This file is indexed.

/usr/share/julia/base/float.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# This file is a part of Julia. License is MIT: http://julialang.org/license

## floating point traits ##

const Inf16 = box(Float16,unbox(UInt16,0x7c00))
const NaN16 = box(Float16,unbox(UInt16,0x7e00))
const Inf32 = box(Float32,unbox(UInt32,0x7f800000))
const NaN32 = box(Float32,unbox(UInt32,0x7fc00000))
const Inf64 = box(Float64,unbox(UInt64,0x7ff0000000000000))
const NaN64 = box(Float64,unbox(UInt64,0x7ff8000000000000))
const Inf = Inf64
const NaN = NaN64

## conversions to floating-point ##
convert(::Type{Float16}, x::Integer) = convert(Float16, convert(Float32,x))
for t in (Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128)
    @eval promote_rule(::Type{Float16}, ::Type{$t}) = Float32
end
promote_rule(::Type{Float16}, ::Type{Bool}) = Float16

for t1 in (Float32,Float64)
    for st in (Int8,Int16,Int32,Int64)
        @eval begin
            convert(::Type{$t1},x::($st)) = box($t1,sitofp($t1,unbox($st,x)))
            promote_rule(::Type{$t1}, ::Type{$st}  ) = $t1
        end
    end
    for ut in (Bool,UInt8,UInt16,UInt32,UInt64)
        @eval begin
            convert(::Type{$t1},x::($ut)) = box($t1,uitofp($t1,unbox($ut,x)))
            promote_rule(::Type{$t1}, ::Type{$ut}  ) = $t1
        end
    end
end

promote_rule(::Type{Float64}, ::Type{UInt128}) = Float64
promote_rule(::Type{Float64}, ::Type{Int128}) = Float64
promote_rule(::Type{Float32}, ::Type{UInt128}) = Float32
promote_rule(::Type{Float32}, ::Type{Int128}) = Float32

function convert(::Type{Float64}, x::UInt128)
    x == 0 && return 0.0
    n = 128-leading_zeros(x) # ndigits0z(x,2)
    if n <= 53
        y = ((x % UInt64) << (53-n)) & 0x000f_ffff_ffff_ffff
    else
        y = ((x >> (n-54)) % UInt64) & 0x001f_ffff_ffff_ffff # keep 1 extra bit
        y = (y+1)>>1 # round, ties up (extra leading bit in case of next exponent)
        y &= ~UInt64(trailing_zeros(x) == (n-54)) # fix last bit to round to even
    end
    d = ((n+1022) % UInt64) << 52
    reinterpret(Float64, d + y)
end

function convert(::Type{Float64}, x::Int128)
    x == 0 && return 0.0
    s = ((x >>> 64) % UInt64) & 0x8000_0000_0000_0000 # sign bit
    x = abs(x) % UInt128
    n = 128-leading_zeros(x) # ndigits0z(x,2)
    if n <= 53
        y = ((x % UInt64) << (53-n)) & 0x000f_ffff_ffff_ffff
    else
        y = ((x >> (n-54)) % UInt64) & 0x001f_ffff_ffff_ffff # keep 1 extra bit
        y = (y+1)>>1 # round, ties up (extra leading bit in case of next exponent)
        y &= ~UInt64(trailing_zeros(x) == (n-54)) # fix last bit to round to even
    end
    d = ((n+1022) % UInt64) << 52
    reinterpret(Float64, s | d + y)
end

function convert(::Type{Float32}, x::UInt128)
    x == 0 && return 0f0
    n = 128-leading_zeros(x) # ndigits0z(x,2)
    if n <= 24
        y = ((x % UInt32) << (24-n)) & 0x007f_ffff
    else
        y = ((x >> (n-25)) % UInt32) & 0x00ff_ffff # keep 1 extra bit
        y = (y+one(UInt32))>>1 # round, ties up (extra leading bit in case of next exponent)
        y &= ~UInt32(trailing_zeros(x) == (n-25)) # fix last bit to round to even
    end
    d = ((n+126) % UInt32) << 23
    reinterpret(Float32, d + y)
end

