: *, +, -, /, <, <<, >>, >>>, <=, ==, >, >=, ^, (~), (&), (|), ($),
             binomial, cmp, convert, div, divrem, factorial, fld, gcd, gcdx, lcm, mod,
             ndigits, promote_rule, rem, show, isqrt, string, isprime, powermod,
             sum, trailing_zeros, trailing_ones, count_ones, base, tryparse_internal,
             bin, oct, dec, hex, isequal, invmod, prevpow2, nextpow2, ndigits0z, widen, signed, unsafe_trunc, trunc

if Clong == Int32
    typealias ClongMax Union{Int8, Int16, Int32}
    typealias CulongMax Union{UInt8, UInt16, UInt32}
else
    typealias ClongMax Union{Int8, Int16, Int32, Int64}
    typealias CulongMax Union{UInt8, UInt16, UInt32, UInt64}
end
typealias CdoubleMax Union{Float16, Float32, Float64}

gmp_version() = VersionNumber(bytestring(unsafe_load(cglobal((:__gmp_version, :libgmp), Ptr{Cchar}))))
gmp_bits_per_limb() = Int(unsafe_load(cglobal((:__gmp_bits_per_limb, :libgmp), Cint)))

const GMP_VERSION = gmp_version()
const GMP_BITS_PER_LIMB = gmp_bits_per_limb()

# GMP's mp_limb_t is by default a typedef of `unsigned long`, but can also be configured to be either
# `unsigned int` or `unsigned long long int`. The correct unsigned type is here named Limb, and must
# be used whenever mp_limb_t is in the signature of ccall'ed GMP functions.
if GMP_BITS_PER_LIMB == 32
    typealias Limb UInt32
elseif GMP_BITS_PER_LIMB == 64
    typealias Limb UInt64
else
    error("GMP: cannot determine the type mp_limb_t (__gmp_bits_per_limb == $GMP_BITS_PER_LIMB)")
end


type BigInt <: Integer
    alloc::Cint
    size::Cint
    d::Ptr{Limb}
    function BigInt()
        b = new(zero(Cint), zero(Cint), C_NULL)
        ccall((:__gmpz_init,:libgmp), Void, (Ptr{BigInt},), &b)
        finalizer(b, _gmp_clear_func)
        return b
    end
end

_gmp_clear_func = C_NULL
_mpfr_clear_func = C_NULL

function __init__()
    try
        if gmp_version().major != GMP_VERSION.major || gmp_bits_per_limb() != GMP_BITS_PER_LIMB
            error(string("The dynamically loaded GMP library (version $(gmp_version()) with __gmp_bits_per_limb == $(gmp_bits_per_limb()))\n",
                         "does not correspond to the compile time version (version $GMP_VERSION with __gmp_bits_per_limb == $GMP_BITS_PER_LIMB).\n",
                         "Please rebuild Julia."))
        end

        global _gmp_clear_func = cglobal((:__gmpz_clear, :libgmp))
        global _mpfr_clear_func = cglobal((:mpfr_clear, :libmpfr))
        ccall((:__gmp_set_memory_functions, :libgmp), Void,
              (Ptr{Void},Ptr{Void},Ptr{Void}),
              cglobal(:jl_gc_counted_malloc),
              cglobal(:jl_gc_counted_realloc_with_old_size),
              cglobal(:jl_gc_counted_free))
    catch ex
        Base.showerror_nostdio(ex,
            "WARNING: Error during initialization of module GMP")
    end
end

widen(::Type{Int128})  = BigInt
widen(::Type{UInt128}) = BigInt
widen(::Type{BigInt})  = BigInt

signed(x::BigInt) = x

convert(::Type{BigInt}, x::BigInt) = x

function tryparse_internal(::Type{BigInt}, s::AbstractString, startpos::Int, endpos::Int, base::Int, raise::Bool)
    _n = Nullable{BigInt}()

