/usr/share/julia/base/fft/FFTW.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 | # This file is a part of Julia. License is MIT: http://julialang.org/license
module FFTW
import ..DFT: fft, bfft, ifft, rfft, brfft, irfft, plan_fft, plan_bfft, plan_ifft, plan_rfft, plan_brfft, plan_irfft, fft!, bfft!, ifft!, plan_fft!, plan_bfft!, plan_ifft!, Plan, rfft_output_size, brfft_output_size, plan_inv, normalization, ScaledPlan
import Base: show, *, convert, unsafe_convert, size, strides, ndims, pointer, A_mul_B!
export r2r, r2r!, plan_r2r, plan_r2r!
export export_wisdom, import_wisdom, import_system_wisdom, forget_wisdom,
MEASURE, DESTROY_INPUT, UNALIGNED, CONSERVE_MEMORY, EXHAUSTIVE,
PRESERVE_INPUT, PATIENT, ESTIMATE, WISDOM_ONLY, NO_TIMELIMIT,
R2HC, HC2R, DHT, REDFT00, REDFT01, REDFT10, REDFT11,
RODFT00, RODFT01, RODFT10, RODFT11,
fftwNumber, fftwReal, fftwComplex, flops
## FFT: Implement fft by calling fftw.
const libfftw = Base.libfftw_name
const libfftwf = Base.libfftwf_name
const version = convert(VersionNumber, split(bytestring(cglobal((:fftw_version,Base.DFT.FFTW.libfftw), UInt8)), ['-', ' '])[2])
## Direction of FFT
const FORWARD = -1
const BACKWARD = 1
## FFTW Flags from fftw3.h
const MEASURE = UInt32(0)
const DESTROY_INPUT = UInt32(1 << 0)
const UNALIGNED = UInt32(1 << 1)
const CONSERVE_MEMORY = UInt32(1 << 2)
const EXHAUSTIVE = UInt32(1 << 3) # NO_EXHAUSTIVE is default
const PRESERVE_INPUT = UInt32(1 << 4) # cancels DESTROY_INPUT
const PATIENT = UInt32(1 << 5) # IMPATIENT is default
const ESTIMATE = UInt32(1 << 6)
const WISDOM_ONLY = UInt32(1 << 21)
const NO_SIMD = UInt32(1 << 17) # disable SIMD, useful for benchmarking
## R2R transform kinds
const R2HC = 0
const HC2R = 1
const DHT = 2
const REDFT00 = 3
const REDFT01 = 4
const REDFT10 = 5
const REDFT11 = 6
const RODFT00 = 7
const RODFT01 = 8
const RODFT10 = 9
const RODFT11 = 10
let k2s = Dict{Int,ASCIIString}(R2HC => "R2HC", HC2R => "HC2R", DHT => "DHT", REDFT00 => "REDFT00", REDFT01 => "REDFT01", REDFT10 => "REDFT10", REDFT11 => "REDFT11", RODFT00 => "RODFT00", RODFT01 => "RODFT01", RODFT10 => "RODFT10", RODFT11 => "RODFT11")
global kind2string
kind2string(k::Integer) = k2s[Int(k)]
end
# FFTW floating-point types:
typealias fftwNumber Union{Float64,Float32,Complex128,Complex64}
typealias fftwReal Union{Float64,Float32}
typealias fftwComplex Union{Complex128,Complex64}
typealias fftwDouble Union{Float64,Complex128}
typealias fftwSingle Union{Float32,Complex64}
typealias fftwTypeDouble Union{Type{Float64},Type{Complex128}}
typealias fftwTypeSingle Union{Type{Float32},Type{Complex64}}
# For ESTIMATE plans, FFTW allows one to pass NULL for the array pointer,
# since it is not written to. Hence, it is convenient to create an
# array-like type that carries a size and a stride like a "real" array
# but which is converted to C_NULL as a pointer.
immutable FakeArray{T, N} <: DenseArray{T, N}
sz::NTuple{N, Int}
st::NTuple{N, Int}
end
size(a::FakeArray) = a.sz
strides(a::FakeArray) = a.st
unsafe_convert{T}(::Type{Ptr{T}}, a::FakeArray{T}) = convert(Ptr{T}, C_NULL)
pointer{T}(a::FakeArray{T}) = convert(Ptr{T}, C_NULL)
FakeArray{T, N}(::Type{T}, sz::NTuple{N, Int}) =
FakeArray{T, N}(sz, colmajorstrides(sz))
FakeArray{T}(::Type{T}, sz::Int...) = FakeArray(T, sz)
fakesimilar(flags, X, T) = flags & ESTIMATE != 0 ? FakeArray(T, size(X)) : Array(T, size(X))
alignment_of(A::FakeArray) = Int32(0)
