/usr/share/julia/base/fastmath.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | # This file is a part of Julia. License is MIT: http://julialang.org/license
# Support for @fastmath
# This module provides versions of math functions that may violate
# strict IEEE semantics.
# This allows the following transformations:
# nnan: No NaNs - Allow optimizations to assume the arguments and
# result are not NaN. Such optimizations are required to retain
# defined behavior over NaNs, but the value of the result is
# undefined.
# ninf: No Infs - Allow optimizations to assume the arguments and
# result are not +/-Inf. Such optimizations are required to
# retain defined behavior over +/-Inf, but the value of the
# result is undefined.
# nsz: No Signed Zeros - Allow optimizations to treat the sign of a
# zero argument or result as insignificant.
# arcp: Allow Reciprocal - Allow optimizations to use the reciprocal
# of an argument rather than perform division.
module FastMath
export @fastmath
import Core.Intrinsics: box, unbox, powi_llvm, sqrt_llvm_fast
const fast_op =
Dict(# basic arithmetic
:+ => :add_fast,
:- => :sub_fast,
:* => :mul_fast,
:/ => :div_fast,
:(==) => :eq_fast,
:!= => :ne_fast,
:< => :lt_fast,
:<= => :le_fast,
:abs => :abs_fast,
:abs2 => :abs2_fast,
:cmp => :cmp_fast,
:conj => :conj_fast,
:inv => :inv_fast,
:mod => :mod_fast,
:rem => :rem_fast,
:sign => :sign_fast,
:isfinite => :isfinite_fast,
:isinf => :isinf_fast,
:isnan => :isnan_fast,
:issubnormal => :issubnormal_fast,
# math functions
:^ => :pow_fast,
:acos => :acos_fast,
:acosh => :acosh_fast,
:angle => :angle_fast,
:asin => :asin_fast,
:asinh => :asinh_fast,
:atan => :atan_fast,
:atan2 => :atan2_fast,
:atanh => :atanh_fast,
:cbrt => :cbrt_fast,
:cis => :cis_fast,
:cos => :cos_fast,
:cosh => :cosh_fast,
:exp10 => :exp10_fast,
:exp2 => :exp2_fast,
:exp => :exp_fast,
:expm1 => :expm1_fast,
:hypot => :hypot_fast,
:lgamma => :lgamma_fast,
:log10 => :log10_fast,
:log1p => :log1p_fast,
:log2 => :log2_fast,
:log => :log_fast,
:max => :max_fast,
:min => :min_fast,
:minmax => :minmax_fast,
:sin => :sin_fast,
:sinh => :sinh_fast,
:sqrt => :sqrt_fast,
:tan => :tan_fast,
:tanh => :tanh_fast)
const rewrite_op =
Dict(:+= => :+,
:-= => :-,
:*= => :*,
:/= => :/,
:^= => :^)
function make_fastmath(expr::Expr)
op = get(rewrite_op, expr.head, :nothing)
if op != :nothing
var = expr.args[1]
rhs = expr.args[2]
if isa(var, Symbol)
# simple assignment
expr = :($var = $(op)($var, $rhs))
elseif isa(var, Expr) && var.head == :ref
# array reference
arr = var.args[1]
inds = tuple(var.args[2:end]...)
arrvar = gensym()
indvars = tuple([gensym() for i in inds]...)
expr = quote
$(Expr(:(=), arrvar, arr))
$(Expr(:(=), Expr(:tuple, indvars...), Expr(:tuple, inds...)))
