/usr/share/julia/base/float.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## floating point traits ##
const Inf16 = box(Float16,unbox(UInt16,0x7c00))
const NaN16 = box(Float16,unbox(UInt16,0x7e00))
const Inf32 = box(Float32,unbox(UInt32,0x7f800000))
const NaN32 = box(Float32,unbox(UInt32,0x7fc00000))
const Inf64 = box(Float64,unbox(UInt64,0x7ff0000000000000))
const NaN64 = box(Float64,unbox(UInt64,0x7ff8000000000000))
const Inf = Inf64
const NaN = NaN64
## conversions to floating-point ##
convert(::Type{Float16}, x::Integer) = convert(Float16, convert(Float32,x))
for t in (Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128)
@eval promote_rule(::Type{Float16}, ::Type{$t}) = Float32
end
promote_rule(::Type{Float16}, ::Type{Bool}) = Float16
for t1 in (Float32,Float64)
for st in (Int8,Int16,Int32,Int64)
@eval begin
convert(::Type{$t1},x::($st)) = box($t1,sitofp($t1,unbox($st,x)))
promote_rule(::Type{$t1}, ::Type{$st} ) = $t1
end
end
for ut in (Bool,UInt8,UInt16,UInt32,UInt64)
@eval begin
convert(::Type{$t1},x::($ut)) = box($t1,uitofp($t1,unbox($ut,x)))
promote_rule(::Type{$t1}, ::Type{$ut} ) = $t1
end
end
end
promote_rule(::Type{Float64}, ::Type{UInt128}) = Float64
promote_rule(::Type{Float64}, ::Type{Int128}) = Float64
promote_rule(::Type{Float32}, ::Type{UInt128}) = Float32
promote_rule(::Type{Float32}, ::Type{Int128}) = Float32
function convert(::Type{Float64}, x::UInt128)
x == 0 && return 0.0
n = 128-leading_zeros(x) # ndigits0z(x,2)
if n <= 53
y = ((x % UInt64) << (53-n)) & 0x000f_ffff_ffff_ffff
else
y = ((x >> (n-54)) % UInt64) & 0x001f_ffff_ffff_ffff # keep 1 extra bit
y = (y+1)>>1 # round, ties up (extra leading bit in case of next exponent)
y &= ~UInt64(trailing_zeros(x) == (n-54)) # fix last bit to round to even
end
d = ((n+1022) % UInt64) << 52
reinterpret(Float64, d + y)
end
function convert(::Type{Float64}, x::Int128)
x == 0 && return 0.0
s = ((x >>> 64) % UInt64) & 0x8000_0000_0000_0000 # sign bit
x = abs(x) % UInt128
n = 128-leading_zeros(x) # ndigits0z(x,2)
if n <= 53
y = ((x % UInt64) << (53-n)) & 0x000f_ffff_ffff_ffff
else
y = ((x >> (n-54)) % UInt64) & 0x001f_ffff_ffff_ffff # keep 1 extra bit
y = (y+1)>>1 # round, ties up (extra leading bit in case of next exponent)
y &= ~UInt64(trailing_zeros(x) == (n-54)) # fix last bit to round to even
end
d = ((n+1022) % UInt64) << 52
reinterpret(Float64, s | d + y)
end
function convert(::Type{Float32}, x::UInt128)
x == 0 && return 0f0
n = 128-leading_zeros(x) # ndigits0z(x,2)
if n <= 24
y = ((x % UInt32) << (24-n)) & 0x007f_ffff
else
y = ((x >> (n-25)) % UInt32) & 0x00ff_ffff # keep 1 extra bit
y = (y+one(UInt32))>>1 # round, ties up (extra leading bit in case of next exponent)