## Julia wrappers around FFTW functions
# Wisdom
# Import and export wisdom to/from a single file for all precisions,
# which is more user-friendly than requiring the user to call a
# separate routine depending on the fp precision of the plans. This
# requires a bit of trickness since we have to (a) use the libc file
# I/O routines with fftw_export_wisdom_to_file/import_wisdom_from_file
# (b) we need 256 bytes of space padding between the wisdoms to work
# around FFTW's internal file i/o buffering [see the BUFSZ constant in
# FFTW's api/import-wisdom-from-file.c file].
function export_wisdom(fname::AbstractString)
f = ccall(:fopen, Ptr{Void}, (Cstring,Ptr{UInt8}), fname, "w")
systemerror("could not open wisdom file $fname for writing", f == C_NULL)
ccall((:fftw_export_wisdom_to_file,libfftw), Void, (Ptr{Void},), f)
ccall(:fputs, Int32, (Ptr{UInt8},Ptr{Void}), " "^256, f)
ccall((:fftwf_export_wisdom_to_file,libfftwf), Void, (Ptr{Void},), f)
ccall(:fclose, Void, (Ptr{Void},), f)
end
function import_wisdom(fname::AbstractString)
f = ccall(:fopen, Ptr{Void}, (Cstring,Ptr{UInt8}), fname, "r")
systemerror("could not open wisdom file $fname for reading", f == C_NULL)
if ccall((:fftw_import_wisdom_from_file,libfftw),Int32,(Ptr{Void},),f)==0||
ccall((:fftwf_import_wisdom_from_file,libfftwf),Int32,(Ptr{Void},),f)==0
error("failed to import wisdom from $fname")
end
ccall(:fclose, Void, (Ptr{Void},), f)
end
function import_system_wisdom()
if ccall((:fftw_import_system_wisdom,libfftw), Int32, ()) == 0 ||
ccall((:fftwf_import_system_wisdom,libfftwf), Int32, ()) == 0
error("failed to import system wisdom")
end
end
function forget_wisdom()
ccall((:fftw_forget_wisdom,libfftw), Void, ())
ccall((:fftwf_forget_wisdom,libfftwf), Void, ())
end
# Threads
let initialized = false
global set_num_threads
function set_num_threads(nthreads::Integer)
if !initialized
# must re-initialize FFTW if any FFTW routines have been called
ccall((:fftw_cleanup,libfftw), Void, ())
ccall((:fftwf_cleanup,libfftwf), Void, ())
stat = ccall((:fftw_init_threads,libfftw), Int32, ())
statf = ccall((:fftwf_init_threads,libfftwf), Int32, ())
if stat == 0 || statf == 0
error("could not initialize FFTW threads")
end
initialized = true
end
ccall((:fftw_plan_with_nthreads,libfftw), Void, (Int32,), nthreads)
ccall((:fftwf_plan_with_nthreads,libfftwf), Void, (Int32,), nthreads)
end
end
# pointer type for fftw_plan (opaque pointer)
immutable fftw_plan_struct end
typealias PlanPtr Ptr{fftw_plan_struct}
# Planner timelimits
const NO_TIMELIMIT = -1.0 # from fftw3.h
set_timelimit(precision::fftwTypeDouble,seconds) =
ccall((:fftw_set_timelimit,libfftw), Void, (Float64,), seconds)
set_timelimit(precision::fftwTypeSingle,seconds) =
ccall((:fftwf_set_timelimit,libfftwf), Void, (Float64,), seconds)
# Array alignment mod 16:
# FFTW plans may depend on the alignment of the array mod 16 bytes,
# i.e. the address mod 16 of the first element of the array, in order
# to exploit SIMD operations. Julia arrays are, by default, aligned
# to 16-byte boundaries (address mod 16 == 0), but this may not be
# true for data imported from external C code, or for SubArrays.
# Use the undocumented routine fftw_alignment_of to determine the
# alignment of a given pointer modulo whatever FFTW needs; this
# function will be documented in FFTW 3.3.4.
if Base.libfftw_name == "libmkl_rt"
alignment_of{T<:fftwDouble}(A::StridedArray{T}) =
convert(Int32, convert(Int64, pointer(A)) % 16)
alignment_of{T<:fftwSingle}(A::StridedArray{T}) =
convert(Int32, convert(Int64, pointer(A)) % 16)
else
alignment_of{T<:fftwDouble}(A::StridedArray{T}) =
ccall((:fftw_alignment_of, libfftw), Int32, (Ptr{T},), A)
alignment_of{T<:fftwSingle}(A::StridedArray{T}) =
ccall((:fftwf_alignment_of, libfftwf), Int32, (Ptr{T},), A)
