/usr/share/julia/base/dft.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | # This file is a part of Julia. License is MIT: http://julialang.org/license
module DFT
# DFT plan where the inputs are an array of eltype T
abstract Plan{T}
import Base: show, summary, size, ndims, length, eltype,
*, A_mul_B!, inv, \, A_ldiv_B!
eltype{T}(::Type{Plan{T}}) = T
# size(p) should return the size of the input array for p
size(p::Plan, d) = size(p)[d]
ndims(p::Plan) = length(size(p))
length(p::Plan) = prod(size(p))::Int
##############################################################################
export fft, ifft, bfft, fft!, ifft!, bfft!,
plan_fft, plan_ifft, plan_bfft, plan_fft!, plan_ifft!, plan_bfft!,
rfft, irfft, brfft, plan_rfft, plan_irfft, plan_brfft
complexfloat{T<:AbstractFloat}(x::AbstractArray{Complex{T}}) = x
# return an Array, rather than similar(x), to avoid an extra copy for FFTW
# (which only works on StridedArray types).
complexfloat{T<:Complex}(x::AbstractArray{T}) = copy!(Array(typeof(float(one(T))), size(x)), x)
complexfloat{T<:AbstractFloat}(x::AbstractArray{T}) = copy!(Array(typeof(complex(one(T))), size(x)), x)
complexfloat{T<:Real}(x::AbstractArray{T}) = copy!(Array(typeof(complex(float(one(T)))), size(x)), x)
# implementations only need to provide plan_X(x, region)
# for X in (:fft, :bfft, ...):
for f in (:fft, :bfft, :ifft, :fft!, :bfft!, :ifft!, :rfft)
pf = symbol(string("plan_", f))
@eval begin
$f(x::AbstractArray) = $pf(x) * x
$f(x::AbstractArray, region) = $pf(x, region) * x
$pf(x::AbstractArray; kws...) = $pf(x, 1:ndims(x); kws...)
end
end
doc"""
```rst
.. plan_ifft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as :func:`plan_fft`, but produces a plan that performs inverse transforms
:func:`ifft`.
```
"""
plan_ifft
doc"""
```rst
.. plan_ifft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as :func:`plan_ifft`, but operates in-place on ``A``.
```
"""
plan_ifft!
doc"""
```rst
.. plan_bfft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as :func:`plan_bfft`, but operates in-place on ``A``.
```
"""
plan_bfft!
doc"""
```rst
.. plan_bfft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as :func:`plan_fft`, but produces a plan that performs an unnormalized
backwards transform :func:`bfft`.
```
"""
plan_bfft
doc"""
```rst
.. plan_fft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Pre-plan an optimized FFT along given dimensions (``dims``) of arrays
matching the shape and type of ``A``. (The first two arguments have
the same meaning as for :func:`fft`.) Returns an object ``P`` which
represents the linear operator computed by the FFT, and which contains
all of the information needed to compute ``fft(A, dims)`` quickly.
To apply ``P`` to an array ``A``, use ``P * A``; in general, the
syntax for applying plans is much like that of matrices. (A plan
can only be applied to arrays of the same size as the ``A`` for
which the plan was created.) You can also apply a plan with a
preallocated output array ``Â`` by calling ``A_mul_B!(Â, plan,
A)``. You can compute the inverse-transform plan by ``inv(P)`` and
apply the inverse plan with ``P \ Â`` (the inverse plan is cached
and reused for subsequent calls to ``inv`` or ``\``), and apply the
inverse plan to a pre-allocated output array ``A`` with
``A_ldiv_B!(A, P, Â)``.
The ``flags`` argument is a bitwise-or of FFTW planner flags, defaulting
to ``FFTW.ESTIMATE``. e.g. passing ``FFTW.MEASURE`` or ``FFTW.PATIENT``
will instead spend several seconds (or more) benchmarking different
possible FFT algorithms and picking the fastest one; see the FFTW manual
for more information on planner flags. The optional ``timelimit`` argument
specifies a rough upper bound on the allowed planning time, in seconds.