y &= ~UInt32(trailing_zeros(x) == (n-25)) # fix last bit to round to even
end
d = ((n+126) % UInt32) << 23
reinterpret(Float32, d + y)
end
function convert(::Type{Float32}, x::Int128)
x == 0 && return 0f0
s = ((x >>> 96) % UInt32) & 0x8000_0000 # sign bit
x = abs(x) % UInt128
n = 128-leading_zeros(x) # ndigits0z(x,2)
if n <= 24
y = ((x % UInt32) << (24-n)) & 0x007f_ffff
else
y = ((x >> (n-25)) % UInt32) & 0x00ff_ffff # keep 1 extra bit
y = (y+one(UInt32))>>1 # round, ties up (extra leading bit in case of next exponent)
y &= ~UInt32(trailing_zeros(x) == (n-25)) # fix last bit to round to even
end
d = ((n+126) % UInt32) << 23
reinterpret(Float32, s | d + y)
end
#convert(::Type{Float16}, x::Float32) = box(Float16,fptrunc(Float16,x))
convert(::Type{Float16}, x::Float64) = convert(Float16, convert(Float32,x))
convert(::Type{Float32}, x::Float64) = box(Float32,fptrunc(Float32,unbox(Float64,x)))
#convert(::Type{Float32}, x::Float16) = box(Float32,fpext(Float32,x))
convert(::Type{Float64}, x::Float16) = convert(Float64, convert(Float32,x))
convert(::Type{Float64}, x::Float32) = box(Float64,fpext(Float64,unbox(Float32,x)))
convert(::Type{AbstractFloat}, x::Bool) = convert(Float64, x)
convert(::Type{AbstractFloat}, x::Int8) = convert(Float64, x)
convert(::Type{AbstractFloat}, x::Int16) = convert(Float64, x)
convert(::Type{AbstractFloat}, x::Int32) = convert(Float64, x)
convert(::Type{AbstractFloat}, x::Int64) = convert(Float64, x) # LOSSY
convert(::Type{AbstractFloat}, x::Int128) = convert(Float64, x) # LOSSY
convert(::Type{AbstractFloat}, x::UInt8) = convert(Float64, x)
convert(::Type{AbstractFloat}, x::UInt16) = convert(Float64, x)
convert(::Type{AbstractFloat}, x::UInt32) = convert(Float64, x)
convert(::Type{AbstractFloat}, x::UInt64) = convert(Float64, x) # LOSSY
convert(::Type{AbstractFloat}, x::UInt128) = convert(Float64, x) # LOSSY
float(x) = convert(AbstractFloat, x)
# for constructing arrays
float{T<:Number}(::Type{T}) = typeof(float(zero(T)))
float{T}(::Type{T}) = Any
for Ti in (Int8, Int16, Int32, Int64)
@eval begin
unsafe_trunc(::Type{$Ti}, x::Float32) = box($Ti,fptosi($Ti,unbox(Float32,x)))
unsafe_trunc(::Type{$Ti}, x::Float64) = box($Ti,fptosi($Ti,unbox(Float64,x)))
end
end
for Ti in (UInt8, UInt16, UInt32, UInt64)
@eval begin
unsafe_trunc(::Type{$Ti}, x::Float32) = box($Ti,fptoui($Ti,unbox(Float32,x)))
unsafe_trunc(::Type{$Ti}, x::Float64) = box($Ti,fptoui($Ti,unbox(Float64,x)))
end
end
function unsafe_trunc(::Type{UInt128}, x::Float64)
xu = reinterpret(UInt64,x)
k = Int(xu >> 52) & 0x07ff - 1075
xu = (xu & 0x000f_ffff_ffff_ffff) | 0x0010_0000_0000_0000
if k <= 0
UInt128(xu >> -k)
else
UInt128(xu) << k
end
end
function unsafe_trunc(::Type{Int128}, x::Float64)
copysign(unsafe_trunc(UInt128,x) % Int128, x)