end
# FFTWPlan (low-level)
# low-level storage of the FFTW plan, along with the information
# needed to determine whether it is applicable. We need to put
# this into a type to support a finalizer on the fftw_plan.
# K is FORWARD/BACKWARD for forward/backward or r2c/c2r plans, respectively.
# For r2r plans, K is a tuple of the transform kinds along each dimension.
abstract FFTWPlan{T<:fftwNumber,K,inplace} <: Plan{T}
for P in (:cFFTWPlan, :rFFTWPlan, :r2rFFTWPlan) # complex, r2c/c2r, and r2r
@eval begin
type $P{T<:fftwNumber,K,inplace,N} <: FFTWPlan{T,K,inplace}
plan::PlanPtr
sz::NTuple{N, Int} # size of array on which plan operates (Int tuple)
osz::NTuple{N, Int} # size of output array (Int tuple)
istride::NTuple{N, Int} # strides of input
ostride::NTuple{N, Int} # strides of output
ialign::Int32 # alignment mod 16 of input
oalign::Int32 # alignment mod 16 of input
flags::UInt32 # planner flags
region::Any # region (iterable) of dims that are transormed
pinv::ScaledPlan
function $P(plan::PlanPtr, flags::Integer, R::Any,
X::StridedArray{T, N}, Y::StridedArray)
p = new(plan, size(X), size(Y), strides(X), strides(Y),
alignment_of(X), alignment_of(Y), flags, R)
finalizer(p, destroy_plan)
p
end
end
end
end
size(p::FFTWPlan) = p.sz
unsafe_convert(::Type{PlanPtr}, p::FFTWPlan) = p.plan
destroy_plan{T<:fftwDouble}(plan::FFTWPlan{T}) =
ccall((:fftw_destroy_plan,libfftw), Void, (PlanPtr,), plan)
destroy_plan{T<:fftwSingle}(plan::FFTWPlan{T}) =
ccall((:fftwf_destroy_plan,libfftwf), Void, (PlanPtr,), plan)
cost{T<:fftwDouble}(plan::FFTWPlan{T}) =
ccall((:fftw_cost,libfftw), Float64, (PlanPtr,), plan)
cost{T<:fftwSingle}(plan::FFTWPlan{T}) =
ccall((:fftwf_cost,libfftwf), Float64, (PlanPtr,), plan)
function arithmetic_ops{T<:fftwDouble}(plan::FFTWPlan{T})
# Change to individual Ref after we can allocate them on stack
ref = Ref{NTuple{3, Float64}}()
ptr = Ptr{Float64}(Base.unsafe_convert(Ptr{NTuple{3, Float64}}, ref))
ccall((:fftw_flops,libfftw), Void,
(PlanPtr,Ptr{Float64},Ptr{Float64},Ptr{Float64}),
plan, ptr, ptr + 8, ptr + 16)
(round(Int64, ref[][1]), round(Int64, ref[][2]), round(Int64, ref[][3]))
end
function arithmetic_ops{T<:fftwSingle}(plan::FFTWPlan{T})
# Change to individual Ref after we can allocate them on stack
ref = Ref{NTuple{3, Float64}}()
ptr = Ptr{Float64}(Base.unsafe_convert(Ptr{NTuple{3, Float64}}, ref))
ccall((:fftwf_flops,libfftwf), Void,
(PlanPtr,Ptr{Float64},Ptr{Float64},Ptr{Float64}),
plan, ptr, ptr + 8, ptr + 16)
(round(Int64, ref[][1]), round(Int64, ref[][2]), round(Int64, ref[][3]))
end
flops(plan::FFTWPlan) = let ops = arithmetic_ops(plan)
ops[1] + ops[2] + 2 * ops[3] # add + mul + 2*fma
end
# Pretty-printing plans
function showfftdims(io, sz::Dims, istride::Dims, T)
if isempty(sz)
print(io, "0-dimensional")
elseif length(sz) == 1
print(io, sz[1], "-element")
else
print(io, join(sz, "x"))
end
if istride == colmajorstrides(sz)
print(io, " array of ", T)
else
print(io, " $istride-strided array of ", T)
end
end
# The sprint_plan function was released in FFTW 3.3.4
sprint_plan_{T<:fftwDouble}(plan::FFTWPlan{T}) =
ccall((:fftw_sprint_plan,libfftw), Ptr{UInt8}, (PlanPtr,), plan)
sprint_plan_{T<:fftwSingle}(plan::FFTWPlan{T}) =
ccall((:fftwf_sprint_plan,libfftwf), Ptr{UInt8}, (PlanPtr,), plan)
function sprint_plan(plan::FFTWPlan)
pointer_to_string(sprint_plan_(plan), true)
end
function show{T,K,inplace}(io::IO, p::cFFTWPlan{T,K,inplace})
print(io, inplace ? "FFTW in-place " : "FFTW ",
K < 0 ? "forward" : "backward", " plan for ")
showfftdims(io, p.sz, p.istride, T)
version >= v"3.3.4" && print(io, "\n", sprint_plan(p))
end
function show{T,K,inplace}(io::IO, p::rFFTWPlan{T,K,inplace})
print(io, inplace ? "FFTW in-place " : "FFTW ",
K < 0 ? "real-to-complex" : "complex-to-real",
" plan for ")
showfftdims(io, p.sz, p.istride, T)
version >= v"3.3.4" && print(io, "\n", sprint_plan(p))
end
function show{T,K,inplace}(io::IO, p::r2rFFTWPlan{T,K,inplace})
print(io, inplace ? "FFTW in-place r2r " : "FFTW r2r ")
if isempty(K)
print(io, "0-dimensional")