function convert(::Type{Float32}, x::Int128)
    x == 0 && return 0f0
    s = ((x >>> 96) % UInt32) & 0x8000_0000 # sign bit
    x = abs(x) % UInt128
    n = 128-leading_zeros(x) # ndigits0z(x,2)
    if n <= 24
        y = ((x % UInt32) << (24-n)) & 0x007f_ffff
    else
        y = ((x >> (n-25)) % UInt32) & 0x00ff_ffff # keep 1 extra bit
        y = (y+one(UInt32))>>1 # round, ties up (extra leading bit in case of next exponent)
        y &= ~UInt32(trailing_zeros(x) == (n-25)) # fix last bit to round to even
    end
    d = ((n+126) % UInt32) << 23
    reinterpret(Float32, s | d + y)
end

#convert(::Type{Float16}, x::Float32) = box(Float16,fptrunc(Float16,x))
convert(::Type{Float16}, x::Float64) = convert(Float16, convert(Float32,x))
convert(::Type{Float32}, x::Float64) = box(Float32,fptrunc(Float32,unbox(Float64,x)))

#convert(::Type{Float32}, x::Float16) = box(Float32,fpext(Float32,x))
convert(::Type{Float64}, x::Float16) = convert(Float64, convert(Float32,x))
convert(::Type{Float64}, x::Float32) = box(Float64,fpext(Float64,unbox(Float32,x)))

convert(::Type{AbstractFloat}, x::Bool)    = convert(Float64, x)
convert(::Type{AbstractFloat}, x::Int8)    = convert(Float64, x)
convert(::Type{AbstractFloat}, x::Int16)   = convert(Float64, x)
convert(::Type{AbstractFloat}, x::Int32)   = convert(Float64, x)
convert(::Type{AbstractFloat}, x::Int64)   = convert(Float64, x) # LOSSY
convert(::Type{AbstractFloat}, x::Int128)  = convert(Float64, x) # LOSSY
convert(::Type{AbstractFloat}, x::UInt8)   = convert(Float64, x)
convert(::Type{AbstractFloat}, x::UInt16)  = convert(Float64, x)
convert(::Type{AbstractFloat}, x::UInt32)  = convert(Float64, x)
convert(::Type{AbstractFloat}, x::UInt64)  = convert(Float64, x) # LOSSY
convert(::Type{AbstractFloat}, x::UInt128) = convert(Float64, x) # LOSSY

float(x) = convert(AbstractFloat, x)

# for constructing arrays
float{T<:Number}(::Type{T}) = typeof(float(zero(T)))
float{T}(::Type{T}) = Any

for Ti in (Int8, Int16, Int32, Int64)
    @eval begin
        unsafe_trunc(::Type{$Ti}, x::Float32) = box($Ti,fptosi($Ti,unbox(Float32,x)))
        unsafe_trunc(::Type{$Ti}, x::Float64) = box($Ti,fptosi($Ti,unbox(Float64,x)))
    end
end
for Ti in (UInt8, UInt16, UInt32, UInt64)
    @eval begin
        unsafe_trunc(::Type{$Ti}, x::Float32) = box($Ti,fptoui($Ti,unbox(Float32,x)))
        unsafe_trunc(::Type{$Ti}, x::Float64) = box($Ti,fptoui($Ti,unbox(Float64,x)))
    end
end

function unsafe_trunc(::Type{UInt128}, x::Float64)
    xu = reinterpret(UInt64,x)
    k = Int(xu >> 52) & 0x07ff - 1075
    xu = (xu & 0x000f_ffff_ffff_ffff) | 0x0010_0000_0000_0000
    if k <= 0
        UInt128(xu >> -k)
    else
        UInt128(xu) << k
    end
end
function unsafe_trunc(::Type{Int128}, x::Float64)
    copysign(unsafe_trunc(UInt128,x) % Int128, x)
end

function unsafe_trunc(::Type{UInt128}, x::Float32)
    xu = reinterpret(UInt32,x)
    k = Int(xu >> 23) & 0x00ff - 150
    xu = (xu & 0x007f_ffff) | 0x0080_0000
    if k <= 0
        UInt128(xu >> -k)
    else
        UInt128(xu) << k
    end
end
function unsafe_trunc(::Type{Int128}, x::Float32)
    copysign(unsafe_trunc(UInt128,x) % Int128, x)
end


