This file is indexed.

/usr/share/julia/base/essentials.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# This file is a part of Julia. License is MIT: http://julialang.org/license

abstract IO

typealias Callable Union{Function,DataType}

const Bottom = Union{}

# The real @inline macro is not available until after array.jl, so this
# internal macro splices the meta Expr directly into the function body.
macro _inline_meta()
    Expr(:meta, :inline)
end
macro _noinline_meta()
    Expr(:meta, :noinline)
end


# constructors for Core types in boot.jl
call(T::Type{BoundsError}) = Core.call(T)
call(T::Type{BoundsError}, args...) = Core.call(T, args...)
call(T::Type{DivideError}) = Core.call(T)
call(T::Type{DomainError}) = Core.call(T)
call(T::Type{OverflowError}) = Core.call(T)
call(T::Type{InexactError}) = Core.call(T)
call(T::Type{OutOfMemoryError}) = Core.call(T)
call(T::Type{ReadOnlyMemoryError}) = Core.call(T)
call(T::Type{StackOverflowError}) = Core.call(T)
call(T::Type{SegmentationFault}) = Core.call(T)
call(T::Type{UndefRefError}) = Core.call(T)
call(T::Type{UndefVarError}, var::Symbol) = Core.call(T, var)
call(T::Type{InterruptException}) = Core.call(T)
call(T::Type{TypeError}, func::Symbol, context::AbstractString, expected::Type, got) = Core.call(T, func, context, expected, got)
call(T::Type{SymbolNode}, name::Symbol, t::ANY) = Core.call(T, name, t)
call(T::Type{GlobalRef}, modu, name::Symbol) = Core.call(T, modu, name)
call(T::Type{ASCIIString}, d::Array{UInt8,1}) = Core.call(T, d)
call(T::Type{UTF8String}, d::Array{UInt8,1}) = Core.call(T, d)
call(T::Type{TypeVar}, args...) = Core.call(T, args...)
call(T::Type{TypeConstructor}, args...) = Core.call(T, args...)
call(T::Type{Expr}, args::ANY...) = _expr(args...)
call(T::Type{LineNumberNode}, f::Symbol, n::Int) = Core.call(T, f, n)
call(T::Type{LabelNode}, n::Int) = Core.call(T, n)
call(T::Type{GotoNode}, n::Int) = Core.call(T, n)
call(T::Type{QuoteNode}, x::ANY) = Core.call(T, x)
call(T::Type{NewvarNode}, s::Symbol) = Core.call(T, s)
call(T::Type{TopNode}, s::Symbol) = Core.call(T, s)
call(T::Type{Module}, args...) = Core.call(T, args...)
call(T::Type{Task}, f::Function) = Core.call(T, f)
call(T::Type{GenSym}, n::Int) = Core.call(T, n)
call(T::Type{WeakRef}) = Core.call(T)
call(T::Type{WeakRef}, v::ANY) = Core.call(T, v)
call(T::Type{Void}) = Core.call(Void)


# The specialization for 1 arg is important when running with --inline=no, see #11158
call{T}(::Type{T}, arg) = convert(T, arg)::T
call{T}(::Type{T}, args...) = convert(T, args...)::T

convert{T}(::Type{T}, x::T) = x

convert(::Type{Tuple{}}, ::Tuple{}) = ()
convert(::Type{Tuple}, x::Tuple) = x
convert{T}(::Type{Tuple{Vararg{T}}}, x::Tuple) = cnvt_all(T, x...)
cnvt_all(T) = ()
cnvt_all(T, x, rest...) = tuple(convert(T,x), cnvt_all(T, rest...)...)

macro generated(f)
    isa(f, Expr) || error("invalid syntax; @generated must be used with a function definition")
    if is(f.head, :function) || (isdefined(:length) && is(f.head, :(=)) && length(f.args) == 2 && f.args[1].head == :call)
        f.head = :stagedfunction
        return Expr(:escape, f)
    else
        error("invalid syntax; @generated must be used with a function definition")
    end
end


@generated function tuple_type_head{T<:Tuple}(::Type{T})
    T.parameters[1]
end

isvarargtype(t::ANY) = isa(t,DataType)&&is((t::DataType).name,Vararg.name)
isvatuple(t::DataType) = (n = length(t.parameters); n > 0 && isvarargtype(t.parameters[n]))
unwrapva(t::ANY) = isvarargtype(t) ? t.parameters[1] : t

@generated function tuple_type_tail{T<:Tuple}(::Type{T})
    if isvatuple(T) && length(T.parameters) == 1
        return T
    end
    Tuple{argtail(T.parameters...)...}
end

argtail(x, rest...) = rest
tail(x::Tuple) = argtail(x...)

convert{T<:Tuple{Any,Vararg{Any}}}(::Type{T}, x::Tuple{Any, Vararg{Any}}) =
    tuple(convert(tuple_type_head(T),x[1]), convert(tuple_type_tail(T), tail(x))...)
convert{T<:Tuple{Any,Vararg{Any}}}(::Type{T}, x::T) = x

oftype(x,c) = convert(typeof(x),c)

unsigned(x::Int) = reinterpret(UInt, x)
signed(x::UInt) = reinterpret(Int, x)

