/usr/share/julia/base/floatfuncs.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## floating-point functions ##
copysign(x::Float64, y::Float64) = box(Float64,copysign_float(unbox(Float64,x),unbox(Float64,y)))
copysign(x::Float32, y::Float32) = box(Float32,copysign_float(unbox(Float32,x),unbox(Float32,y)))
copysign(x::Float32, y::Real) = copysign(x, Float32(y))
copysign(x::Float64, y::Real) = copysign(x, Float64(y))
@vectorize_2arg Real copysign
flipsign(x::Float64, y::Float64) = box(Float64,xor_int(unbox(Float64,x),and_int(unbox(Float64,y),0x8000000000000000)))
flipsign(x::Float32, y::Float32) = box(Float32,xor_int(unbox(Float32,x),and_int(unbox(Float32,y),0x80000000)))
flipsign(x::Float32, y::Real) = flipsign(x, Float32(y))
flipsign(x::Float64, y::Real) = flipsign(x, Float64(y))
@vectorize_2arg Real flipsign
signbit(x::Float64) = signbit(reinterpret(Int64,x))
signbit(x::Float32) = signbit(reinterpret(Int32,x))
signbit(x::Float16) = signbit(reinterpret(Int16,x))
maxintfloat(::Type{Float64}) = 9007199254740992.
maxintfloat(::Type{Float32}) = Float32(16777216.)
maxintfloat(::Type{Float16}) = Float16(2048f0)
maxintfloat{T<:AbstractFloat}(x::T) = maxintfloat(T)
maxintfloat() = maxintfloat(Float64)
isinteger(x::AbstractFloat) = (trunc(x)==x)&isfinite(x)
num2hex(x::Float16) = hex(reinterpret(UInt16,x), 4)
num2hex(x::Float32) = hex(box(UInt32,unbox(Float32,x)),8)
num2hex(x::Float64) = hex(box(UInt64,unbox(Float64,x)),16)
function hex2num(s::AbstractString)
if length(s) <= 8
return box(Float32,unbox(UInt32,parse(UInt32,s,16)))
end
return box(Float64,unbox(UInt64,parse(UInt64,s,16)))
end
@vectorize_1arg Number abs
@vectorize_1arg Number abs2
@vectorize_1arg Number angle
@vectorize_1arg Number isnan
@vectorize_1arg Number isinf
@vectorize_1arg Number isfinite
round(x::Real, ::RoundingMode{:ToZero}) = trunc(x)
round(x::Real, ::RoundingMode{:Up}) = ceil(x)
round(x::Real, ::RoundingMode{:Down}) = floor(x)
# C-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesAway})
y = trunc(x)
ifelse(x==y,y,trunc(2*x-y))
end
# Java-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesUp})
y = floor(x)
ifelse(x==y,y,copysign(floor(2*x-y),x))
end
round{T<:Integer}(::Type{T}, x::AbstractFloat, r::RoundingMode) = trunc(T,round(x,r))
@vectorize_1arg Real trunc
@vectorize_1arg Real floor
@vectorize_1arg Real ceil
@vectorize_1arg Real round
for f in (:trunc,:floor,:ceil,:round)
@eval begin
function ($f){T,R}(::Type{T}, x::AbstractArray{R,1})
[ ($f)(T, x[i])::T for i = 1:length(x) ]
end
function ($f){T,R}(::Type{T}, x::AbstractArray{R,2})
[ ($f)(T, x[i,j])::T for i = 1:size(x,1), j = 1:size(x,2) ]
end
function ($f){T}(::Type{T}, x::AbstractArray)
reshape([ ($f)(T, x[i])::T for i in eachindex(x) ], size(x))
end
function ($f){R}(x::AbstractArray{R,1}, digits::Integer, base::Integer=10)
[ ($f)(x[i], digits, base) for i = 1:length(x) ]
end
function ($f){R}(x::AbstractArray{R,2}, digits::Integer, base::Integer=10)
[ ($f)(x[i,j], digits, base) for i = 1:size(x,1), j = 1:size(x,2) ]
end
function ($f)(x::AbstractArray, digits::Integer, base::Integer=10)
reshape([ ($f)(x[i], digits, base) for i in eachindex(x) ], size(x))
end
end
end
function round{R}(x::AbstractArray{R,1}, r::RoundingMode)
[ round(x[i], r) for i = 1:length(x) ]
end
function round{R}(x::AbstractArray{R,2}, r::RoundingMode)
[ round(x[i,j], r) for i = 1:size(x,1), j = 1:size(x,2) ]
end
function round(x::AbstractArray, r::RoundingMode)
reshape([ round(x[i], r) for i in eachindex(x) ], size(x))
end
function round{T,R}(::Type{T}, x::AbstractArray{R,1}, r::RoundingMode)
[ round(T, x[i], r)::T for i = 1:length(x) ]
end
function round{T,R}(::Type{T}, x::AbstractArray{R,2}, r::RoundingMode)
[ round(T, x[i,j], r)::T for i = 1:size(x,1), j = 1:size(x,2) ]
end
function round{T}(::Type{T}, x::AbstractArray, r::RoundingMode)
reshape([ round(T, x[i], r)::T for i in eachindex(x) ], size(x))
end
# adapted from Matlab File Exchange roundsd: http://www.mathworks.com/matlabcentral/fileexchange/26212
# for round, og is the power of 10 relative to the decimal point
# for signif, og is the absolute power of 10
# digits and base must be integers, x must be convertable to float
function _signif_og(x, digits, base)
if base == 10
e = floor(log10(abs(x)) - digits + 1.)
