This file is indexed.

/usr/share/julia/base/floatfuncs.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# This file is a part of Julia. License is MIT: http://julialang.org/license

## floating-point functions ##

copysign(x::Float64, y::Float64) = box(Float64,copysign_float(unbox(Float64,x),unbox(Float64,y)))
copysign(x::Float32, y::Float32) = box(Float32,copysign_float(unbox(Float32,x),unbox(Float32,y)))
copysign(x::Float32, y::Real) = copysign(x, Float32(y))
copysign(x::Float64, y::Real) = copysign(x, Float64(y))
@vectorize_2arg Real copysign

flipsign(x::Float64, y::Float64) = box(Float64,xor_int(unbox(Float64,x),and_int(unbox(Float64,y),0x8000000000000000)))
flipsign(x::Float32, y::Float32) = box(Float32,xor_int(unbox(Float32,x),and_int(unbox(Float32,y),0x80000000)))
flipsign(x::Float32, y::Real) = flipsign(x, Float32(y))
flipsign(x::Float64, y::Real) = flipsign(x, Float64(y))
@vectorize_2arg Real flipsign

signbit(x::Float64) = signbit(reinterpret(Int64,x))
signbit(x::Float32) = signbit(reinterpret(Int32,x))
signbit(x::Float16) = signbit(reinterpret(Int16,x))

maxintfloat(::Type{Float64}) = 9007199254740992.
maxintfloat(::Type{Float32}) = Float32(16777216.)
maxintfloat(::Type{Float16}) = Float16(2048f0)
maxintfloat{T<:AbstractFloat}(x::T)  = maxintfloat(T)
maxintfloat() = maxintfloat(Float64)

isinteger(x::AbstractFloat) = (trunc(x)==x)&isfinite(x)

num2hex(x::Float16) = hex(reinterpret(UInt16,x), 4)
num2hex(x::Float32) = hex(box(UInt32,unbox(Float32,x)),8)
num2hex(x::Float64) = hex(box(UInt64,unbox(Float64,x)),16)

function hex2num(s::AbstractString)
    if length(s) <= 8
        return box(Float32,unbox(UInt32,parse(UInt32,s,16)))
    end
    return box(Float64,unbox(UInt64,parse(UInt64,s,16)))
end

@vectorize_1arg Number abs
@vectorize_1arg Number abs2
@vectorize_1arg Number angle

@vectorize_1arg Number isnan
@vectorize_1arg Number isinf
@vectorize_1arg Number isfinite


round(x::Real, ::RoundingMode{:ToZero}) = trunc(x)
round(x::Real, ::RoundingMode{:Up}) = ceil(x)
round(x::Real, ::RoundingMode{:Down}) = floor(x)
# C-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesAway})
    y = trunc(x)
    ifelse(x==y,y,trunc(2*x-y))
end
# Java-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesUp})
    y = floor(x)
    ifelse(x==y,y,copysign(floor(2*x-y),x))
end
round{T<:Integer}(::Type{T}, x::AbstractFloat, r::RoundingMode) = trunc(T,round(x,r))

@vectorize_1arg Real trunc
@vectorize_1arg Real floor
@vectorize_1arg Real ceil
@vectorize_1arg Real round

for f in (:trunc,:floor,:ceil,:round)
    @eval begin
        function ($f){T,R}(::Type{T}, x::AbstractArray{R,1})
            [ ($f)(T, x[i])::T for i = 1:length(x) ]
        end
        function ($f){T,R}(::Type{T}, x::AbstractArray{R,2})
            [ ($f)(T, x[i,j])::T for i = 1:size(x,1), j = 1:size(x,2) ]
        end
        function ($f){T}(::Type{T}, x::AbstractArray)
            reshape([ ($f)(T, x[i])::T for i in eachindex(x) ], size(x))
        end
        function ($f){R}(x::AbstractArray{R,1}, digits::Integer, base::Integer=10)
            [ ($f)(x[i], digits, base) for i = 1:length(x) ]
        end
        function ($f){R}(x::AbstractArray{R,2}, digits::Integer, base::Integer=10)
            [ ($f)(x[i,j], digits, base) for i = 1:size(x,1), j = 1:size(x,2) ]
        end
        function ($f)(x::AbstractArray, digits::Integer, base::Integer=10)
            reshape([ ($f)(x[i], digits, base) for i in eachindex(x) ], size(x))
        end
    end
end

function round{R}(x::AbstractArray{R,1}, r::RoundingMode)
    [ round(x[i], r) for i = 1:length(x) ]
end
function round{R}(x::AbstractArray{R,2}, r::RoundingMode)
    [ round(x[i,j], r) for i = 1:size(x,1), j = 1:size(x,2) ]
end
function round(x::AbstractArray, r::RoundingMode)
    reshape([ round(x[i], r) for i in eachindex(x) ], size(x))
end

function round{T,R}(::Type{T}, x::AbstractArray{R,1}, r::RoundingMode)
    [ round(T, x[i], r)::T for i = 1:length(x) ]
end
function round{T,R}(::Type{T}, x::AbstractArray{R,2}, r::RoundingMode)
    [ round(T, x[i,j], r)::T for i = 1:size(x,1), j = 1:size(x,2) ]
end
function round{T}(::Type{T}, x::AbstractArray, r::RoundingMode)
    reshape([ round(T, x[i], r)::T for i in eachindex(x) ], size(x))
end