Passing ``FFTW.MEASURE`` or ``FFTW.PATIENT`` may cause the input array ``A``
to be overwritten with zeros during plan creation.
:func:`plan_fft!` is the same as :func:`plan_fft` but creates a plan
that operates in-place on its argument (which must be an array of
complex floating-point numbers). :func:`plan_ifft` and so on
are similar but produce plans that perform the equivalent of
the inverse transforms :func:`ifft` and so on.
```
"""
plan_fft
doc"""
```rst
.. plan_fft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as :func:`plan_fft`, but operates in-place on ``A``.
```
"""
plan_fft!
doc"""
```rst
.. rfft(A [, dims])
Multidimensional FFT of a real array ``A``, exploiting the fact that
the transform has conjugate symmetry in order to save roughly half
the computational time and storage costs compared with :func:`fft`.
If ``A`` has size ``(n_1, ..., n_d)``, the result has size
``(div(n_1,2)+1, ..., n_d)``.
The optional ``dims`` argument specifies an iterable subset of one or
more dimensions of ``A`` to transform, similar to :func:`fft`. Instead
of (roughly) halving the first dimension of ``A`` in the result, the
``dims[1]`` dimension is (roughly) halved in the same way.
```
"""
rfft
doc"""
```rst
.. ifft!(A [, dims])
Same as :func:`ifft`, but operates in-place on ``A``.
```
"""
ifft!
doc"""
ifft(A [, dims])
Multidimensional inverse FFT.
A one-dimensional inverse FFT computes
$$\operatorname{IDFT}(A)[k] = \frac{1}{\operatorname{length}(A)}
\sum_{n=1}^{\operatorname{length}(A)} \exp\left(+i\frac{2\pi (n-1)(k-1)}
{\operatorname{length}(A)} \right) A[n].$$
A multidimensional inverse FFT simply performs this operation along each transformed dimension of `A`.
"""
ifft
doc"""
```rst
.. fft!(A [, dims])
Same as :func:`fft`, but operates in-place on ``A``,
which must be an array of complex floating-point numbers.
```
"""
fft!
doc"""
```rst
.. bfft(A [, dims])
Similar to :func:`ifft`, but computes an unnormalized inverse (backward)
transform, which must be divided by the product of the sizes of the
transformed dimensions in order to obtain the inverse. (This is slightly
more efficient than :func:`ifft` because it omits a scaling step, which in
some applications can be combined with other computational steps elsewhere.)
.. math::
\operatorname{BDFT}(A)[k] = \operatorname{length}(A) \operatorname{IDFT}(A)[k]
```
"""
bfft
doc"""
```rst
.. bfft!(A [, dims])
Same as :func:`bfft`, but operates in-place on ``A``.
```
"""
bfft!
# promote to a complex floating-point type (out-of-place only),
# so implementations only need Complex{Float} methods
for f in (:fft, :bfft, :ifft)
pf = symbol(string("plan_", f))
@eval begin
$f{T<:Real}(x::AbstractArray{T}, region=1:ndims(x)) = $f(complexfloat(x), region)
$pf{T<:Real}(x::AbstractArray{T}, region; kws...) = $pf(complexfloat(x), region; kws...)
$f{T<:Union{Integer,Rational}}(x::AbstractArray{Complex{T}}, region=1:ndims(x)) = $f(complexfloat(x), region)
$pf{T<:Union{Integer,Rational}}(x::AbstractArray{Complex{T}}, region; kws...) = $pf(complexfloat(x), region; kws...)
end
end
rfft{T<:Union{Integer,Rational}}(x::AbstractArray{T}, region=1:ndims(x)) = rfft(float(x), region)
plan_rfft{T<:Union{Integer,Rational}}(x::AbstractArray{T}, region; kws...) = plan_rfft(float(x), region; kws...)
