This file is indexed.

/usr/share/julia/base/dsp.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# This file is a part of Julia. License is MIT: http://julialang.org/license

module DSP

import Base.trailingsize

export filt, filt!, deconv, conv, conv2, xcorr

_zerosi(b,a,T) = zeros(promote_type(eltype(b), eltype(a), T), max(length(a), length(b))-1)

function filt{T,S}(b::Union{AbstractVector, Number}, a::Union{AbstractVector, Number},
                   x::AbstractArray{T}, si::AbstractArray{S}=_zerosi(b,a,T))
    filt!(Array(promote_type(eltype(b), eltype(a), T, S), size(x)), b, a, x, si)
end

# in-place filtering: returns results in the out argument, which may shadow x
# (and does so by default)
function filt!{T,S,N}(out::AbstractArray, b::Union{AbstractVector, Number}, a::Union{AbstractVector, Number},
                      x::AbstractArray{T}, si::AbstractArray{S,N}=_zerosi(b,a,T))
    isempty(b) && throw(ArgumentError("filter vector b must be non-empty"))
    isempty(a) && throw(ArgumentError("filter vector a must be non-empty"))
    a[1] == 0  && throw(ArgumentError("filter vector a[1] must be nonzero"))
    if size(x) != size(out)
        throw(ArgumentError("output size $(size(out)) must match input size $(size(x))"))
    end

    as = length(a)
    bs = length(b)
    sz = max(as, bs)
    silen = sz - 1
    ncols = trailingsize(x,2)

    if size(si, 1) != silen
        throw(ArgumentError("initial state vector si must have max(length(a),length(b))-1 rows"))
    end
    if N > 1 && trailingsize(si,2) != ncols
        throw(ArgumentError("initial state vector si must be a vector or have the same number of columns as x"))
    end

    size(x,1) == 0 && return out
    sz == 1 && return scale!(out, x, b[1]/a[1]) # Simple scaling without memory

    # Filter coefficient normalization
    if a[1] != 1
        norml = a[1]
        a ./= norml
        b ./= norml
    end
    # Pad the coefficients with zeros if needed
    bs<sz   && (b = copy!(zeros(eltype(b), sz), b))
    1<as<sz && (a = copy!(zeros(eltype(a), sz), a))

    initial_si = si
    for col = 1:ncols
        # Reset the filter state
        si = initial_si[:, N > 1 ? col : 1]
        if as > 1
            _filt_iir!(out, b, a, x, si, col)
        else
            _filt_fir!(out, b, x, si, col)
        end
    end
    return out
end

function _filt_iir!(out, b, a, x, si, col)
    silen = length(si)
    @inbounds for i=1:size(x, 1)
        xi = x[i,col]
        val = si[1] + b[1]*xi
        for j=1:(silen-1)
            si[j] = si[j+1] + b[j+1]*xi - a[j+1]*val
        end
        si[silen] = b[silen+1]*xi - a[silen+1]*val
        out[i,col] = val
    end
end

function _filt_fir!(out, b, x, si, col)
    silen = length(si)
    @inbounds for i=1:size(x, 1)
        xi = x[i,col]
        val = si[1] + b[1]*xi
        for j=1:(silen-1)
            si[j] = si[j+1] + b[j+1]*xi
        end
        si[silen] = b[silen+1]*xi
        out[i,col] = val
    end
end

function deconv{T}(b::StridedVector{T}, a::StridedVector{T})
    lb = size(b,1)
    la = size(a,1)
    if lb < la
        return [zero(T)]
    end
    lx = lb-la+1
    x = zeros(T, lx)
    x[1] = 1
    filt(b, a, x)
end

function conv{T<:Base.LinAlg.BlasFloat}(u::StridedVector{T}, v::StridedVector{T})
    nu = length(u)
    nv = length(v)
    n = nu + nv - 1
    np2 = n > 1024 ? nextprod([2,3,5], n) : nextpow2(n)
    upad = [u; zeros(T, np2 - nu)]
    vpad = [v; zeros(T, np2 - nv)]
    if T <: Real
        p = plan_rfft(upad)
        y = irfft((p*upad).*(p*vpad), np2)
    else
        p = plan_fft!(upad)
        y = ifft!((p*upad).*(p*vpad))
    end
    return y[1:n]
end
conv{T<:Integer}(u::StridedVector{T}, v::StridedVector{T}) = round(Int,conv(float(u), float(v)))
conv{T<:Integer, S<:Base.LinAlg.BlasFloat}(u::StridedVector{T}, v::StridedVector{S}) = conv(float(u), v)
conv{T<:Integer, S<:Base.LinAlg.BlasFloat}(u::StridedVector{S}, v::StridedVector{T}) = conv(u, float(v))

function conv2{T}(u::StridedVector{T}, v::StridedVector{T}, A::StridedMatrix{T})
    m = length(u)+size(A,1)-1
    n = length(v)+size(A,2)-1
    B = zeros(T, m, n)
    B[1:size(A,1),1:size(A,2)] = A
    u = fft([u;zeros(T,m-length(u))])
    v = fft([v;zeros(T,n-length(v))])
    C = ifft(fft(B) .* (u * v.'))
    if T <: Real
        return real(C)
    end
    return C
end

function conv2{T}(A::StridedMatrix{T}, B::StridedMatrix{T})
    sa, sb = size(A), size(B)
    At = zeros(T, sa[1]+sb[1]-1, sa[2]+sb[2]-1)
    Bt = zeros(T, sa[1]+sb[1]-1, sa[2]+sb[2]-1)
    At[1:sa[1], 1:sa[2]] = A
    Bt[1:sb[1], 1:sb[2]] = B
    p = plan_fft(At)
    C = ifft((p*At).*(p*Bt))
    if T <: Real
        return real(C)
    end
    return C
end
conv2{T<:Integer}(A::StridedMatrix{T}, B::StridedMatrix{T}) = round(Int,conv2(float(A), float(B)))
conv2{T<:Integer}(u::StridedVector{T}, v::StridedVector{T}, A::StridedMatrix{T}) = round(Int,conv2(float(u), float(v), float(A)))

function xcorr(u, v)
    su = size(u,1); sv = size(v,1)
    if su < sv
        u = [u;zeros(eltype(u),sv-su)]
    elseif sv < su
        v = [v;zeros(eltype(v),su-sv)]
    end
    flipdim(conv(flipdim(u, 1), v), 1)
end

end # module