# matches convert methods
# also determines floor, ceil, round
trunc(::Type{Signed}, x::Float32) = trunc(Int,x)
trunc(::Type{Signed}, x::Float64) = trunc(Int,x)
trunc(::Type{Unsigned}, x::Float32) = trunc(UInt,x)
trunc(::Type{Unsigned}, x::Float64) = trunc(UInt,x)
trunc(::Type{Integer}, x::Float32) = trunc(Int,x)
trunc(::Type{Integer}, x::Float64) = trunc(Int,x)

# fallbacks
floor{T<:Integer}(::Type{T}, x::AbstractFloat) = trunc(T,floor(x))
ceil{ T<:Integer}(::Type{T}, x::AbstractFloat) = trunc(T,ceil(x))
round{T<:Integer}(::Type{T}, x::AbstractFloat) = trunc(T,round(x))

trunc(x::Float64) = box(Float64,trunc_llvm(unbox(Float64,x)))
trunc(x::Float32) = box(Float32,trunc_llvm(unbox(Float32,x)))

floor(x::Float64) = box(Float64,floor_llvm(unbox(Float64,x)))
floor(x::Float32) = box(Float32,floor_llvm(unbox(Float32,x)))

ceil(x::Float64) = box(Float64,ceil_llvm(unbox(Float64,x)))
ceil(x::Float32) = box(Float32,ceil_llvm(unbox(Float32,x)))

round(x::Float64) = box(Float64,rint_llvm(unbox(Float64,x)))
round(x::Float32) = box(Float32,rint_llvm(unbox(Float32,x)))

## floating point promotions ##
promote_rule(::Type{Float32}, ::Type{Float16}) = Float32
promote_rule(::Type{Float64}, ::Type{Float16}) = Float64
promote_rule(::Type{Float64}, ::Type{Float32}) = Float64

widen(::Type{Float16}) = Float32
widen(::Type{Float32}) = Float64

## floating point arithmetic ##
-(x::Float32) = box(Float32,neg_float(unbox(Float32,x)))
-(x::Float64) = box(Float64,neg_float(unbox(Float64,x)))

+(x::Float32, y::Float32) = box(Float32,add_float(unbox(Float32,x),unbox(Float32,y)))
+(x::Float64, y::Float64) = box(Float64,add_float(unbox(Float64,x),unbox(Float64,y)))
-(x::Float32, y::Float32) = box(Float32,sub_float(unbox(Float32,x),unbox(Float32,y)))
-(x::Float64, y::Float64) = box(Float64,sub_float(unbox(Float64,x),unbox(Float64,y)))
*(x::Float32, y::Float32) = box(Float32,mul_float(unbox(Float32,x),unbox(Float32,y)))
*(x::Float64, y::Float64) = box(Float64,mul_float(unbox(Float64,x),unbox(Float64,y)))
/(x::Float32, y::Float32) = box(Float32,div_float(unbox(Float32,x),unbox(Float32,y)))
/(x::Float64, y::Float64) = box(Float64,div_float(unbox(Float64,x),unbox(Float64,y)))

muladd(x::Float32, y::Float32, z::Float32) = box(Float32,muladd_float(unbox(Float32,x),unbox(Float32,y),unbox(Float32,z)))
muladd(x::Float64, y::Float64, z::Float64) = box(Float64,muladd_float(unbox(Float64,x),unbox(Float64,y),unbox(Float64,z)))

# TODO: faster floating point div?
# TODO: faster floating point fld?
# TODO: faster floating point mod?
rem(x::Float32, y::Float32) = box(Float32,rem_float(unbox(Float32,x),unbox(Float32,y)))
rem(x::Float64, y::Float64) = box(Float64,rem_float(unbox(Float64,x),unbox(Float64,y)))

cld{T<:AbstractFloat}(x::T, y::T) = -fld(-x,y)

function mod{T<:AbstractFloat}(x::T, y::T)
    r = rem(x,y)
    if r == 0
        copysign(r,y)
    elseif (r > 0) $ (y > 0)
        r+y
    else
        r
    end
end