    # don't make a copy in the common case where we are parsing a whole bytestring
    bstr = startpos == start(s) && endpos == endof(s) ? bytestring(s) : bytestring(SubString(s,startpos,endpos))

    sgn, base, i = Base.parseint_preamble(true,base,bstr,start(bstr),endof(bstr))
    if i == 0
        raise && throw(ArgumentError("premature end of integer: $(repr(bstr))"))
        return _n
    end
    z = BigInt()
    if Base.containsnul(bstr)
        err = -1 # embedded NUL char (not handled correctly by GMP)
    else
        err = ccall((:__gmpz_set_str, :libgmp),
                    Int32, (Ptr{BigInt}, Ptr{UInt8}, Int32),
                    &z, pointer(bstr)+(i-start(bstr)), base)
    end
    if err != 0
        raise && throw(ArgumentError("invalid BigInt: $(repr(bstr))"))
        return _n
    end
    Nullable(sgn < 0 ? -z : z)
end

function convert(::Type{BigInt}, x::Union{Clong,Int32})
    z = BigInt()
    ccall((:__gmpz_set_si, :libgmp), Void, (Ptr{BigInt}, Clong), &z, x)
    return z
end
function convert(::Type{BigInt}, x::Union{Culong,UInt32})
    z = BigInt()
    ccall((:__gmpz_set_ui, :libgmp), Void, (Ptr{BigInt}, Culong), &z, x)
    return z
end

convert(::Type{BigInt}, x::Bool) = BigInt(UInt(x))


function unsafe_trunc(::Type{BigInt}, x::Union{Float32,Float64})
    z = BigInt()
    ccall((:__gmpz_set_d, :libgmp), Void, (Ptr{BigInt}, Cdouble), &z, x)
    return z
end

function convert(::Type{BigInt}, x::Union{Float32,Float64})
    isinteger(x) || throw(InexactError())
    unsafe_trunc(BigInt,x)
end

function trunc(::Type{BigInt}, x::Union{Float32,Float64})
    isfinite(x) || throw(InexactError())
    unsafe_trunc(BigInt,x)
end

convert(::Type{BigInt}, x::Float16) = BigInt(Float64(x))
convert(::Type{BigInt}, x::Float32) = BigInt(Float64(x))

function convert(::Type{BigInt}, x::Integer)
    if x < 0
        if typemin(Clong) <= x
            return BigInt(convert(Clong,x))
        end
        b = BigInt(0)
        shift = 0
        while x < -1
            b += BigInt(~UInt32(x&0xffffffff))<<shift
            x >>= 32
            shift += 32
        end
        return -b-1
    else
        if x <= typemax(Culong)
            return BigInt(convert(Culong,x))
        end
        b = BigInt(0)
        shift = 0
        while x > 0
            b += BigInt(UInt32(x&0xffffffff))<<shift
            x >>>= 32
            shift += 32
        end
        return b
    end
end


rem(x::BigInt, ::Type{Bool}) = ((x&1)!=0)
function rem{T<:Union{Unsigned,Signed}}(x::BigInt, ::Type{T})
    u = zero(T)
    for l = 1:min(abs(x.size), cld(sizeof(T),sizeof(Limb)))
        u += (unsafe_load(x.d,l)%T) << ((sizeof(Limb)<<3)*(l-1))
    end
    x.size < 0 ? -u : u
end

function convert{T<:Unsigned}(::Type{T}, x::BigInt)
    if sizeof(T) < sizeof(Limb)
        convert(T, convert(Limb,x))
    else
        0 <= x.size <= cld(sizeof(T),sizeof(Limb)) || throw(InexactError())
        x % T
    end
end

function convert{T<:Signed}(::Type{T}, x::BigInt)
    n = abs(x.size)
    if sizeof(T) < sizeof(Limb)
        SLimb = typeof(Signed(one(Limb)))
        convert(T, convert(SLimb, x))
    else
        0 <= n <= cld(sizeof(T),sizeof(Limb)) || throw(InexactError())
        y = x % T
        (x.size > 0) $ (y > 0) && throw(InexactError()) # catch overflow
        y
    end
end


function call(::Type{Float64}, n::BigInt, ::RoundingMode{:ToZero})
    ccall((:__gmpz_get_d, :libgmp), Float64, (Ptr{BigInt},), &n)
end

function call{T<:Union{Float16,Float32}}(::Type{T}, n::BigInt, ::RoundingMode{:ToZero})
    T(Float64(n,RoundToZero),RoundToZero)
end

function call{T<:CdoubleMax}(::Type{T}, n::BigInt, ::RoundingMode{:Down})
    x = T(n,RoundToZero)
    x > n ? prevfloat(x) : x
end
function call{T<:CdoubleMax}(::Type{T}, n::BigInt, ::RoundingMode{:Up})
    x = T(n,RoundToZero)
    x < n ? nextfloat(x) : x
end

