/usr/share/julia/base/collections.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | # This file is a part of Julia. License is MIT: http://julialang.org/license
module Collections
import Base: setindex!, done, get, hash, haskey, isempty, length, next, getindex, start
import ..Order: Forward, Ordering, lt
export
PriorityQueue,
dequeue!,
enqueue!,
heapify!,
heapify,
heappop!,
heappush!,
isheap,
peek
# Heap operations on flat arrays
# ------------------------------
# Binary heap indexing
heapleft(i::Integer) = 2i
heapright(i::Integer) = 2i + 1
heapparent(i::Integer) = div(i, 2)
# Binary min-heap percolate down.
function percolate_down!(xs::AbstractArray, i::Integer, x=xs[i], o::Ordering=Forward, len::Integer=length(xs))
@inbounds while (l = heapleft(i)) <= len
r = heapright(i)
j = r > len || lt(o, xs[l], xs[r]) ? l : r
if lt(o, xs[j], x)
xs[i] = xs[j]
i = j
else
break
end
end
xs[i] = x
end
percolate_down!(xs::AbstractArray, i::Integer, o::Ordering, len::Integer=length(xs)) = percolate_down!(xs, i, xs[i], o, len)
# Binary min-heap percolate up.
function percolate_up!(xs::AbstractArray, i::Integer, x=xs[i], o::Ordering=Forward)
@inbounds while (j = heapparent(i)) >= 1
if lt(o, x, xs[j])
xs[i] = xs[j]
i = j
else
break
end
end
xs[i] = x
end
percolate_up!{T}(xs::AbstractArray{T}, i::Integer, o::Ordering) = percolate_up!(xs, i, xs[i], o)
# Binary min-heap pop.
function heappop!(xs::AbstractArray, o::Ordering=Forward)
x = xs[1]
y = pop!(xs)
if !isempty(xs)
percolate_down!(xs, 1, y, o)
end
x
end
# Binary min-heap push.
function heappush!(xs::AbstractArray, x, o::Ordering=Forward)
push!(xs, x)
percolate_up!(xs, length(xs), x, o)
xs
end
# Turn an arbitrary array into a binary min-heap in linear time.
function heapify!(xs::AbstractArray, o::Ordering=Forward)
for i in heapparent(length(xs)):-1:1
percolate_down!(xs, i, o)
end
xs
end
heapify(xs::AbstractArray, o::Ordering=Forward) = heapify!(copy(xs), o)
# Is an arbitrary array heap ordered?
function isheap(xs::AbstractArray, o::Ordering=Forward)
for i in 1:div(length(xs), 2)
if lt(o, xs[heapleft(i)], xs[i]) ||
(heapright(i) <= length(xs) && lt(o, xs[heapright(i)], xs[i]))