$(arrvar)[$(indvars...)] = $(op)($(arrvar)[$(indvars...)], $rhs)
end
end
end
Expr(make_fastmath(expr.head), map(make_fastmath, expr.args)...)
end
function make_fastmath(symb::Symbol)
fast_symb = get(fast_op, symb, :nothing)
if fast_symb == :nothing
return symb
end
:(Base.FastMath.$(fast_symb))
end
make_fastmath(expr) = expr
macro fastmath(expr)
make_fastmath(esc(expr))
end
# Basic arithmetic
FloatTypes = Union{Float32, Float64}
sub_fast{T<:FloatTypes}(x::T) = box(T,Base.neg_float_fast(unbox(T,x)))
add_fast{T<:FloatTypes}(x::T, y::T) =
box(T,Base.add_float_fast(unbox(T,x), unbox(T,y)))
sub_fast{T<:FloatTypes}(x::T, y::T) =
box(T,Base.sub_float_fast(unbox(T,x), unbox(T,y)))
mul_fast{T<:FloatTypes}(x::T, y::T) =
box(T,Base.mul_float_fast(unbox(T,x), unbox(T,y)))
div_fast{T<:FloatTypes}(x::T, y::T) =
box(T,Base.div_float_fast(unbox(T,x), unbox(T,y)))
rem_fast{T<:FloatTypes}(x::T, y::T) =
box(T,Base.rem_float_fast(unbox(T,x), unbox(T,y)))
add_fast{T<:FloatTypes}(x::T, y::T, zs::T...) =
add_fast(add_fast(x, y), zs...)
mul_fast{T<:FloatTypes}(x::T, y::T, zs::T...) =
mul_fast(mul_fast(x, y), zs...)
@fastmath begin
cmp_fast{T<:FloatTypes}(x::T, y::T) = ifelse(x==y, 0, ifelse(x<y, -1, +1))
function mod_fast{T<:FloatTypes}(x::T, y::T)
r = rem(x,y)
ifelse((r > 0) $ (y > 0), r+y, r)
end
end
eq_fast{T<:FloatTypes}(x::T, y::T) =
Base.eq_float_fast(unbox(T,x),unbox(T,y))
ne_fast{T<:FloatTypes}(x::T, y::T) =
Base.ne_float_fast(unbox(T,x),unbox(T,y))
lt_fast{T<:FloatTypes}(x::T, y::T) =
Base.lt_float_fast(unbox(T,x),unbox(T,y))
le_fast{T<:FloatTypes}(x::T, y::T) =
Base.le_float_fast(unbox(T,x),unbox(T,y))
isinf_fast(x) = false
isfinite_fast(x) = true
isnan_fast(x) = false
issubnormal_fast(x) = false
# complex numbers
ComplexTypes = Union{Complex64, Complex128}
@fastmath begin
abs_fast{T<:ComplexTypes}(x::T) = hypot(real(x), imag(x))
abs2_fast{T<:ComplexTypes}(x::T) = real(x)*real(x) + imag(x)*imag(x)
conj_fast{T<:ComplexTypes}(x::T) = T(real(x), -imag(x))
inv_fast{T<:ComplexTypes}(x::T) = conj(x) / abs2(x)
sign_fast{T<:ComplexTypes}(x::T) = x == 0 ? float(zero(x)) : x/abs(x)
add_fast{T<:ComplexTypes}(x::T, y::T) =
T(real(x)+real(y), imag(x)+imag(y))
add_fast{T<:FloatTypes}(x::Complex{T}, b::T) =
Complex{T}(real(x)+b, imag(x))
add_fast{T<:FloatTypes}(a::T, y::Complex{T}) =
Complex{T}(a+real(y), imag(y))
sub_fast{T<:ComplexTypes}(x::T, y::T) =
T(real(x)-real(y), imag(x)-imag(y))
sub_fast{T<:FloatTypes}(x::Complex{T}, b::T) =
Complex{T}(real(x)-b, imag(x))
sub_fast{T<:FloatTypes}(a::T, y::Complex{T}) =
Complex{T}(a-real(y), -imag(y))
mul_fast{T<:ComplexTypes}(x::T, y::T) =
T(real(x)*real(y) - imag(x)*imag(y),
real(x)*imag(y) + imag(x)*real(y))