function call{T<:CdoubleMax}(::Type{T}, n::BigInt, ::RoundingMode{:Nearest})
    x = T(n,RoundToZero)
    if maxintfloat(T) <= abs(x) < T(Inf)
        r = n-BigInt(x)
        h = eps(x)/2
        if iseven(reinterpret(Unsigned,x)) # check if last bit is odd/even
            if r < -h
                return prevfloat(x)
            elseif r > h
                return nextfloat(x)
            end
        else
            if r <= -h
                return prevfloat(x)
            elseif r >= h
                return nextfloat(x)
            end
        end
    end
    x
end

convert(::Type{Float64}, n::BigInt) = Float64(n,RoundNearest)
convert(::Type{Float32}, n::BigInt) = Float32(n,RoundNearest)
convert(::Type{Float16}, n::BigInt) = Float16(n,RoundNearest)

promote_rule{T<:Integer}(::Type{BigInt}, ::Type{T}) = BigInt

# Binary ops
for (fJ, fC) in ((:+, :add), (:-,:sub), (:*, :mul),
                 (:fld, :fdiv_q), (:div, :tdiv_q), (:mod, :fdiv_r), (:rem, :tdiv_r),
                 (:gcd, :gcd), (:lcm, :lcm),
                 (:&, :and), (:|, :ior), (:$, :xor))
    @eval begin
        function ($fJ)(x::BigInt, y::BigInt)
            z = BigInt()
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &x, &y)
            return z
        end
    end
end

function invmod(x::BigInt, y::BigInt)
    z = BigInt()
    y = abs(y)
    if y == 1
        return big(0)
    end
    if (y==0 || ccall((:__gmpz_invert, :libgmp), Cint, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &x, &y) == 0)
        error("no inverse exists")
    end
    return z
end

# More efficient commutative operations
for (fJ, fC) in ((:+, :add), (:*, :mul), (:&, :and), (:|, :ior), (:$, :xor))
    @eval begin
        function ($fJ)(a::BigInt, b::BigInt, c::BigInt)
            z = BigInt()
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &a, &b)
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &z, &c)
            return z
        end
        function ($fJ)(a::BigInt, b::BigInt, c::BigInt, d::BigInt)
            z = BigInt()
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &a, &b)
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &z, &c)
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &z, &d)
            return z
        end
        function ($fJ)(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt)
            z = BigInt()
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &a, &b)
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &z, &c)
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &z, &d)
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z, &z, &e)
            return z
        end
    end
end

# Basic arithmetic without promotion
function +(x::BigInt, c::CulongMax)
    z = BigInt()
    ccall((:__gmpz_add_ui, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Culong), &z, &x, c)
    return z
end
+(c::CulongMax, x::BigInt) = x + c

function -(x::BigInt, c::CulongMax)
    z = BigInt()
    ccall((:__gmpz_sub_ui, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Culong), &z, &x, c)
    return z
end
function -(c::CulongMax, x::BigInt)
    z = BigInt()
    ccall((:__gmpz_ui_sub, :libgmp), Void, (Ptr{BigInt}, Culong, Ptr{BigInt}), &z, c, &x)
    return z
end
+(x::BigInt, c::ClongMax) = c < 0 ? -(x, -(c % Culong)) : x + convert(Culong, c)
+(c::ClongMax, x::BigInt) = c < 0 ? -(x, -(c % Culong)) : x + convert(Culong, c)
-(x::BigInt, c::ClongMax) = c < 0 ? +(x, -(c % Culong)) : -(x, convert(Culong, c))
-(c::ClongMax, x::BigInt) = c < 0 ? -(x + -(c % Culong)) : -(convert(Culong, c), x)

function *(x::BigInt, c::CulongMax)
    z = BigInt()
    ccall((:__gmpz_mul_ui, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Culong), &z, &x, c)
    return z
end
*(c::CulongMax, x::BigInt) = x * c
function *(x::BigInt, c::ClongMax)
    z = BigInt()
    ccall((:__gmpz_mul_si, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Clong), &z, &x, c)
    return z
end
*(c::ClongMax, x::BigInt) = x * c

# unary ops
for (fJ, fC) in ((:-, :neg), (:~, :com))
    @eval begin
        function ($fJ)(x::BigInt)
            z = BigInt()
            ccall(($(string(:__gmpz_,fC)), :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}), &z, &x)
            return z
        end
    end
end

function <<(x::BigInt, c::Int)
    c < 0 && throw(DomainError())
    c == 0 && return x
    z = BigInt()
    ccall((:__gmpz_mul_2exp, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Culong), &z, &x, c)
    return z
end

function >>(x::BigInt, c::Int)
    c < 0 && throw(DomainError())
    c == 0 && return x
    z = BigInt()
    ccall((:__gmpz_fdiv_q_2exp, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Culong), &z, &x, c)
    return z
end