## floating point comparisons ##
==(x::Float32, y::Float32) = eq_float(unbox(Float32,x),unbox(Float32,y))
==(x::Float64, y::Float64) = eq_float(unbox(Float64,x),unbox(Float64,y))
!=(x::Float32, y::Float32) = ne_float(unbox(Float32,x),unbox(Float32,y))
!=(x::Float64, y::Float64) = ne_float(unbox(Float64,x),unbox(Float64,y))
<( x::Float32, y::Float32) = lt_float(unbox(Float32,x),unbox(Float32,y))
<( x::Float64, y::Float64) = lt_float(unbox(Float64,x),unbox(Float64,y))
<=(x::Float32, y::Float32) = le_float(unbox(Float32,x),unbox(Float32,y))
<=(x::Float64, y::Float64) = le_float(unbox(Float64,x),unbox(Float64,y))

isequal(x::Float32, y::Float32) = fpiseq(unbox(Float32,x),unbox(Float32,y))
isequal(x::Float64, y::Float64) = fpiseq(unbox(Float64,x),unbox(Float64,y))
isless( x::Float32, y::Float32) = fpislt(unbox(Float32,x),unbox(Float32,y))
isless( x::Float64, y::Float64) = fpislt(unbox(Float64,x),unbox(Float64,y))

function cmp(x::AbstractFloat, y::AbstractFloat)
    (isnan(x) || isnan(y)) && throw(DomainError())
    ifelse(x<y, -1, ifelse(x>y, 1, 0))
end

function cmp(x::Real, y::AbstractFloat)
    isnan(y) && throw(DomainError())
    ifelse(x<y, -1, ifelse(x>y, 1, 0))
end

function cmp(x::AbstractFloat, y::Real)
    isnan(x) && throw(DomainError())
    ifelse(x<y, -1, ifelse(x>y, 1, 0))
end

# Exact Float (Tf) vs Integer (Ti) comparisons
# Assumes:
# - typemax(Ti) == 2^n-1
# - typemax(Ti) can't be exactly represented by Tf:
#   => Tf(typemax(Ti)) == 2^n or Inf
# - typemin(Ti) can be exactly represented by Tf
#
# 1. convert y::Ti to float fy::Tf
# 2. perform Tf comparison x vs fy
# 3. if x == fy, check if (1) resulted in rounding:
#  a. convert fy back to Ti and compare with original y
#  b. unsafe_convert undefined behaviour if fy == Tf(typemax(Ti))
#     (but consequently x == fy > y)
for Ti in (Int64,UInt64,Int128,UInt128)
    for Tf in (Float32,Float64)
        @eval begin
            function ==(x::$Tf, y::$Ti)
                fy = ($Tf)(y)
                (x == fy) & (fy != $(Tf(typemax(Ti)))) & (y == unsafe_trunc($Ti,fy))
            end
            ==(y::$Ti, x::$Tf) = x==y

            function <(x::$Ti, y::$Tf)
                fx = ($Tf)(x)
                (fx < y) | ((fx == y) & ((fx == $(Tf(typemax(Ti)))) | (x < unsafe_trunc($Ti,fx)) ))
            end
            function <=(x::$Ti, y::$Tf)
                fx = ($Tf)(x)
                (fx < y) | ((fx == y) & ((fx == $(Tf(typemax(Ti)))) | (x <= unsafe_trunc($Ti,fx)) ))
            end

            function <(x::$Tf, y::$Ti)
                fy = ($Tf)(y)
                (x < fy) | ((x == fy) & (fy < $(Tf(typemax(Ti)))) & (unsafe_trunc($Ti,fy) < y))
            end
            function <=(x::$Tf, y::$Ti)
                fy = ($Tf)(y)
                (x < fy) | ((x == fy) & (fy < $(Tf(typemax(Ti)))) & (unsafe_trunc($Ti,fy) <= y))
            end
        end
    end
end

==(x::Float32, y::Union{Int32,UInt32}) = Float64(x)==Float64(y)
==(x::Union{Int32,UInt32}, y::Float32) = Float64(x)==Float64(y)

<(x::Float32, y::Union{Int32,UInt32}) = Float64(x)<Float64(y)
<(x::Union{Int32,UInt32}, y::Float32) = Float64(x)<Float64(y)