end
function unsafe_trunc(::Type{UInt128}, x::Float32)
xu = reinterpret(UInt32,x)
k = Int(xu >> 23) & 0x00ff - 150
xu = (xu & 0x007f_ffff) | 0x0080_0000
if k <= 0
UInt128(xu >> -k)
else
UInt128(xu) << k
end
end
function unsafe_trunc(::Type{Int128}, x::Float32)
copysign(unsafe_trunc(UInt128,x) % Int128, x)
end
# matches convert methods
# also determines floor, ceil, round
trunc(::Type{Signed}, x::Float32) = trunc(Int,x)
trunc(::Type{Signed}, x::Float64) = trunc(Int,x)
trunc(::Type{Unsigned}, x::Float32) = trunc(UInt,x)
trunc(::Type{Unsigned}, x::Float64) = trunc(UInt,x)
trunc(::Type{Integer}, x::Float32) = trunc(Int,x)
trunc(::Type{Integer}, x::Float64) = trunc(Int,x)
# fallbacks
floor{T<:Integer}(::Type{T}, x::AbstractFloat) = trunc(T,floor(x))
ceil{ T<:Integer}(::Type{T}, x::AbstractFloat) = trunc(T,ceil(x))
round{T<:Integer}(::Type{T}, x::AbstractFloat) = trunc(T,round(x))
trunc(x::Float64) = box(Float64,trunc_llvm(unbox(Float64,x)))
trunc(x::Float32) = box(Float32,trunc_llvm(unbox(Float32,x)))
floor(x::Float64) = box(Float64,floor_llvm(unbox(Float64,x)))
floor(x::Float32) = box(Float32,floor_llvm(unbox(Float32,x)))
ceil(x::Float64) = box(Float64,ceil_llvm(unbox(Float64,x)))
ceil(x::Float32) = box(Float32,ceil_llvm(unbox(Float32,x)))
round(x::Float64) = box(Float64,rint_llvm(unbox(Float64,x)))
round(x::Float32) = box(Float32,rint_llvm(unbox(Float32,x)))
## floating point promotions ##
promote_rule(::Type{Float32}, ::Type{Float16}) = Float32
promote_rule(::Type{Float64}, ::Type{Float16}) = Float64
promote_rule(::Type{Float64}, ::Type{Float32}) = Float64
widen(::Type{Float16}) = Float32
widen(::Type{Float32}) = Float64
## floating point arithmetic ##
-(x::Float32) = box(Float32,neg_float(unbox(Float32,x)))
-(x::Float64) = box(Float64,neg_float(unbox(Float64,x)))
+(x::Float32, y::Float32) = box(Float32,add_float(unbox(Float32,x),unbox(Float32,y)))
+(x::Float64, y::Float64) = box(Float64,add_float(unbox(Float64,x),unbox(Float64,y)))
-(x::Float32, y::Float32) = box(Float32,sub_float(unbox(Float32,x),unbox(Float32,y)))
-(x::Float64, y::Float64) = box(Float64,sub_float(unbox(Float64,x),unbox(Float64,y)))
*(x::Float32, y::Float32) = box(Float32,mul_float(unbox(Float32,x),unbox(Float32,y)))
*(x::Float64, y::Float64) = box(Float64,mul_float(unbox(Float64,x),unbox(Float64,y)))
/(x::Float32, y::Float32) = box(Float32,div_float(unbox(Float32,x),unbox(Float32,y)))
/(x::Float64, y::Float64) = box(Float64,div_float(unbox(Float64,x),unbox(Float64,y)))
muladd(x::Float32, y::Float32, z::Float32) = box(Float32,muladd_float(unbox(Float32,x),unbox(Float32,y),unbox(Float32,z)))
muladd(x::Float64, y::Float64, z::Float64) = box(Float64,muladd_float(unbox(Float64,x),unbox(Float64,y),unbox(Float64,z)))