return false
end
end
true
end
# PriorityQueue
# -------------
# A PriorityQueue that acts like a Dict, mapping values to their priorities,
# with the addition of a dequeue! function to remove the lowest priority
# element.
type PriorityQueue{K,V,O<:Ordering} <: Associative{K,V}
# Binary heap of (element, priority) pairs.
xs::Array{Pair{K,V}, 1}
o::O
# Map elements to their index in xs
index::Dict{K, Int}
function PriorityQueue(o::O)
new(Array(Pair{K,V}, 0), o, Dict{K, Int}())
end
PriorityQueue() = PriorityQueue{K,V,O}(Forward)
function PriorityQueue(ks::AbstractArray{K}, vs::AbstractArray{V},
o::O)
# TODO: maybe deprecate
if length(ks) != length(vs)
throw(ArgumentError("key and value arrays must have equal lengths"))
end
PriorityQueue{K,V,O}(zip(ks, vs), o)
end
function PriorityQueue(itr, o::O)
xs = Array(Pair{K,V}, length(itr))
index = Dict{K, Int}()
for (i, (k, v)) in enumerate(itr)
xs[i] = Pair{K,V}(k, v)
if haskey(index, k)
throw(ArgumentError("PriorityQueue keys must be unique"))
end
index[k] = i
end
pq = new(xs, o, index)
# heapify
for i in heapparent(length(pq.xs)):-1:1
percolate_down!(pq, i)
end
pq
end
end
PriorityQueue(o::Ordering=Forward) = PriorityQueue{Any,Any,typeof(o)}(o)
PriorityQueue{K,V}(::Type{K}, ::Type{V}, o::Ordering=Forward) = PriorityQueue{K,V,typeof(o)}(o)
# TODO: maybe deprecate
PriorityQueue{K,V}(ks::AbstractArray{K}, vs::AbstractArray{V},
o::Ordering=Forward) = PriorityQueue{K,V,typeof(o)}(ks, vs, o)
PriorityQueue{K,V}(kvs::Associative{K,V}, o::Ordering=Forward) = PriorityQueue{K,V,typeof(o)}(kvs, o)
PriorityQueue{K,V}(a::AbstractArray{Tuple{K,V}}, o::Ordering=Forward) = PriorityQueue{K,V,typeof(o)}(a, o)
length(pq::PriorityQueue) = length(pq.xs)
isempty(pq::PriorityQueue) = isempty(pq.xs)
haskey(pq::PriorityQueue, key) = haskey(pq.index, key)
peek(pq::PriorityQueue) = pq.xs[1]
function percolate_down!(pq::PriorityQueue, i::Integer)
x = pq.xs[i]
@inbounds while (l = heapleft(i)) <= length(pq)
r = heapright(i)
j = r > length(pq) || lt(pq.o, pq.xs[l].second, pq.xs[r].second) ? l : r
if lt(pq.o, pq.xs[j].second, x.second)
pq.index[pq.xs[j].first] = i
pq.xs[i] = pq.xs[j]
i = j
else
break
end
end
pq.index[x.first] = i
pq.xs[i] = x
end
function percolate_up!(pq::PriorityQueue, i::Integer)
x = pq.xs[i]
@inbounds while i > 1
j = heapparent(i)
if lt(pq.o, x.second, pq.xs[j].second)
pq.index[pq.xs[j].first] = i
pq.xs[i] = pq.xs[j]
i = j
else
break
end
end
pq.index[x.first] = i
pq.xs[i] = x
end
# Equivalent to percolate_up! with an element having lower priority than any other
function force_up!(pq::PriorityQueue, i::Integer)
x = pq.xs[i]
@inbounds while i > 1
j = heapparent(i)
pq.index[pq.xs[j].first] = i
pq.xs[i] = pq.xs[j]
i = j
end
pq.index[x.first] = i
pq.xs[i] = x
end
function getindex{K,V}(pq::PriorityQueue{K,V}, key)
pq.xs[pq.index[key]].second
end
function get{K,V}(pq::PriorityQueue{K,V}, key, deflt)
i = get(pq.index, key, 0)
i == 0 ? deflt : pq.xs[i].second
end
# Change the priority of an existing element, or equeue it if it isn't present.
function setindex!{K,V}(pq::PriorityQueue{K, V}, value, key)
if haskey(pq, key)
i = pq.index[key]
oldvalue = pq.xs[i].second
pq.xs[i] = Pair{K,V}(key, value)
if lt(pq.o, oldvalue, value)
percolate_down!(pq, i)
else
percolate_up!(pq, i)
end
else
enqueue!(pq, key, value)
end
value
end
function enqueue!{K,V}(pq::PriorityQueue{K,V}, key, value)
if haskey(pq, key)
throw(ArgumentError("PriorityQueue keys must be unique"))
end
push!(pq.xs, Pair{K,V}(key, value))
pq.index[key] = length(pq)
percolate_up!(pq, length(pq))
pq
end
function dequeue!(pq::PriorityQueue)
x = pq.xs[1]
y = pop!(pq.xs)
if !isempty(pq)
pq.xs[1] = y
pq.index[y.first] = 1
percolate_down!(pq, 1)
end
delete!(pq.index, x.first)
x.first
end
function dequeue!(pq::PriorityQueue, key)
idx = pq.index[key]
force_up!(pq, idx)
dequeue!(pq)
key
end
# Unordered iteration through key value pairs in a PriorityQueue
start(pq::PriorityQueue) = start(pq.index)
done(pq::PriorityQueue, i) = done(pq.index, i)
function next{K,V}(pq::PriorityQueue{K,V}, i)
(k, idx), i = next(pq.index, i)
return (pq.xs[idx], i)
end
end # module Collections
|