# only require implementation to provide *(::Plan{T}, ::Array{T})
*{T}(p::Plan{T}, x::AbstractArray) = p * copy!(Array(T, size(x)), x)
# Implementations should also implement A_mul_B!(Y, plan, X) so as to support
# pre-allocated output arrays. We don't define * in terms of A_mul_B!
# generically here, however, because of subtleties for in-place and rfft plans.
##############################################################################
# To support inv, \, and A_ldiv_B!(y, p, x), we require Plan subtypes
# to have a pinv::Plan field, which caches the inverse plan, and which
# should be initially undefined. They should also implement
# plan_inv(p) to construct the inverse of a plan p.
# hack from @simonster (in #6193) to compute the return type of plan_inv
# without actually calling it or even constructing the empty arrays.
_pinv_type(p::Plan) = typeof([plan_inv(x) for x in typeof(p)[]])
pinv_type(p::Plan) = eltype(_pinv_type(p))
inv(p::Plan) =
isdefined(p, :pinv) ? p.pinv::pinv_type(p) : (p.pinv = plan_inv(p))
\(p::Plan, x::AbstractArray) = inv(p) * x
A_ldiv_B!(y::AbstractArray, p::Plan, x::AbstractArray) = A_mul_B!(y, inv(p), x)
##############################################################################
# implementations only need to provide the unnormalized backwards FFT,
# similar to FFTW, and we do the scaling generically to get the ifft:
type ScaledPlan{T,P,N} <: Plan{T}
p::P
scale::N # not T, to avoid unnecessary promotion to Complex
pinv::Plan
ScaledPlan(p, scale) = new(p, scale)
end
call{T,P,N}(::Type{ScaledPlan{T}}, p::P, scale::N) = ScaledPlan{T,P,N}(p, scale)
ScaledPlan{T}(p::Plan{T}, scale::Number) = ScaledPlan{T}(p, scale)
ScaledPlan(p::ScaledPlan, α::Number) = ScaledPlan(p.p, p.scale * α)
size(p::ScaledPlan) = size(p.p)
show(io::IO, p::ScaledPlan) = print(io, p.scale, " * ", p.p)
summary(p::ScaledPlan) = string(p.scale, " * ", summary(p.p))
*(p::ScaledPlan, x::AbstractArray) = scale!(p.p * x, p.scale)
*(α::Number, p::Plan) = ScaledPlan(p, α)
*(p::Plan, α::Number) = ScaledPlan(p, α)
*(I::UniformScaling, p::ScaledPlan) = ScaledPlan(p, I.λ)
*(p::ScaledPlan, I::UniformScaling) = ScaledPlan(p, I.λ)
*(I::UniformScaling, p::Plan) = ScaledPlan(p, I.λ)
*(p::Plan, I::UniformScaling) = ScaledPlan(p, I.λ)
# Normalization for ifft, given unscaled bfft, is 1/prod(dimensions)
normalization(T, sz, region) = (one(T) / prod([sz...][[region...]]))::T
normalization(X, region) = normalization(real(eltype(X)), size(X), region)
plan_ifft(x::AbstractArray, region; kws...) =
ScaledPlan(plan_bfft(x, region; kws...), normalization(x, region))
plan_ifft!(x::AbstractArray, region; kws...) =
ScaledPlan(plan_bfft!(x, region; kws...), normalization(x, region))
plan_inv(p::ScaledPlan) = ScaledPlan(plan_inv(p.p), inv(p.scale))
A_mul_B!(y::AbstractArray, p::ScaledPlan, x::AbstractArray) =
scale!(p.scale, A_mul_B!(y, p.p, x))
##############################################################################
# Real-input DFTs are annoying because the output has a different size
# than the input if we want to gain the full factor-of-two(ish) savings
# For backward real-data transforms, we must specify the original length
# of the first dimension, since there is no reliable way to detect this
# from the data (we can't detect whether the dimension was originally even
# or odd).
for f in (:brfft, :irfft)
pf = symbol(string("plan_", f))
@eval begin
$f(x::AbstractArray, d::Integer) = $pf(x, d) * x
$f(x::AbstractArray, d::Integer, region) = $pf(x, d, region) * x
$pf(x::AbstractArray, d::Integer;kws...) = $pf(x, d, 1:ndims(x);kws...)