mul_fast{T<:FloatTypes}(x::Complex{T}, b::T) =
Complex{T}(real(x)*b, imag(x)*b)
mul_fast{T<:FloatTypes}(a::T, y::Complex{T}) =
Complex{T}(a*real(y), a*imag(y))
div_fast{T<:ComplexTypes}(x::T, y::T) =
T(real(x)*real(y) + imag(x)*imag(y),
imag(x)*real(y) - real(x)*imag(y)) / abs2(y)
div_fast{T<:FloatTypes}(x::Complex{T}, b::T) =
Complex{T}(real(x)/b, imag(x)/b)
div_fast{T<:FloatTypes}(a::T, y::Complex{T}) =
Complex{T}(a*real(y), -a*imag(y)) / abs2(y)
eq_fast{T<:ComplexTypes}(x::T, y::T) =
(real(x)==real(y)) & (imag(x)==imag(y))
eq_fast{T<:FloatTypes}(x::Complex{T}, b::T) =
(real(x)==b) & (imag(x)==T(0))
eq_fast{T<:FloatTypes}(a::T, y::Complex{T}) =
(a==real(y)) & (T(0)==imag(y))
ne_fast{T<:ComplexTypes}(x::T, y::T) = !(x==y)
end
# fall-back implementations and type promotion
for op in (:abs, :abs2, :conj, :inv, :sign)
op_fast = fast_op[op]
@eval begin
# fall-back implementation for non-numeric types
$op_fast(xs...) = $op(xs...)
end
end
for op in (:+, :-, :*, :/, :(==), :!=, :<, :<=, :cmp, :mod, :rem)
op_fast = fast_op[op]
@eval begin
# fall-back implementation for non-numeric types
$op_fast(xs...) = $op(xs...)
# type promotion
$op_fast(x::Number, y::Number, zs::Number...) =
$op_fast(promote(x,y,zs...)...)
# fall-back implementation that applies after promotion
$op_fast{T<:Number}(x::T,ys::T...) = $op(x,ys...)
end
end
# Math functions
# builtins
pow_fast{T<:FloatTypes}(x::T, y::Integer) =
box(T, Base.powi_llvm(unbox(T,x), unbox(Int32,Int32(y))))
# TODO: Change sqrt_llvm intrinsic to avoid nan checking; add nan
# checking to sqrt in math.jl; remove sqrt_llvm_fast intrinsic
sqrt_fast{T<:FloatTypes}(x::T) = box(T, Base.sqrt_llvm_fast(unbox(T,x)))
# libm
const libm = Base.libm_name
for f in (:acos, :acosh, :asin, :asinh, :atan, :atanh, :cbrt, :cos,
:cosh, :exp2, :exp, :expm1, :lgamma, :log10, :log1p, :log2,
:log, :sin, :sinh, :tan, :tanh)
f_fast = fast_op[f]
@eval begin
$f_fast(x::Float32) =
ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
$f_fast(x::Float64) =
ccall(($(string(f)),libm), Float64, (Float64,), x)
end
end
pow_fast(x::Float32, y::Float32) =
ccall(("powf",libm), Float32, (Float32,Float32), x, y)
pow_fast(x::Float64, y::Float64) =
ccall(("pow",libm), Float64, (Float64,Float64), x, y)
atan2_fast(x::Float32, y::Float32) =
ccall(("atan2f",libm), Float32, (Float32,Float32), x, y)
atan2_fast(x::Float64, y::Float64) =
ccall(("atan2",libm), Float64, (Float64,Float64), x, y)
# explicit implementations
@fastmath begin
exp10_fast{T<:FloatTypes}(x::T) = exp2(log2(T(10))*x)
exp10_fast(x::Integer) = exp10(float(x))
hypot_fast{T<:FloatTypes}(x::T, y::T) = sqrt(x*x + y*y)