# conversions used by ccall
ptr_arg_cconvert{T}(::Type{Ptr{T}}, x) = cconvert(T, x)
ptr_arg_unsafe_convert{T}(::Type{Ptr{T}}, x) = unsafe_convert(T, x)
ptr_arg_unsafe_convert(::Type{Ptr{Void}}, x) = x

cconvert(T::Type, x) = convert(T, x) # do the conversion eagerly in most cases
cconvert{P<:Ptr}(::Type{P}, x) = x # but defer the conversion to Ptr to unsafe_convert
unsafe_convert{T}(::Type{T}, x::T) = x # unsafe_convert (like convert) defaults to assuming the convert occurred
unsafe_convert{P<:Ptr}(::Type{P}, x::Ptr) = convert(P, x)

reinterpret{T,S}(::Type{T}, x::S) = box(T,unbox(S,x))

sizeof(x) = Core.sizeof(x)

function append_any(xs...)
    # used by apply() and quote
    # must be a separate function from append(), since apply() needs this
    # exact function.
    out = Array(Any, 4)
    l = 4
    i = 1
    for x in xs
        for y in x
            if i > l
                ccall(:jl_array_grow_end, Void, (Any, UInt), out, 16)
                l += 16
            end
            arrayset(out, y, i)
            i += 1
        end
    end
    ccall(:jl_array_del_end, Void, (Any, UInt), out, l-i+1)
    out
end

# simple Array{Any} operations needed for bootstrap
setindex!(A::Array{Any}, x::ANY, i::Int) = arrayset(A, x, i)

function length_checked_equal(args...)
    n = length(args[1])
    for i=2:length(args)
        if length(args[i]) != n
            error("argument dimensions must match")
        end
    end
    n
end

map(f::Function, a::Array{Any,1}) = Any[ f(a[i]) for i=1:length(a) ]

function precompile(f::ANY, args::Tuple)
    if isa(f,DataType)
        args = tuple(Type{f}, args...)
        f = f.name.module.call
    end
    if isgeneric(f)
        ccall(:jl_compile_hint, Void, (Any, Any), f, Tuple{args...})
    end
end

esc(e::ANY) = Expr(:escape, e)

macro boundscheck(yesno,blk)
    # hack: use this syntax since it avoids introducing line numbers
    :($(Expr(:boundscheck,yesno));
      $(esc(blk));
      $(Expr(:boundscheck,:pop)))
end

macro inbounds(blk)
    :(@boundscheck false $(esc(blk)))
end

macro label(name::Symbol)
    Expr(:symboliclabel, name)
end

macro goto(name::Symbol)
    Expr(:symbolicgoto, name)
end

call{T,N}(::Type{Array{T}}, d::NTuple{N,Int}) =
    ccall(:jl_new_array, Array{T,N}, (Any,Any), Array{T,N}, d)
call{T}(::Type{Array{T}}, d::Integer...) = Array{T}(convert(Tuple{Vararg{Int}}, d))

call{T}(::Type{Array{T}}, m::Integer) =
    ccall(:jl_alloc_array_1d, Array{T,1}, (Any,Int), Array{T,1}, m)
call{T}(::Type{Array{T}}, m::Integer, n::Integer) =
    ccall(:jl_alloc_array_2d, Array{T,2}, (Any,Int,Int), Array{T,2}, m, n)
call{T}(::Type{Array{T}}, m::Integer, n::Integer, o::Integer) =
    ccall(:jl_alloc_array_3d, Array{T,3}, (Any,Int,Int,Int), Array{T,3}, m, n, o)

# TODO: possibly turn these into deprecations
Array{T,N}(::Type{T}, d::NTuple{N,Int}) = Array{T}(d)
Array{T}(::Type{T}, d::Integer...)      = Array{T}(convert(Tuple{Vararg{Int}}, d))
Array{T}(::Type{T}, m::Integer)                       = Array{T}(m)
Array{T}(::Type{T}, m::Integer,n::Integer)            = Array{T}(m,n)
Array{T}(::Type{T}, m::Integer,n::Integer,o::Integer) = Array{T}(m,n,o)

# SimpleVector

function getindex(v::SimpleVector, i::Int)
    if !(1 <= i <= length(v))
        throw(BoundsError(v,i))
    end
    x = unsafe_load(convert(Ptr{Ptr{Void}},data_pointer_from_objref(v)) + i*sizeof(Ptr))
    x == C_NULL && throw(UndefRefError())
    return unsafe_pointer_to_objref(x)
end

length(v::SimpleVector) = v.length
endof(v::SimpleVector) = v.length
start(v::SimpleVector) = 1
next(v::SimpleVector,i) = (v[i],i+1)
done(v::SimpleVector,i) = (i > v.length)
isempty(v::SimpleVector) = (v.length == 0)

function ==(v1::SimpleVector, v2::SimpleVector)
    length(v1)==length(v2) || return false
    for i = 1:length(v1)
        v1[i] == v2[i] || return false
    end
    return true
end

map(f, v::SimpleVector) = Any[ f(v[i]) for i = 1:length(v) ]

getindex(v::SimpleVector, I::AbstractArray) = svec(Any[ v[i] for i in I ]...)

function isassigned(v::SimpleVector, i::Int)
    1 <= i <= length(v) || return false
    x = unsafe_load(convert(Ptr{Ptr{Void}},data_pointer_from_objref(v)) + i*sizeof(Ptr))
    return x != C_NULL
end

# index colon
type Colon
end
const (:) = Colon()

# For passing constants through type inference
immutable Val{T}
end