# TODO: faster floating point div?
# TODO: faster floating point fld?
# TODO: faster floating point mod?
rem(x::Float32, y::Float32) = box(Float32,rem_float(unbox(Float32,x),unbox(Float32,y)))
rem(x::Float64, y::Float64) = box(Float64,rem_float(unbox(Float64,x),unbox(Float64,y)))
cld{T<:AbstractFloat}(x::T, y::T) = -fld(-x,y)
function mod{T<:AbstractFloat}(x::T, y::T)
r = rem(x,y)
if r == 0
copysign(r,y)
elseif (r > 0) $ (y > 0)
r+y
else
r
end
end
## floating point comparisons ##
==(x::Float32, y::Float32) = eq_float(unbox(Float32,x),unbox(Float32,y))
==(x::Float64, y::Float64) = eq_float(unbox(Float64,x),unbox(Float64,y))
!=(x::Float32, y::Float32) = ne_float(unbox(Float32,x),unbox(Float32,y))
!=(x::Float64, y::Float64) = ne_float(unbox(Float64,x),unbox(Float64,y))
<( x::Float32, y::Float32) = lt_float(unbox(Float32,x),unbox(Float32,y))
<( x::Float64, y::Float64) = lt_float(unbox(Float64,x),unbox(Float64,y))
<=(x::Float32, y::Float32) = le_float(unbox(Float32,x),unbox(Float32,y))
<=(x::Float64, y::Float64) = le_float(unbox(Float64,x),unbox(Float64,y))
isequal(x::Float32, y::Float32) = fpiseq(unbox(Float32,x),unbox(Float32,y))
isequal(x::Float64, y::Float64) = fpiseq(unbox(Float64,x),unbox(Float64,y))
isless( x::Float32, y::Float32) = fpislt(unbox(Float32,x),unbox(Float32,y))
isless( x::Float64, y::Float64) = fpislt(unbox(Float64,x),unbox(Float64,y))
function cmp(x::AbstractFloat, y::AbstractFloat)
(isnan(x) || isnan(y)) && throw(DomainError())
ifelse(x<y, -1, ifelse(x>y, 1, 0))
end
function cmp(x::Real, y::AbstractFloat)
isnan(y) && throw(DomainError())
ifelse(x<y, -1, ifelse(x>y, 1, 0))
end
function cmp(x::AbstractFloat, y::Real)
isnan(x) && throw(DomainError())
ifelse(x<y, -1, ifelse(x>y, 1, 0))
end
# Exact Float (Tf) vs Integer (Ti) comparisons
# Assumes:
# - typemax(Ti) == 2^n-1
# - typemax(Ti) can't be exactly represented by Tf:
# => Tf(typemax(Ti)) == 2^n or Inf
# - typemin(Ti) can be exactly represented by Tf
#
# 1. convert y::Ti to float fy::Tf
# 2. perform Tf comparison x vs fy
# 3. if x == fy, check if (1) resulted in rounding:
# a. convert fy back to Ti and compare with original y
# b. unsafe_convert undefined behaviour if fy == Tf(typemax(Ti))
# (but consequently x == fy > y)
for Ti in (Int64,UInt64,Int128,UInt128)
for Tf in (Float32,Float64)
@eval begin
function ==(x::$Tf, y::$Ti)
fy = ($Tf)(y)
(x == fy) & (fy != $(Tf(typemax(Ti)))) & (y == unsafe_trunc($Ti,fy))
end
==(y::$Ti, x::$Tf) = x==y
function <(x::$Ti, y::$Tf)
fx = ($Tf)(x)
(fx < y) | ((fx == y) & ((fx == $(Tf(typemax(Ti)))) | (x < unsafe_trunc($Ti,fx)) ))
end
function <=(x::$Ti, y::$Tf)
fx = ($Tf)(x)
(fx < y) | ((fx == y) & ((fx == $(Tf(typemax(Ti)))) | (x <= unsafe_trunc($Ti,fx)) ))
end
function <(x::$Tf, y::$Ti)
fy = ($Tf)(y)
(x < fy) | ((x == fy) & (fy < $(Tf(typemax(Ti)))) & (unsafe_trunc($Ti,fy) < y))
end
function <=(x::$Tf, y::$Ti)
fy = ($Tf)(y)
(x < fy) | ((x == fy) & (fy < $(Tf(typemax(Ti)))) & (unsafe_trunc($Ti,fy) <= y))
end
end
end
end
==(x::Float32, y::Union{Int32,UInt32}) = Float64(x)==Float64(y)