end
end
for f in (:brfft, :irfft)
@eval begin
$f{T<:Real}(x::AbstractArray{T}, d::Integer, region=1:ndims(x)) = $f(complexfloat(x), d, region)
$f{T<:Union{Integer,Rational}}(x::AbstractArray{Complex{T}}, d::Integer, region=1:ndims(x)) = $f(complexfloat(x), d, region)
end
end
doc"""
```rst
.. irfft(A, d [, dims])
Inverse of :func:`rfft`: for a complex array ``A``, gives the
corresponding real array whose FFT yields ``A`` in the first half.
As for :func:`rfft`, ``dims`` is an optional subset of dimensions
to transform, defaulting to ``1:ndims(A)``.
``d`` is the length of the transformed real array along the ``dims[1]``
dimension, which must satisfy ``div(d,2)+1 == size(A,dims[1])``.
(This parameter cannot be inferred from ``size(A)`` since both
``2*size(A,dims[1])-2`` as well as ``2*size(A,dims[1])-1`` are valid sizes
for the transformed real array.)
```
"""
irfft
doc"""
```rst
.. brfft(A, d [, dims])
Similar to :func:`irfft` but computes an unnormalized inverse transform
(similar to :func:`bfft`), which must be divided by the product
of the sizes of the transformed dimensions (of the real output array)
in order to obtain the inverse transform.
```
"""
brfft
function rfft_output_size(x::AbstractArray, region)
d1 = first(region)
osize = [size(x)...]
osize[d1] = osize[d1]>>1 + 1
return osize
end
function brfft_output_size(x::AbstractArray, d::Integer, region)
d1 = first(region)
osize = [size(x)...]
@assert osize[d1] == d>>1 + 1
osize[d1] = d
return osize
end
plan_irfft{T}(x::AbstractArray{Complex{T}}, d::Integer, region; kws...) =
ScaledPlan(plan_brfft(x, d, region; kws...),
normalization(T, brfft_output_size(x, d, region), region))
doc"""
```rst
.. plan_irfft(A, d [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Pre-plan an optimized inverse real-input FFT, similar to :func:`plan_rfft`
except for :func:`irfft` and :func:`brfft`, respectively. The first
three arguments have the same meaning as for :func:`irfft`.
```
"""
plan_irfft
##############################################################################
export fftshift, ifftshift
fftshift(x) = circshift(x, div([size(x)...],2))
doc"""
fftshift(x)
Swap the first and second halves of each dimension of `x`.
"""
fftshift(x)
function fftshift(x,dim)
s = zeros(Int,ndims(x))
s[dim] = div(size(x,dim),2)
circshift(x, s)
end
doc"""
fftshift(x,dim)
Swap the first and second halves of the given dimension of array `x`.
"""
fftshift(x,dim)
ifftshift(x) = circshift(x, div([size(x)...],-2))
doc"""
ifftshift(x, [dim])
Undoes the effect of `fftshift`.
"""
ifftshift
function ifftshift(x,dim)
s = zeros(Int,ndims(x))
s[dim] = -div(size(x,dim),2)
circshift(x, s)
end
##############################################################################
# FFTW module (may move to an external package at some point):
if Base.USE_GPL_LIBS
include("fft/FFTW.jl")
importall .FFTW
export FFTW, dct, idct, dct!, idct!, plan_dct, plan_idct, plan_dct!, plan_idct!
end
##############################################################################
end
|