# Note: we use the same comparison for min, max, and minmax, so
# that the compiler can convert between them
max_fast{T<:FloatTypes}(x::T, y::T) = ifelse(y > x, y, x)
min_fast{T<:FloatTypes}(x::T, y::T) = ifelse(y > x, x, y)
minmax_fast{T<:FloatTypes}(x::T, y::T) = ifelse(y > x, (x,y), (y,x))
# complex numbers
cis_fast{T<:FloatTypes}(x::T) = Complex{T}(cos(x), sin(x))
# See <http://en.cppreference.com/w/cpp/numeric/complex>
pow_fast{T<:ComplexTypes}(x::T, y::T) = exp(y*log(x))
pow_fast{T<:FloatTypes}(x::T, y::Complex{T}) = exp(y*log(x))
pow_fast{T<:FloatTypes}(x::Complex{T}, y::T) = exp(y*log(x))
acos_fast{T<:ComplexTypes}(x::T) =
convert(T,π)/2 + im*log(im*x + sqrt(1-x*x))
acosh_fast{T<:ComplexTypes}(x::T) = log(x + sqrt(x+1) * sqrt(x-1))
angle_fast{T<:ComplexTypes}(x::T) = atan2(imag(x), real(x))
asin_fast{T<:ComplexTypes}(x::T) = -im*asinh(im*x)
asinh_fast{T<:ComplexTypes}(x::T) = log(x + sqrt(1+x*x))
atan_fast{T<:ComplexTypes}(x::T) = -im*atanh(im*x)
atanh_fast{T<:ComplexTypes}(x::T) = convert(T,1)/2*(log(1+x) - log(1-x))
cis_fast{T<:ComplexTypes}(x::T) = exp(-imag(x)) * cis(real(x))
cos_fast{T<:ComplexTypes}(x::T) = cosh(im*x)
cosh_fast{T<:ComplexTypes}(x::T) = convert(T,1)/2*(exp(x) + exp(-x))
exp10_fast{T<:ComplexTypes}(x::T) =
exp10(real(x)) * cis(imag(x)*log(convert(T,10)))
exp2_fast{T<:ComplexTypes}(x::T) =
exp2(real(x)) * cis(imag(x)*log(convert(T,2)))
exp_fast{T<:ComplexTypes}(x::T) = exp(real(x)) * cis(imag(x))
expm1_fast{T<:ComplexTypes}(x::T) = exp(x)-1
log10_fast{T<:ComplexTypes}(x::T) = log(x) / log(convert(T,10))
log1p_fast{T<:ComplexTypes}(x::T) = log(1+x)
log2_fast{T<:ComplexTypes}(x::T) = log(x) / log(convert(T,2))
log_fast{T<:ComplexTypes}(x::T) = T(log(abs2(x))/2, angle(x))
sin_fast{T<:ComplexTypes}(x::T) = -im*sinh(im*x)
sinh_fast{T<:ComplexTypes}(x::T) = convert(T,1)/2*(exp(x) - exp(-x))
sqrt_fast{T<:ComplexTypes}(x::T) = sqrt(abs(x)) * cis(angle(x)/2)
tan_fast{T<:ComplexTypes}(x::T) = -im*tanh(im*x)
tanh_fast{T<:ComplexTypes}(x::T) = (a=exp(x); b=exp(-x); (a-b)/(a+b))
end
# fall-back implementations and type promotion
for f in (:acos, :acosh, :angle, :asin, :asinh, :atan, :atanh, :cbrt,
:cis, :cos, :cosh, :exp10, :exp2, :exp, :expm1, :lgamma,
:log10, :log1p, :log2, :log, :sin, :sinh, :sqrt, :tan,
:tanh)
f_fast = fast_op[f]
@eval begin
$f_fast(x) = $f(x)
@vectorize_1arg Number $f_fast
end
end
for f in (:^, :atan2, :hypot, :max, :min, :minmax)
f_fast = fast_op[f]
@eval begin
# fall-back implementation for non-numeric types
$f_fast(x, y) = $f(x, y)
# type promotion
$f_fast(x::Number, y::Number) = $f_fast(promote(x, y)...)
# fall-back implementation that applies after promotion
$f_fast{T<:Number}(x::T, y::T) = $f(x, y)
@vectorize_2arg Number $f_fast
end
end
end
|