==(x::Union{Int32,UInt32}, y::Float32) = Float64(x)==Float64(y)
<(x::Float32, y::Union{Int32,UInt32}) = Float64(x)<Float64(y)
<(x::Union{Int32,UInt32}, y::Float32) = Float64(x)<Float64(y)
<=(x::Float32, y::Union{Int32,UInt32}) = Float64(x)<=Float64(y)
<=(x::Union{Int32,UInt32}, y::Float32) = Float64(x)<=Float64(y)
abs(x::Float64) = box(Float64,abs_float(unbox(Float64,x)))
abs(x::Float32) = box(Float32,abs_float(unbox(Float32,x)))
isnan(x::AbstractFloat) = x != x
isnan(x::Real) = false
isfinite(x::AbstractFloat) = x - x == 0
isfinite(x::Real) = decompose(x)[3] != 0
isfinite(x::Integer) = true
isinf(x::Real) = !isnan(x) & !isfinite(x)
## hashing small, built-in numeric types ##
hx(a::UInt64, b::Float64, h::UInt) = hash_uint64((3a + reinterpret(UInt64,b)) - h)
const hx_NaN = hx(UInt64(0), NaN, UInt(0 ))
hash(x::UInt64, h::UInt) = hx(x, Float64(x), h)
hash(x::Int64, h::UInt) = hx(reinterpret(UInt64,abs(x)), Float64(x), h)
hash(x::Float64, h::UInt) = isnan(x) ? (hx_NaN $ h) : hx(box(UInt64,fptoui(unbox(Float64,abs(x)))), x, h)
hash(x::Union{Bool,Char,Int8,UInt8,Int16,UInt16,Int32,UInt32}, h::UInt) = hash(Int64(x), h)
hash(x::Float32, h::UInt) = hash(Float64(x), h)
## precision, as defined by the effective number of bits in the mantissa ##
precision(::Type{Float16}) = 11
precision(::Type{Float32}) = 24
precision(::Type{Float64}) = 53
precision{T<:AbstractFloat}(::T) = precision(T)
function float_lex_order(f::Integer, delta::Integer)
# convert from signed magnitude to 2's complement and back
neg = f < 0
if neg
f = oftype(f, -(f & typemax(f)))
end
f = oftype(f, f + delta)
neg && f == 0 && return typemin(f) # nextfloat(-5e-324) === -0.0
f < 0 ? oftype(f, -(f & typemax(f))) : f
end
nextfloat(x::Float16, i::Integer) =
(isinf(x)&&sign(x)==sign(i)) ? x : reinterpret(Float16,float_lex_order(reinterpret(Int16,x), i))
nextfloat(x::Float32, i::Integer) =
(isinf(x)&&sign(x)==sign(i)) ? x : reinterpret(Float32,float_lex_order(reinterpret(Int32,x), i))
nextfloat(x::Float64, i::Integer) =
(isinf(x)&&sign(x)==sign(i)) ? x : reinterpret(Float64,float_lex_order(reinterpret(Int64,x), i))
nextfloat(x::AbstractFloat) = nextfloat(x,1)
prevfloat(x::AbstractFloat) = nextfloat(x,-1)
for Ti in (Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128)
for Tf in (Float32, Float64)
if sizeof(Ti) < sizeof(Tf) || Ti <: Unsigned # Tf(typemin(Ti))-1 is exact
@eval function trunc(::Type{$Ti},x::$Tf)
$(Tf(typemin(Ti))-one(Tf)) < x < $(Tf(typemax(Ti))+one(Tf)) || throw(InexactError())
unsafe_trunc($Ti,x)
end
else
@eval function trunc(::Type{$Ti},x::$Tf)
$(Tf(typemin(Ti))) <= x < $(Tf(typemax(Ti))) || throw(InexactError())
unsafe_trunc($Ti,x)
end
end
end
end
@eval begin
issubnormal(x::Float32) = (abs(x) < $(box(Float32,unbox(UInt32,0x00800000)))) & (x!=0)
issubnormal(x::Float64) = (abs(x) < $(box(Float64,unbox(UInt64,0x0010000000000000)))) & (x!=0)
typemin(::Type{Float16}) = $(box(Float16,unbox(UInt16,0xfc00)))
typemax(::Type{Float16}) = $(Inf16)
typemin(::Type{Float32}) = $(-Inf32)
typemax(::Type{Float32}) = $(Inf32)