elseif K == ntuple(i -> K[1], length(K))
print(io, kind2string(K[1]))
if length(K) > 1
print(io, "^", length(K))
end
else
print(io, join(map(kind2string, K), "x"))
end
print(io, " plan for ")
showfftdims(io, p.sz, p.istride, T)
version >= v"3.3.4" && print(io, "\n", sprint_plan(p))
end
# Check whether a FFTWPlan is applicable to a given input array, and
# throw an informative error if not:
function assert_applicable{T}(p::FFTWPlan{T}, X::StridedArray{T})
if size(X) != p.sz
throw(ArgumentError("FFTW plan applied to wrong-size array"))
elseif strides(X) != p.istride
throw(ArgumentError("FFTW plan applied to wrong-strides array"))
elseif alignment_of(X) != p.ialign || p.flags & UNALIGNED != 0
throw(ArgumentError("FFTW plan applied to array with wrong memory alignment"))
end
end
function assert_applicable{T,K,inplace}(p::FFTWPlan{T,K,inplace}, X::StridedArray{T}, Y::StridedArray)
assert_applicable(p, X)
if size(Y) != p.osz
throw(ArgumentError("FFTW plan applied to wrong-size output"))
elseif strides(Y) != p.ostride
throw(ArgumentError("FFTW plan applied to wrong-strides output"))
elseif alignment_of(Y) != p.oalign || p.flags & UNALIGNED != 0
throw(ArgumentError("FFTW plan applied to output with wrong memory alignment"))
elseif inplace != (pointer(X) == pointer(Y))
throw(ArgumentError(string("FFTW ",
inplace ? "in-place" : "out-of-place",
" plan applied to ",
inplace ? "out-of-place" : "in-place",
" data")))
end
end
# strides for a column-major (Julia-style) array of size == sz
colmajorstrides(sz) = isempty(sz) ? () : (1,cumprod(Int[sz[1:end-1]...])...)
# Execute
unsafe_execute!{T<:fftwDouble}(plan::FFTWPlan{T}) =
ccall((:fftw_execute,libfftw), Void, (PlanPtr,), plan)
unsafe_execute!{T<:fftwSingle}(plan::FFTWPlan{T}) =
ccall((:fftwf_execute,libfftwf), Void, (PlanPtr,), plan)
unsafe_execute!{T<:fftwDouble}(plan::cFFTWPlan{T},
X::StridedArray{T}, Y::StridedArray{T}) =
ccall((:fftw_execute_dft,libfftw), Void,
(PlanPtr,Ptr{T},Ptr{T}), plan, X, Y)
unsafe_execute!{T<:fftwSingle}(plan::cFFTWPlan{T},
X::StridedArray{T}, Y::StridedArray{T}) =
ccall((:fftwf_execute_dft,libfftwf), Void,
(PlanPtr,Ptr{T},Ptr{T}), plan, X, Y)
unsafe_execute!(plan::rFFTWPlan{Float64,FORWARD},
X::StridedArray{Float64}, Y::StridedArray{Complex128}) =
ccall((:fftw_execute_dft_r2c,libfftw), Void,
(PlanPtr,Ptr{Float64},Ptr{Complex128}), plan, X, Y)
unsafe_execute!(plan::rFFTWPlan{Float32,FORWARD},
X::StridedArray{Float32}, Y::StridedArray{Complex64}) =
ccall((:fftwf_execute_dft_r2c,libfftwf), Void,
(PlanPtr,Ptr{Float32},Ptr{Complex64}), plan, X, Y)
unsafe_execute!(plan::rFFTWPlan{Complex128,BACKWARD},
X::StridedArray{Complex128}, Y::StridedArray{Float64}) =
ccall((:fftw_execute_dft_c2r,libfftw), Void,
(PlanPtr,Ptr{Complex128},Ptr{Float64}), plan, X, Y)
unsafe_execute!(plan::rFFTWPlan{Complex64,BACKWARD},
X::StridedArray{Complex64}, Y::StridedArray{Float32}) =
ccall((:fftwf_execute_dft_c2r,libfftwf), Void,
(PlanPtr,Ptr{Complex64},Ptr{Float32}), plan, X, Y)
unsafe_execute!{T<:fftwDouble}(plan::r2rFFTWPlan{T},
X::StridedArray{T}, Y::StridedArray{T}) =
ccall((:fftw_execute_r2r,libfftw), Void,
(PlanPtr,Ptr{T},Ptr{T}), plan, X, Y)
unsafe_execute!{T<:fftwSingle}(plan::r2rFFTWPlan{T},
X::StridedArray{T}, Y::StridedArray{T}) =
ccall((:fftwf_execute_r2r,libfftwf), Void,
(PlanPtr,Ptr{T},Ptr{T}), plan, X, Y)
# NOTE ON GC (garbage collection):
# The FFTWPlan has a finalizer so that gc will destroy the plan,
# which is necessary for gc to work with plan_fft. However,
# even when we are creating a single-use FFTWPlan [e.g. for fftn(x)],
# we intentionally do NOT call destroy_plan explicitly, and instead
# wait for garbage collection. The reason is that, in the common
# case where the user calls fft(x) a second time soon afterwards,
# if destroy_plan has not yet been called then FFTW will internally
# re-use the table of trigonometric constants from the first plan.
# Compute dims and howmany for FFTW guru planner
function dims_howmany(X::StridedArray, Y::StridedArray,
sz::Array{Int,1}, region)
reg = [region...]