<=(x::Float32, y::Union{Int32,UInt32}) = Float64(x)<=Float64(y)
<=(x::Union{Int32,UInt32}, y::Float32) = Float64(x)<=Float64(y)

abs(x::Float64) = box(Float64,abs_float(unbox(Float64,x)))
abs(x::Float32) = box(Float32,abs_float(unbox(Float32,x)))

isnan(x::AbstractFloat) = x != x
isnan(x::Real) = false

isfinite(x::AbstractFloat) = x - x == 0
isfinite(x::Real) = decompose(x)[3] != 0
isfinite(x::Integer) = true

isinf(x::Real) = !isnan(x) & !isfinite(x)

## hashing small, built-in numeric types ##

hx(a::UInt64, b::Float64, h::UInt) = hash_uint64((3a + reinterpret(UInt64,b)) - h)
const hx_NaN = hx(UInt64(0), NaN, UInt(0  ))

hash(x::UInt64,  h::UInt) = hx(x, Float64(x), h)
hash(x::Int64,   h::UInt) = hx(reinterpret(UInt64,abs(x)), Float64(x), h)
hash(x::Float64, h::UInt) = isnan(x) ? (hx_NaN $ h) : hx(box(UInt64,fptoui(unbox(Float64,abs(x)))), x, h)

hash(x::Union{Bool,Char,Int8,UInt8,Int16,UInt16,Int32,UInt32}, h::UInt) = hash(Int64(x), h)
hash(x::Float32, h::UInt) = hash(Float64(x), h)

## precision, as defined by the effective number of bits in the mantissa ##
precision(::Type{Float16}) = 11
precision(::Type{Float32}) = 24
precision(::Type{Float64}) = 53
precision{T<:AbstractFloat}(::T) = precision(T)

function float_lex_order(f::Integer, delta::Integer)
    # convert from signed magnitude to 2's complement and back
    neg = f < 0
    if neg
        f = oftype(f, -(f & typemax(f)))
    end
    f = oftype(f, f + delta)
    neg && f == 0 && return typemin(f)  # nextfloat(-5e-324) === -0.0
    f < 0 ? oftype(f, -(f & typemax(f))) : f
end

nextfloat(x::Float16, i::Integer) =
    (isinf(x)&&sign(x)==sign(i)) ? x : reinterpret(Float16,float_lex_order(reinterpret(Int16,x), i))
nextfloat(x::Float32, i::Integer) =
    (isinf(x)&&sign(x)==sign(i)) ? x : reinterpret(Float32,float_lex_order(reinterpret(Int32,x), i))
nextfloat(x::Float64, i::Integer) =
    (isinf(x)&&sign(x)==sign(i)) ? x : reinterpret(Float64,float_lex_order(reinterpret(Int64,x), i))
nextfloat(x::AbstractFloat) = nextfloat(x,1)
prevfloat(x::AbstractFloat) = nextfloat(x,-1)

for Ti in (Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128)
    for Tf in (Float32, Float64)
        if sizeof(Ti) < sizeof(Tf) || Ti <: Unsigned # Tf(typemin(Ti))-1 is exact
            @eval function trunc(::Type{$Ti},x::$Tf)
                $(Tf(typemin(Ti))-one(Tf)) < x < $(Tf(typemax(Ti))+one(Tf)) || throw(InexactError())
                unsafe_trunc($Ti,x)
            end
        else
            @eval function trunc(::Type{$Ti},x::$Tf)
                $(Tf(typemin(Ti))) <= x < $(Tf(typemax(Ti))) || throw(InexactError())
                unsafe_trunc($Ti,x)
            end
        end
    end
end



@eval begin
    issubnormal(x::Float32) = (abs(x) < $(box(Float32,unbox(UInt32,0x00800000)))) & (x!=0)
    issubnormal(x::Float64) = (abs(x) < $(box(Float64,unbox(UInt64,0x0010000000000000)))) & (x!=0)

    typemin(::Type{Float16}) = $(box(Float16,unbox(UInt16,0xfc00)))
    typemax(::Type{Float16}) = $(Inf16)
    typemin(::Type{Float32}) = $(-Inf32)
    typemax(::Type{Float32}) = $(Inf32)
    typemin(::Type{Float64}) = $(-Inf64)
    typemax(::Type{Float64}) = $(Inf64)
    typemin{T<:Real}(x::T) = typemin(T)
    typemax{T<:Real}(x::T) = typemax(T)