typemin(::Type{Float64}) = $(-Inf64)
typemax(::Type{Float64}) = $(Inf64)
typemin{T<:Real}(x::T) = typemin(T)
typemax{T<:Real}(x::T) = typemax(T)
realmin(::Type{Float16}) = $(box(Float16,unbox(UInt16,0x0400)))
realmin(::Type{Float32}) = $(box(Float32,unbox(UInt32,0x00800000)))
realmin(::Type{Float64}) = $(box(Float64,unbox(UInt64,0x0010000000000000)))
realmax(::Type{Float16}) = $(box(Float16,unbox(UInt16,0x7bff)))
realmax(::Type{Float32}) = $(box(Float32,unbox(UInt32,0x7f7fffff)))
realmax(::Type{Float64}) = $(box(Float64,unbox(UInt64,0x7fefffffffffffff)))
realmin{T<:AbstractFloat}(x::T) = realmin(T)
realmax{T<:AbstractFloat}(x::T) = realmax(T)
realmin() = realmin(Float64)
realmax() = realmax(Float64)
eps(x::AbstractFloat) = isfinite(x) ? abs(x) >= realmin(x) ? ldexp(eps(typeof(x)),exponent(x)) : nextfloat(zero(x)) : oftype(x,NaN)
eps(::Type{Float16}) = $(box(Float16,unbox(UInt16,0x1400)))
eps(::Type{Float32}) = $(box(Float32,unbox(UInt32,0x34000000)))
eps(::Type{Float64}) = $(box(Float64,unbox(UInt64,0x3cb0000000000000)))
eps() = eps(Float64)
end
## byte order swaps for arbitrary-endianness serialization/deserialization ##
bswap(x::Float32) = box(Float32,bswap_int(unbox(Float32,x)))
bswap(x::Float64) = box(Float64,bswap_int(unbox(Float64,x)))
# bit patterns
reinterpret(::Type{Unsigned}, x::Float64) = reinterpret(UInt64,x)
reinterpret(::Type{Unsigned}, x::Float32) = reinterpret(UInt32,x)
sign_mask(::Type{Float64}) = 0x8000_0000_0000_0000
exponent_mask(::Type{Float64}) = 0x7ff0_0000_0000_0000
exponent_one(::Type{Float64}) = 0x3ff0_0000_0000_0000
exponent_half(::Type{Float64}) = 0x3fe0_0000_0000_0000
significand_mask(::Type{Float64}) = 0x000f_ffff_ffff_ffff
sign_mask(::Type{Float32}) = 0x8000_0000
exponent_mask(::Type{Float32}) = 0x7f80_0000
exponent_one(::Type{Float32}) = 0x3f80_0000
exponent_half(::Type{Float32}) = 0x3f00_0000
significand_mask(::Type{Float32}) = 0x007f_ffff
significand_bits{T<:AbstractFloat}(::Type{T}) = trailing_ones(significand_mask(T))
exponent_bits{T<:AbstractFloat}(::Type{T}) = sizeof(T)*8 - significand_bits(T) - 1
exponent_bias{T<:AbstractFloat}(::Type{T}) = Int(exponent_one(T) >> significand_bits(T))
## Array operations on floating point numbers ##
float{T<:AbstractFloat}(A::AbstractArray{T}) = A
function float{T}(A::AbstractArray{T})
if !isleaftype(T)
error("`float` not defined on abstractly-typed arrays; please convert to a more specific type")
end
convert(AbstractArray{typeof(float(zero(T)))}, A)
end
for fn in (:float,:big)
@eval begin
$fn(r::StepRange) = $fn(r.start):$fn(r.step):$fn(last(r))
$fn(r::UnitRange) = $fn(r.start):$fn(last(r))
$fn(r::FloatRange) = FloatRange($fn(r.start), $fn(r.step), r.len, $fn(r.divisor))
function $fn(r::LinSpace)
new_len = $fn(r.len)
new_len == r.len || error(string(r, ": too long for ", $fn))
LinSpace($fn(r.start), $fn(r.stop), new_len, $fn(r.divisor))
end
end
end
big{T<:AbstractFloat,N}(x::AbstractArray{T,N}) = convert(AbstractArray{BigFloat,N}, x)
big{T<:Integer,N}(x::AbstractArray{T,N}) = convert(AbstractArray{BigInt,N}, x)
|