>>>(x::BigInt, c::Int) = x >> c

trailing_zeros(x::BigInt) = Int(ccall((:__gmpz_scan1, :libgmp), Culong, (Ptr{BigInt}, Culong), &x, 0))
trailing_ones(x::BigInt) = Int(ccall((:__gmpz_scan0, :libgmp), Culong, (Ptr{BigInt}, Culong), &x, 0))

count_ones(x::BigInt) = Int(ccall((:__gmpz_popcount, :libgmp), Culong, (Ptr{BigInt},), &x))

function divrem(x::BigInt, y::BigInt)
    z1 = BigInt()
    z2 = BigInt()
    ccall((:__gmpz_tdiv_qr, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}), &z1, &z2, &x, &y)
    z1, z2
end

function cmp(x::BigInt, y::BigInt)
    ccall((:__gmpz_cmp, :libgmp), Int32, (Ptr{BigInt}, Ptr{BigInt}), &x, &y)
end
function cmp(x::BigInt, y::ClongMax)
    ccall((:__gmpz_cmp_si, :libgmp), Int32, (Ptr{BigInt}, Clong), &x, y)
end
function cmp(x::BigInt, y::CulongMax)
    ccall((:__gmpz_cmp_ui, :libgmp), Int32, (Ptr{BigInt}, Culong), &x, y)
end
cmp(x::BigInt, y::Integer) = cmp(x,big(y))
cmp(x::Integer, y::BigInt) = -cmp(y,x)

function cmp(x::BigInt, y::CdoubleMax)
    isnan(y) && throw(DomainError())
    ccall((:__gmpz_cmp_d, :libgmp), Int32, (Ptr{BigInt}, Cdouble), &x, y)
end
cmp(x::CdoubleMax, y::BigInt) = -cmp(y,x)

function isqrt(x::BigInt)
    z = BigInt()
    ccall((:__gmpz_sqrt, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}), &z, &x)
    return z
end

function ^(x::BigInt, y::Culong)
    z = BigInt()
    ccall((:__gmpz_pow_ui, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Culong), &z, &x, y)
    return z
end

function bigint_pow(x::BigInt, y::Integer)
    if y<0; throw(DomainError()); end
    if x== 1; return x; end
    if x==-1; return isodd(y) ? x : -x; end
    if y>typemax(Culong)
       x==0 && return x

       #At this point, x is not 1, 0 or -1 and it is not possible to use
       #gmpz_pow_ui to compute the answer. Note that the magnitude of the
       #answer is:
       #- at least 2^(2^32-1) ≈ 10^(1.3e9) (if Culong === UInt32).
       #- at least 2^(2^64-1) ≈ 10^(5.5e18) (if Culong === UInt64).
       #
       #Assume that the answer will definitely overflow.

       throw(OverflowError())
    end
    return x^convert(Culong, y)
end

^(x::BigInt , y::BigInt ) = bigint_pow(x, y)
^(x::BigInt , y::Bool   ) = y ? x : one(x)
^(x::BigInt , y::Integer) = bigint_pow(x, y)
^(x::Integer, y::BigInt ) = bigint_pow(BigInt(x), y)

function powermod(x::BigInt, p::BigInt, m::BigInt)
    p < 0 && throw(DomainError())
    r = BigInt()
    ccall((:__gmpz_powm, :libgmp), Void,
          (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}),
          &r, &x, &p, &m)
    return m < 0 && r > 0 ? r + m : r # choose sign conistent with mod(x^p, m)
end
powermod(x::BigInt, p::Integer, m::BigInt) = powermod(x, BigInt(p), m)
powermod(x::BigInt, p::Integer, m::Integer) = powermod(x, BigInt(p), BigInt(m))

function gcdx(a::BigInt, b::BigInt)
    if b == 0 # shortcut this to ensure consistent results with gcdx(a,b)
        return a < 0 ? (-a,-one(BigInt),zero(BigInt)) : (a,one(BigInt),zero(BigInt))
    end
    g = BigInt()
    s = BigInt()
    t = BigInt()
    ccall((:__gmpz_gcdext, :libgmp), Void,
        (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}),
        &g, &s, &t, &a, &b)
    if t == 0
        # work around a difference in some versions of GMP
        if a == b
            return g, t, s
        elseif abs(a)==abs(b)
            return g, t, -s
        end
    end
    g, s, t
end