if length(unique(reg)) < length(reg)
throw(ArgumentError("each dimension can be transformed at most once"))
end
ist = [strides(X)...]
ost = [strides(Y)...]
dims = [sz[reg] ist[reg] ost[reg]]'
oreg = [1:ndims(X);]
oreg[reg] = 0
oreg = filter(d -> d > 0, oreg)
howmany = [sz[oreg] ist[oreg] ost[oreg]]'
return (dims, howmany)
end
# check & convert kinds into int32 array with same length as region
function fix_kinds(region, kinds)
if length(kinds) != length(region)
if length(kinds) > length(region)
throw(ArgumentError("too many transform kinds"))
else
if length(kinds) == 0
throw(ArgumentError("must supply a transform kind"))
end
k = Array(Int32, length(region))
k[1:length(kinds)] = [kinds...]
k[length(kinds)+1:end] = kinds[end]
kinds = k
end
else
kinds = Int32[kinds...]
end
for i = 1:length(kinds)
if kinds[i] < 0 || kinds[i] > 10
throw(ArgumentError("invalid transform kind"))
end
end
return kinds
end
# low-level FFTWPlan creation (for internal use in FFTW module)
for (Tr,Tc,fftw,lib) in ((:Float64,:Complex128,"fftw",libfftw),
(:Float32,:Complex64,"fftwf",libfftwf))
@eval function call{K,inplace,N}(::Type{cFFTWPlan{$Tc,K,inplace,N}},
X::StridedArray{$Tc,N},
Y::StridedArray{$Tc,N},
region, flags::Integer, timelimit::Real)
direction = K
set_timelimit($Tr, timelimit)
R = copy(region)
dims, howmany = dims_howmany(X, Y, [size(X)...], R)
plan = ccall(($(string(fftw,"_plan_guru64_dft")),$lib),
PlanPtr,
(Int32, Ptr{Int}, Int32, Ptr{Int},
Ptr{$Tc}, Ptr{$Tc}, Int32, UInt32),
size(dims,2), dims, size(howmany,2), howmany,
X, Y, direction, flags)
set_timelimit($Tr, NO_TIMELIMIT)
if plan == C_NULL
error("FFTW could not create plan") # shouldn't normally happen
end
return cFFTWPlan{$Tc,K,inplace,N}(plan, flags, R, X, Y)
end
@eval function call{inplace,N}(::Type{rFFTWPlan{$Tr,$FORWARD,inplace,N}},
X::StridedArray{$Tr,N},
Y::StridedArray{$Tc,N},
region, flags::Integer, timelimit::Real)
R = copy(region)
region = circshift([region...],-1) # FFTW halves last dim
set_timelimit($Tr, timelimit)
dims, howmany = dims_howmany(X, Y, [size(X)...], region)
plan = ccall(($(string(fftw,"_plan_guru64_dft_r2c")),$lib),
PlanPtr,
(Int32, Ptr{Int}, Int32, Ptr{Int},
Ptr{$Tr}, Ptr{$Tc}, UInt32),
size(dims,2), dims, size(howmany,2), howmany,
X, Y, flags)
set_timelimit($Tr, NO_TIMELIMIT)
if plan == C_NULL
error("FFTW could not create plan") # shouldn't normally happen
end
return rFFTWPlan{$Tr,$FORWARD,inplace,N}(plan, flags, R, X, Y)
end
@eval function call{inplace,N}(::Type{rFFTWPlan{$Tc,$BACKWARD,inplace,N}},
X::StridedArray{$Tc,N},
Y::StridedArray{$Tr,N},
region, flags::Integer, timelimit::Real)
R = copy(region)
region = circshift([region...],-1) # FFTW halves last dim
set_timelimit($Tr, timelimit)
dims, howmany = dims_howmany(X, Y, [size(Y)...], region)
plan = ccall(($(string(fftw,"_plan_guru64_dft_c2r")),$lib),
PlanPtr,
(Int32, Ptr{Int}, Int32, Ptr{Int},
Ptr{$Tc}, Ptr{$Tr}, UInt32),
size(dims,2), dims, size(howmany,2), howmany,
X, Y, flags)
set_timelimit($Tr, NO_TIMELIMIT)
if plan == C_NULL
error("FFTW could not create plan") # shouldn't normally happen
end
return rFFTWPlan{$Tc,$BACKWARD,inplace,N}(plan, flags, R, X, Y)
end
@eval function call{inplace,N}(::Type{r2rFFTWPlan{$Tr,ANY,inplace,N}},
X::StridedArray{$Tr,N},
Y::StridedArray{$Tr,N},
region, kinds, flags::Integer,
timelimit::Real)
R = copy(region)
knd = fix_kinds(region, kinds)
set_timelimit($Tr, timelimit)
dims, howmany = dims_howmany(X, Y, [size(X)...], region)
plan = ccall(($(string(fftw,"_plan_guru64_r2r")),$lib),
PlanPtr,
(Int32, Ptr{Int}, Int32, Ptr{Int},
Ptr{$Tr}, Ptr{$Tr}, Ptr{Int32}, UInt32),
size(dims,2), dims, size(howmany,2), howmany,