og = oftype(x, exp10(abs(e)))
elseif base == 2
e = exponent(abs(x)) - digits + 1.
og = oftype(x, exp2(abs(e)))
else
e = floor(log(base, abs(x)) - digits + 1.)
og = oftype(x, float(base) ^ abs(e))
end
return og, e
end
function signif(x::Real, digits::Integer, base::Integer=10)
digits < 1 && throw(DomainError())
x = float(x)
(x == 0 || !isfinite(x)) && return x
og, e = _signif_og(x, digits, base)
if e >= 0 # for numeric stability
r = round(x/og)*og
else
r = round(x*og)/og
end
!isfinite(r) ? x : r
end
for f in (:round, :ceil, :floor, :trunc)
@eval begin
function ($f)(x::Real, digits::Integer, base::Integer=10)
x = float(x)
og = convert(eltype(x),base)^digits
r = ($f)(x * og) / og
if !isfinite(r)
if digits > 0
return x
elseif x > 0
return $(:ceil == f ? :(convert(eltype(x), Inf)) : :(zero(x)))
elseif x < 0
return $(:floor == f ? :(-convert(eltype(x), Inf)) : :(-zero(x)))
else
return x
end
end
return r
end
end
end
# isapprox: approximate equality of numbers
function isapprox(x::Number, y::Number; rtol::Real=rtoldefault(x,y), atol::Real=0)
x == y || (isfinite(x) && isfinite(y) && abs(x-y) <= atol + rtol*max(abs(x), abs(y)))
end
const ≈ = isapprox
≉(x,y) = !(x ≈ y)
# default tolerance arguments
rtoldefault{T<:AbstractFloat}(::Type{T}) = sqrt(eps(T))
rtoldefault{T<:Real}(::Type{T}) = 0
rtoldefault{T<:Number,S<:Number}(x::Union{T,Type{T}}, y::Union{S,Type{S}}) = rtoldefault(promote_type(real(T),real(S)))
# fused multiply-add
fma_libm(x::Float32, y::Float32, z::Float32) =
ccall(("fmaf", libm_name), Float32, (Float32,Float32,Float32), x, y, z)
fma_libm(x::Float64, y::Float64, z::Float64) =
ccall(("fma", libm_name), Float64, (Float64,Float64,Float64), x, y, z)
fma_llvm(x::Float32, y::Float32, z::Float32) =
box(Float32,fma_float(unbox(Float32,x),unbox(Float32,y),unbox(Float32,z)))
fma_llvm(x::Float64, y::Float64, z::Float64) =
box(Float64,fma_float(unbox(Float64,x),unbox(Float64,y),unbox(Float64,z)))
# Disable LLVM's fma if it is incorrect, e.g. because LLVM falls back
# onto a broken system libm; if so, use openlibm's fma instead
# 1.0000305f0 = 1 + 1/2^15
# 1.0000000009313226 = 1 + 1/2^30
# If fma_llvm() clobbers the rounding mode, the result of 0.1 + 0.2 will be 0.3
# instead of the properly-rounded 0.30000000000000004; check after calling fma
if (ARCH != :i686 && fma_llvm(1.0000305f0, 1.0000305f0, -1.0f0) == 6.103609f-5 &&
(fma_llvm(1.0000000009313226, 1.0000000009313226, -1.0) ==
1.8626451500983188e-9) && 0.1 + 0.2 == 0.30000000000000004)
fma(x::Float32, y::Float32, z::Float32) = fma_llvm(x,y,z)
fma(x::Float64, y::Float64, z::Float64) = fma_llvm(x,y,z)
else
fma(x::Float32, y::Float32, z::Float32) = fma_libm(x,y,z)
fma(x::Float64, y::Float64, z::Float64) = fma_libm(x,y,z)
end
# This is necessary at least on 32-bit Intel Linux, since fma_llvm may
# have called glibc, and some broken glibc fma implementations don't
# properly restore the rounding mode
Rounding.set_rounding_raw(Float32, Rounding.JL_FE_TONEAREST)
Rounding.set_rounding_raw(Float64, Rounding.JL_FE_TONEAREST)
|