function sum(arr::AbstractArray{BigInt})
    n = BigInt(0)
    for i in arr
        ccall((:__gmpz_add, :libgmp), Void,
            (Ptr{BigInt}, Ptr{BigInt}, Ptr{BigInt}),
            &n, &n, &i)
    end
    return n
end

function factorial(x::BigInt)
    x.size < 0 && return BigInt(0)
    z = BigInt()
    ccall((:__gmpz_fac_ui, :libgmp), Void, (Ptr{BigInt}, Culong), &z, x)
    return z
end

function binomial(n::BigInt, k::UInt)
    z = BigInt()
    ccall((:__gmpz_bin_ui, :libgmp), Void, (Ptr{BigInt}, Ptr{BigInt}, Culong), &z, &n, k)
    return z
end
binomial(n::BigInt, k::Integer) = k < 0 ? BigInt(0) : binomial(n, UInt(k))

==(x::BigInt, y::BigInt) = cmp(x,y) == 0
==(x::BigInt, i::Integer) = cmp(x,i) == 0
==(i::Integer, x::BigInt) = cmp(x,i) == 0
==(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) == 0
==(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) == 0

<=(x::BigInt, y::BigInt) = cmp(x,y) <= 0
<=(x::BigInt, i::Integer) = cmp(x,i) <= 0
<=(i::Integer, x::BigInt) = cmp(x,i) >= 0
<=(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) <= 0
<=(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) >= 0

<(x::BigInt, y::BigInt) = cmp(x,y) < 0
<(x::BigInt, i::Integer) = cmp(x,i) < 0
<(i::Integer, x::BigInt) = cmp(x,i) > 0
<(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) < 0
<(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) > 0

string(x::BigInt) = dec(x)
show(io::IO, x::BigInt) = print(io, string(x))

bin(n::BigInt) = base( 2, n)
oct(n::BigInt) = base( 8, n)
dec(n::BigInt) = base(10, n)
hex(n::BigInt) = base(16, n)

function base(b::Integer, n::BigInt)
    2 <= b <= 62 || throw(ArgumentError("base must be 2 ≤ base ≤ 62, got $b"))
    p = ccall((:__gmpz_get_str,:libgmp), Ptr{UInt8}, (Ptr{UInt8}, Cint, Ptr{BigInt}), C_NULL, b, &n)
    len = Int(ccall(:strlen, Csize_t, (Ptr{UInt8},), p))
    ASCIIString(pointer_to_array(p,len,true))
end

function ndigits0z(x::BigInt, b::Integer=10)
    b < 2 && throw(DomainError())
    if ispow2(b)
        Int(ccall((:__gmpz_sizeinbase,:libgmp), Culong, (Ptr{BigInt}, Int32), &x, b))
    else
        # non-base 2 mpz_sizeinbase might return an answer 1 too big
        # use property that log(b, x) < ndigits(x, b) <= log(b, x) + 1
        n = Int(ccall((:__gmpz_sizeinbase,:libgmp), Culong, (Ptr{BigInt}, Int32), &x, 2))
        lb = log2(b) # assumed accurate to <1ulp (true for openlibm)
        q,r = divrem(n,lb)
        iq = Int(q)
        maxerr = q*eps(lb) # maximum error in remainder
        if r-1.0 < maxerr
            abs(x) >= big(b)^iq ? iq+1 : iq
        elseif lb-r < maxerr
            abs(x) >= big(b)^(iq+1) ? iq+2 : iq+1
        else
            iq+1
        end
    end
end
ndigits(x::BigInt, b::Integer=10) = x.size == 0 ? 1 : ndigits0z(x,b)

isprime(x::BigInt, reps=25) = ccall((:__gmpz_probab_prime_p,:libgmp), Cint, (Ptr{BigInt}, Cint), &x, reps) > 0

prevpow2(x::BigInt) = x.size < 0 ? -prevpow2(-x) : (x <= 2 ? x : one(BigInt) << (ndigits(x, 2)-1))
nextpow2(x::BigInt) = x.size < 0 ? -nextpow2(-x) : (x <= 2 ? x : one(BigInt) << ndigits(x-1, 2))

Base.checked_add(a::BigInt, b::BigInt) = a + b
Base.checked_sub(a::BigInt, b::BigInt) = a - b
Base.checked_mul(a::BigInt, b::BigInt) = a * b

end # module