X, Y, knd, flags)
set_timelimit($Tr, NO_TIMELIMIT)
if plan == C_NULL
error("FFTW could not create plan") # shouldn't normally happen
end
r2rFFTWPlan{$Tr,(map(Int,knd)...),inplace,N}(plan, flags, R, X, Y)
end
# support r2r transforms of complex = transforms of real & imag parts
@eval function call{inplace,N}(::Type{r2rFFTWPlan{$Tc,ANY,inplace,N}},
X::StridedArray{$Tc,N},
Y::StridedArray{$Tc,N},
region, kinds, flags::Integer,
timelimit::Real)
R = copy(region)
knd = fix_kinds(region, kinds)
set_timelimit($Tr, timelimit)
dims, howmany = dims_howmany(X, Y, [size(X)...], region)
dims[2:3, 1:size(dims,2)] *= 2
howmany[2:3, 1:size(howmany,2)] *= 2
howmany = [howmany [2,1,1]] # append loop over real/imag parts
plan = ccall(($(string(fftw,"_plan_guru64_r2r")),$lib),
PlanPtr,
(Int32, Ptr{Int}, Int32, Ptr{Int},
Ptr{$Tc}, Ptr{$Tc}, Ptr{Int32}, UInt32),
size(dims,2), dims, size(howmany,2), howmany,
X, Y, knd, flags)
set_timelimit($Tr, NO_TIMELIMIT)
if plan == C_NULL
error("FFTW could not create plan") # shouldn't normally happen
end
r2rFFTWPlan{$Tc,(map(Int,knd)...),inplace,N}(plan, flags, R, X, Y)
end
end
# Convert arrays of numeric types to FFTW-supported packed complex-float types
# (FIXME: is there a way to use the Julia promotion rules more cleverly here?)
fftwcomplex{T<:fftwComplex}(X::StridedArray{T}) = X
fftwcomplex{T<:fftwReal}(X::AbstractArray{T}) =
copy!(Array(typeof(complex(one(T))), size(X)), X)
fftwcomplex{T<:Real}(X::AbstractArray{T}) = copy!(Array(Complex128, size(X)),X)
fftwcomplex{T<:Complex}(X::AbstractArray{T}) =
copy!(Array(Complex128, size(X)), X)
fftwfloat{T<:fftwReal}(X::StridedArray{T}) = X
fftwfloat{T<:Real}(X::AbstractArray{T}) = copy!(Array(Float64, size(X)), X)
fftwfloat{T<:Complex}(X::AbstractArray{T}) = fftwcomplex(X)
for (f,direction) in ((:fft,FORWARD), (:bfft,BACKWARD))
plan_f = symbol("plan_",f)
plan_f! = symbol("plan_",f,"!")
idirection = -direction
@eval begin
function $plan_f{T<:fftwComplex,N}(X::StridedArray{T,N}, region;
flags::Integer=ESTIMATE,
timelimit::Real=NO_TIMELIMIT)
cFFTWPlan{T,$direction,false,N}(X, fakesimilar(flags, X, T),
region, flags, timelimit)
end
function $plan_f!{T<:fftwComplex,N}(X::StridedArray{T,N}, region;
flags::Integer=ESTIMATE,
timelimit::Real=NO_TIMELIMIT)
cFFTWPlan{T,$direction,true,N}(X, X, region, flags, timelimit)
end
$plan_f{T<:fftwComplex}(X::StridedArray{T}; kws...) =
$plan_f(X, 1:ndims(X); kws...)
$plan_f!{T<:fftwComplex}(X::StridedArray{T}; kws...) =
$plan_f!(X, 1:ndims(X); kws...)
function plan_inv{T<:fftwComplex,N,inplace}(p::cFFTWPlan{T,$direction,inplace,N})
X = Array(T, p.sz)
Y = inplace ? X : fakesimilar(p.flags, X, T)
ScaledPlan(cFFTWPlan{T,$idirection,inplace,N}(X, Y, p.region,
p.flags, NO_TIMELIMIT),
normalization(X, p.region))
end
end
end
function A_mul_B!{T}(y::StridedArray{T}, p::cFFTWPlan{T}, x::StridedArray{T})
assert_applicable(p, x, y)
unsafe_execute!(p, x, y)
return y
end
function *{T,K,N}(p::cFFTWPlan{T,K,false}, x::StridedArray{T,N})
assert_applicable(p, x)
y = Array(T, p.osz)::Array{T,N}
unsafe_execute!(p, x, y)
return y
end
function *{T,K}(p::cFFTWPlan{T,K,true}, x::StridedArray{T})
assert_applicable(p, x)
unsafe_execute!(p, x, x)
return x
end
# rfft/brfft and planned variants. No in-place version for now.
for (Tr,Tc) in ((:Float32,:Complex64),(:Float64,:Complex128))
# Note: use $FORWARD and $BACKWARD below because of issue #9775
@eval begin
function plan_rfft{N}(X::StridedArray{$Tr,N}, region;
flags::Integer=ESTIMATE,
timelimit::Real=NO_TIMELIMIT)
osize = rfft_output_size(X, region)
Y = flags&ESTIMATE != 0 ? FakeArray($Tc,osize...) : Array($Tc,osize...)