# adapted from Matlab File Exchange roundsd: http://www.mathworks.com/matlabcentral/fileexchange/26212
# for round, og is the power of 10 relative to the decimal point
# for signif, og is the absolute power of 10
# digits and base must be integers, x must be convertable to float

function _signif_og(x, digits, base)
    if base == 10
        e = floor(log10(abs(x)) - digits + 1.)
        og = oftype(x, exp10(abs(e)))
    elseif base == 2
        e = exponent(abs(x)) - digits + 1.
        og = oftype(x, exp2(abs(e)))
    else
        e = floor(log(base, abs(x)) - digits + 1.)
        og = oftype(x, float(base) ^ abs(e))
    end
    return og, e
end

function signif(x::Real, digits::Integer, base::Integer=10)
    digits < 1 && throw(DomainError())

    x = float(x)
    (x == 0 || !isfinite(x)) && return x
    og, e = _signif_og(x, digits, base)
    if e >= 0 # for numeric stability
        r = round(x/og)*og
    else
        r = round(x*og)/og
    end
    !isfinite(r) ? x : r
end

for f in (:round, :ceil, :floor, :trunc)
    @eval begin
        function ($f)(x::Real, digits::Integer, base::Integer=10)
            x = float(x)
            og = convert(eltype(x),base)^digits
            r = ($f)(x * og) / og

            if !isfinite(r)
                if digits > 0
                    return x
                elseif x > 0
                    return $(:ceil == f ? :(convert(eltype(x), Inf)) : :(zero(x)))
                elseif x < 0
                    return $(:floor == f ? :(-convert(eltype(x), Inf)) : :(-zero(x)))
                else
                    return x
                end
            end
            return r
        end
    end
end

# isapprox: approximate equality of numbers
function isapprox(x::Number, y::Number; rtol::Real=rtoldefault(x,y), atol::Real=0)
    x == y || (isfinite(x) && isfinite(y) && abs(x-y) <= atol + rtol*max(abs(x), abs(y)))
end

const ≈ = isapprox
≉(x,y) = !(x ≈ y)

# default tolerance arguments
rtoldefault{T<:AbstractFloat}(::Type{T}) = sqrt(eps(T))
rtoldefault{T<:Real}(::Type{T}) = 0
rtoldefault{T<:Number,S<:Number}(x::Union{T,Type{T}}, y::Union{S,Type{S}}) = rtoldefault(promote_type(real(T),real(S)))

# fused multiply-add
fma_libm(x::Float32, y::Float32, z::Float32) =
    ccall(("fmaf", libm_name), Float32, (Float32,Float32,Float32), x, y, z)
fma_libm(x::Float64, y::Float64, z::Float64) =
    ccall(("fma", libm_name), Float64, (Float64,Float64,Float64), x, y, z)
fma_llvm(x::Float32, y::Float32, z::Float32) =
    box(Float32,fma_float(unbox(Float32,x),unbox(Float32,y),unbox(Float32,z)))
fma_llvm(x::Float64, y::Float64, z::Float64) =
    box(Float64,fma_float(unbox(Float64,x),unbox(Float64,y),unbox(Float64,z)))
# Disable LLVM's fma if it is incorrect, e.g. because LLVM falls back
# onto a broken system libm; if so, use openlibm's fma instead
# 1.0000305f0 = 1 + 1/2^15
# 1.0000000009313226 = 1 + 1/2^30
# If fma_llvm() clobbers the rounding mode, the result of 0.1 + 0.2 will be 0.3
# instead of the properly-rounded 0.30000000000000004; check after calling fma
if (ARCH != :i686 && fma_llvm(1.0000305f0, 1.0000305f0, -1.0f0) == 6.103609f-5 &&
    (fma_llvm(1.0000000009313226, 1.0000000009313226, -1.0) ==
     1.8626451500983188e-9) && 0.1 + 0.2 == 0.30000000000000004)
    fma(x::Float32, y::Float32, z::Float32) = fma_llvm(x,y,z)
    fma(x::Float64, y::Float64, z::Float64) = fma_llvm(x,y,z)
else
    fma(x::Float32, y::Float32, z::Float32) = fma_libm(x,y,z)
    fma(x::Float64, y::Float64, z::Float64) = fma_libm(x,y,z)
end
# This is necessary at least on 32-bit Intel Linux, since fma_llvm may
# have called glibc, and some broken glibc fma implementations don't
# properly restore the rounding mode
Rounding.set_rounding_raw(Float32, Rounding.JL_FE_TONEAREST)
Rounding.set_rounding_raw(Float64, Rounding.JL_FE_TONEAREST)