    realmin(::Type{Float16}) = $(box(Float16,unbox(UInt16,0x0400)))
    realmin(::Type{Float32}) = $(box(Float32,unbox(UInt32,0x00800000)))
    realmin(::Type{Float64}) = $(box(Float64,unbox(UInt64,0x0010000000000000)))
    realmax(::Type{Float16}) = $(box(Float16,unbox(UInt16,0x7bff)))
    realmax(::Type{Float32}) = $(box(Float32,unbox(UInt32,0x7f7fffff)))
    realmax(::Type{Float64}) = $(box(Float64,unbox(UInt64,0x7fefffffffffffff)))
    realmin{T<:AbstractFloat}(x::T) = realmin(T)
    realmax{T<:AbstractFloat}(x::T) = realmax(T)
    realmin() = realmin(Float64)
    realmax() = realmax(Float64)

    eps(x::AbstractFloat) = isfinite(x) ? abs(x) >= realmin(x) ? ldexp(eps(typeof(x)),exponent(x)) : nextfloat(zero(x)) : oftype(x,NaN)
    eps(::Type{Float16}) = $(box(Float16,unbox(UInt16,0x1400)))
    eps(::Type{Float32}) = $(box(Float32,unbox(UInt32,0x34000000)))
    eps(::Type{Float64}) = $(box(Float64,unbox(UInt64,0x3cb0000000000000)))
    eps() = eps(Float64)
end

## byte order swaps for arbitrary-endianness serialization/deserialization ##
bswap(x::Float32) = box(Float32,bswap_int(unbox(Float32,x)))
bswap(x::Float64) = box(Float64,bswap_int(unbox(Float64,x)))

# bit patterns
reinterpret(::Type{Unsigned}, x::Float64) = reinterpret(UInt64,x)
reinterpret(::Type{Unsigned}, x::Float32) = reinterpret(UInt32,x)

sign_mask(::Type{Float64}) =        0x8000_0000_0000_0000
exponent_mask(::Type{Float64}) =    0x7ff0_0000_0000_0000
exponent_one(::Type{Float64}) =     0x3ff0_0000_0000_0000
exponent_half(::Type{Float64}) =    0x3fe0_0000_0000_0000
significand_mask(::Type{Float64}) = 0x000f_ffff_ffff_ffff

sign_mask(::Type{Float32}) =        0x8000_0000
exponent_mask(::Type{Float32}) =    0x7f80_0000
exponent_one(::Type{Float32}) =     0x3f80_0000
exponent_half(::Type{Float32}) =    0x3f00_0000
significand_mask(::Type{Float32}) = 0x007f_ffff

significand_bits{T<:AbstractFloat}(::Type{T}) = trailing_ones(significand_mask(T))
exponent_bits{T<:AbstractFloat}(::Type{T}) = sizeof(T)*8 - significand_bits(T) - 1
exponent_bias{T<:AbstractFloat}(::Type{T}) = Int(exponent_one(T) >> significand_bits(T))

## Array operations on floating point numbers ##

float{T<:AbstractFloat}(A::AbstractArray{T}) = A

function float{T}(A::AbstractArray{T})
    if !isleaftype(T)
        error("`float` not defined on abstractly-typed arrays; please convert to a more specific type")
    end
    convert(AbstractArray{typeof(float(zero(T)))}, A)
end

for fn in (:float,:big)
    @eval begin
        $fn(r::StepRange) = $fn(r.start):$fn(r.step):$fn(last(r))
        $fn(r::UnitRange) = $fn(r.start):$fn(last(r))
        $fn(r::FloatRange) = FloatRange($fn(r.start), $fn(r.step), r.len, $fn(r.divisor))
        function $fn(r::LinSpace)
            new_len = $fn(r.len)
            new_len == r.len || error(string(r, ": too long for ", $fn))
            LinSpace($fn(r.start), $fn(r.stop), new_len, $fn(r.divisor))
        end
    end
end

big{T<:AbstractFloat,N}(x::AbstractArray{T,N}) = convert(AbstractArray{BigFloat,N}, x)
big{T<:Integer,N}(x::AbstractArray{T,N}) = convert(AbstractArray{BigInt,N}, x)