rFFTWPlan{$Tr,$FORWARD,false,N}(X, Y, region, flags, timelimit)
end
function plan_brfft{N}(X::StridedArray{$Tc,N}, d::Integer, region;
flags::Integer=ESTIMATE,
timelimit::Real=NO_TIMELIMIT)
osize = brfft_output_size(X, d, region)
Y = flags&ESTIMATE != 0 ? FakeArray($Tr,osize...) : Array($Tr,osize...)
# FFTW currently doesn't support PRESERVE_INPUT for
# multidimensional out-of-place c2r transforms, so
# we have to handle 1d and >1d cases separately with a copy. Ugh.
if length(region) <= 1
rFFTWPlan{$Tc,$BACKWARD,false,N}(X, Y, region,
flags | PRESERVE_INPUT,
timelimit)
else
rFFTWPlan{$Tc,$BACKWARD,false,N}(copy(X), Y, region, flags,
timelimit)
end
end
plan_rfft(X::StridedArray{$Tr};kws...)=plan_rfft(X,1:ndims(X);kws...)
plan_brfft(X::StridedArray{$Tr};kws...)=plan_brfft(X,1:ndims(X);kws...)
function plan_inv{N}(p::rFFTWPlan{$Tr,$FORWARD,false,N})
X = Array($Tr, p.sz)
Y = p.flags&ESTIMATE != 0 ? FakeArray($Tc,p.osz) : Array($Tc,p.osz)
ScaledPlan(rFFTWPlan{$Tc,$BACKWARD,false,N}(Y, X, p.region,
length(p.region) <= 1 ?
p.flags | PRESERVE_INPUT :
p.flags, NO_TIMELIMIT),
normalization(X, p.region))
end
function plan_inv{N}(p::rFFTWPlan{$Tc,$BACKWARD,false,N})
X = Array($Tc, p.sz)
Y = p.flags&ESTIMATE != 0 ? FakeArray($Tr,p.osz) : Array($Tr,p.osz)
ScaledPlan(rFFTWPlan{$Tr,$FORWARD,false,N}(Y, X, p.region,
p.flags, NO_TIMELIMIT),
normalization(Y, p.region))
end
function A_mul_B!(y::StridedArray{$Tc}, p::rFFTWPlan{$Tr,$FORWARD}, x::StridedArray{$Tr})
assert_applicable(p, x, y)
unsafe_execute!(p, x, y)
return y
end
function A_mul_B!(y::StridedArray{$Tr}, p::rFFTWPlan{$Tc,$BACKWARD}, x::StridedArray{$Tc})
assert_applicable(p, x, y)
unsafe_execute!(p, x, y) # note: may overwrite x as well as y!
return y
end
function *{N}(p::rFFTWPlan{$Tr,$FORWARD,false}, x::StridedArray{$Tr,N})
assert_applicable(p, x)
y = Array($Tc, p.osz)::Array{$Tc,N}
unsafe_execute!(p, x, y)
return y
end
function *{N}(p::rFFTWPlan{$Tc,$BACKWARD,false}, x::StridedArray{$Tc,N})
if p.flags & PRESERVE_INPUT != 0
assert_applicable(p, x)
y = Array($Tr, p.osz)::Array{$Tr,N}
unsafe_execute!(p, x, y)
else # need to make a copy to avoid overwriting x
xc = copy(x)
assert_applicable(p, xc)
y = Array($Tr, p.osz)::Array{$Tr,N}
unsafe_execute!(p, xc, y)
end
return y
end
end
end
doc"""
```rst
.. plan_rfft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Pre-plan an optimized real-input FFT, similar to :func:`plan_fft`
except for :func:`rfft` instead of :func:`fft`. The first two
arguments, and the size of the transformed result, are the same as
for :func:`rfft`.
```
"""
plan_rfft
doc"""
```rst
.. plan_brfft(A, d [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Pre-plan an optimized real-input unnormalized transform, similar to
:func:`plan_rfft` except for :func:`brfft` instead of :func:`rfft`.
The first two arguments and the size of the transformed result, are
the same as for :func:`brfft`.
```
"""
plan_brfft
# FFTW r2r transforms (low-level interface)
for f in (:r2r, :r2r!)
pf = symbol("plan_", f)
@eval begin
$f{T<:fftwNumber}(x::AbstractArray{T}, kinds) = $pf(x, kinds) * x
$f{T<:fftwNumber}(x::AbstractArray{T}, kinds, region) = $pf(x, kinds, region) * x
$pf(x::AbstractArray, kinds; kws...) = $pf(x, kinds, 1:ndims(x); kws...)
$f{T<:Real}(x::AbstractArray{T}, kinds, region=1:ndims(x)) = $f(fftwfloat(x), kinds, region)
$pf{T<:Real}(x::AbstractArray{T}, kinds, region; kws...) = $pf(fftwfloat(x), kinds, region; kws...)
$f{T<:Complex}(x::AbstractArray{T}, kinds, region=1:ndims(x)) = $f(fftwcomplex(x), kinds, region)
$pf{T<:Complex}(x::AbstractArray{T}, kinds, region; kws...) = $pf(fftwcomplex(x), kinds, region; kws...)
end
end
function plan_r2r{T<:fftwNumber,N}(X::StridedArray{T,N}, kinds, region;
flags::Integer=ESTIMATE,
timelimit::Real=NO_TIMELIMIT)
r2rFFTWPlan{T,ANY,false,N}(X, fakesimilar(flags, X, T), region, kinds,
flags, timelimit)
end
function plan_r2r!{T<:fftwNumber,N}(X::StridedArray{T,N}, kinds, region;
flags::Integer=ESTIMATE,
timelimit::Real=NO_TIMELIMIT)
r2rFFTWPlan{T,ANY,true,N}(X, X, region, kinds, flags, timelimit)
end
doc"""
```rst
.. r2r(A, kind [, dims])
Performs a multidimensional real-input/real-output (r2r) transform
of type ``kind`` of the array ``A``, as defined in the FFTW manual.
``kind`` specifies either a discrete cosine transform of various types
(``FFTW.REDFT00``, ``FFTW.REDFT01``, ``FFTW.REDFT10``, or
``FFTW.REDFT11``), a discrete sine transform of various types
(``FFTW.RODFT00``, ``FFTW.RODFT01``, ``FFTW.RODFT10``, or
``FFTW.RODFT11``), a real-input DFT with halfcomplex-format output
(``FFTW.R2HC`` and its inverse ``FFTW.HC2R``), or a discrete
Hartley transform (``FFTW.DHT``). The ``kind`` argument may be
an array or tuple in order to specify different transform types
along the different dimensions of ``A``; ``kind[end]`` is used
for any unspecified dimensions. See the FFTW manual for precise
definitions of these transform types, at http://www.fftw.org/doc.
The optional ``dims`` argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. ``kind[i]`` is then the transform type for ``dims[i]``,
with ``kind[end]`` being used for ``i > length(kind)``.
See also :func:`plan_r2r` to pre-plan optimized r2r transforms.
```
"""
FFTW.r2r
doc"""
```rst
.. r2r!(A, kind [, dims])
Same as :func:`r2r`, but operates in-place on ``A``, which must be
an array of real or complex floating-point numbers.
```
"""
FFTW.r2r!
doc"""
```rst
.. plan_r2r!(A, kind [, dims [, flags [, timelimit]]])
Similar to :func:`Base.plan_fft`, but corresponds to :func:`r2r!`.
```
"""
FFTW.plan_r2r!
doc"""
```rst
.. plan_r2r(A, kind [, dims [, flags [, timelimit]]])
Pre-plan an optimized r2r transform, similar to :func:`Base.plan_fft`
except that the transforms (and the first three arguments)
correspond to :func:`r2r` and :func:`r2r!`, respectively.
```
"""
FFTW.plan_r2r
# mapping from r2r kind to the corresponding inverse transform
const inv_kind = Dict{Int,Int}(R2HC => HC2R, HC2R => R2HC, DHT => DHT,
REDFT00 => REDFT00,
REDFT01 => REDFT10, REDFT10 => REDFT01,
REDFT11 => REDFT11,
RODFT00 => RODFT00,
RODFT01 => RODFT10, RODFT10 => RODFT01,
RODFT11 => RODFT11)
# r2r inverses are normalized to 1/N, where N is a "logical" size
# the transform with length n and kind k:
function logical_size(n::Integer, k::Integer)
k <= DHT && return n
k == REDFT00 && return 2(n-1)
k == RODFT00 && return 2(n+1)
return 2n
end
function plan_inv{T<:fftwNumber,K,inplace,N}(p::r2rFFTWPlan{T,K,inplace,N})
X = Array(T, p.sz)
iK = fix_kinds(p.region, [inv_kind[k] for k in K])
Y = inplace ? X : fakesimilar(p.flags, X, T)
ScaledPlan(r2rFFTWPlan{T,ANY,inplace,N}(X, Y, p.region, iK,
p.flags, NO_TIMELIMIT),
normalization(real(T),
map(logical_size, [p.sz...][[p.region...]], iK),
1:length(iK)))
end
function A_mul_B!{T}(y::StridedArray{T}, p::r2rFFTWPlan{T}, x::StridedArray{T})
assert_applicable(p, x, y)
unsafe_execute!(p, x, y)
return y
end
function *{T,K,N}(p::r2rFFTWPlan{T,K,false}, x::StridedArray{T,N})
assert_applicable(p, x)
y = Array(T, p.osz)::Array{T,N}
unsafe_execute!(p, x, y)
return y
end
function *{T,K}(p::r2rFFTWPlan{T,K,true}, x::StridedArray{T})
assert_applicable(p, x)
unsafe_execute!(p, x, x)
return x
end
include("dct.jl")
end # module
|