This file is indexed.

/usr/share/julia/base/collections.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# This file is a part of Julia. License is MIT: http://julialang.org/license

module Collections

import Base: setindex!, done, get, hash, haskey, isempty, length, next, getindex, start
import ..Order: Forward, Ordering, lt

export
    PriorityQueue,
    dequeue!,
    enqueue!,
    heapify!,
    heapify,
    heappop!,
    heappush!,
    isheap,
    peek



# Heap operations on flat arrays
# ------------------------------


# Binary heap indexing
heapleft(i::Integer) = 2i
heapright(i::Integer) = 2i + 1
heapparent(i::Integer) = div(i, 2)


# Binary min-heap percolate down.
function percolate_down!(xs::AbstractArray, i::Integer, x=xs[i], o::Ordering=Forward, len::Integer=length(xs))
    @inbounds while (l = heapleft(i)) <= len
        r = heapright(i)
        j = r > len || lt(o, xs[l], xs[r]) ? l : r
        if lt(o, xs[j], x)
            xs[i] = xs[j]
            i = j
        else
            break
        end
    end
    xs[i] = x
end

percolate_down!(xs::AbstractArray, i::Integer, o::Ordering, len::Integer=length(xs)) = percolate_down!(xs, i, xs[i], o, len)


# Binary min-heap percolate up.
function percolate_up!(xs::AbstractArray, i::Integer, x=xs[i], o::Ordering=Forward)
    @inbounds while (j = heapparent(i)) >= 1
        if lt(o, x, xs[j])
            xs[i] = xs[j]
            i = j
        else
            break
        end
    end
    xs[i] = x
end

percolate_up!{T}(xs::AbstractArray{T}, i::Integer, o::Ordering) = percolate_up!(xs, i, xs[i], o)


# Binary min-heap pop.
function heappop!(xs::AbstractArray, o::Ordering=Forward)
    x = xs[1]
    y = pop!(xs)
    if !isempty(xs)
        percolate_down!(xs, 1, y, o)
    end
    x
end


# Binary min-heap push.
function heappush!(xs::AbstractArray, x, o::Ordering=Forward)
    push!(xs, x)
    percolate_up!(xs, length(xs), x, o)
    xs
end


# Turn an arbitrary array into a binary min-heap in linear time.
function heapify!(xs::AbstractArray, o::Ordering=Forward)
    for i in heapparent(length(xs)):-1:1
        percolate_down!(xs, i, o)
    end
    xs
end

heapify(xs::AbstractArray, o::Ordering=Forward) = heapify!(copy(xs), o)


# Is an arbitrary array heap ordered?
function isheap(xs::AbstractArray, o::Ordering=Forward)
    for i in 1:div(length(xs), 2)
        if lt(o, xs[heapleft(i)], xs[i]) ||
           (heapright(i) <= length(xs) && lt(o, xs[heapright(i)], xs[i]))
            return false
        end
    end
    true
end


# PriorityQueue
# -------------

# A PriorityQueue that acts like a Dict, mapping values to their priorities,
# with the addition of a dequeue! function to remove the lowest priority
# element.
type PriorityQueue{K,V,O<:Ordering} <: Associative{K,V}
    # Binary heap of (element, priority) pairs.
    xs::Array{Pair{K,V}, 1}
    o::O

    # Map elements to their index in xs
    index::Dict{K, Int}

    function PriorityQueue(o::O)
        new(Array(Pair{K,V}, 0), o, Dict{K, Int}())
    end

    PriorityQueue() = PriorityQueue{K,V,O}(Forward)

    function PriorityQueue(ks::AbstractArray{K}, vs::AbstractArray{V},
                           o::O)
        # TODO: maybe deprecate
        if length(ks) != length(vs)
            throw(ArgumentError("key and value arrays must have equal lengths"))
        end
        PriorityQueue{K,V,O}(zip(ks, vs), o)
    end

    function PriorityQueue(itr, o::O)
        xs = Array(Pair{K,V}, length(itr))
        index = Dict{K, Int}()
        for (i, (k, v)) in enumerate(itr)
            xs[i] = Pair{K,V}(k, v)
            if haskey(index, k)
                throw(ArgumentError("PriorityQueue keys must be unique"))
            end
            index[k] = i
        end
        pq = new(xs, o, index)

        # heapify
        for i in heapparent(length(pq.xs)):-1:1
            percolate_down!(pq, i)
        end

        pq
    end
end

PriorityQueue(o::Ordering=Forward) = PriorityQueue{Any,Any,typeof(o)}(o)
PriorityQueue{K,V}(::Type{K}, ::Type{V}, o::Ordering=Forward) = PriorityQueue{K,V,typeof(o)}(o)

# TODO: maybe deprecate
PriorityQueue{K,V}(ks::AbstractArray{K}, vs::AbstractArray{V},
                   o::Ordering=Forward) = PriorityQueue{K,V,typeof(o)}(ks, vs, o)

PriorityQueue{K,V}(kvs::Associative{K,V}, o::Ordering=Forward) = PriorityQueue{K,V,typeof(o)}(kvs, o)

PriorityQueue{K,V}(a::AbstractArray{Tuple{K,V}}, o::Ordering=Forward) = PriorityQueue{K,V,typeof(o)}(a, o)

length(pq::PriorityQueue) = length(pq.xs)
isempty(pq::PriorityQueue) = isempty(pq.xs)
haskey(pq::PriorityQueue, key) = haskey(pq.index, key)
peek(pq::PriorityQueue) = pq.xs[1]


function percolate_down!(pq::PriorityQueue, i::Integer)
    x = pq.xs[i]
    @inbounds while (l = heapleft(i)) <= length(pq)
        r = heapright(i)
        j = r > length(pq) || lt(pq.o, pq.xs[l].second, pq.xs[r].second) ? l : r
        if lt(pq.o, pq.xs[j].second, x.second)
            pq.index[pq.xs[j].first] = i
            pq.xs[i] = pq.xs[j]
            i = j
        else
            break
        end
    end
    pq.index[x.first] = i
    pq.xs[i] = x
end


function percolate_up!(pq::PriorityQueue, i::Integer)
    x = pq.xs[i]
    @inbounds while i > 1
        j = heapparent(i)
        if lt(pq.o, x.second, pq.xs[j].second)
            pq.index[pq.xs[j].first] = i
            pq.xs[i] = pq.xs[j]
            i = j
        else
            break
        end
    end
    pq.index[x.first] = i
    pq.xs[i] = x
end

# Equivalent to percolate_up! with an element having lower priority than any other
function force_up!(pq::PriorityQueue, i::Integer)
    x = pq.xs[i]
    @inbounds while i > 1
        j = heapparent(i)
        pq.index[pq.xs[j].first] = i
        pq.xs[i] = pq.xs[j]
        i = j
    end
    pq.index[x.first] = i
    pq.xs[i] = x
end

function getindex{K,V}(pq::PriorityQueue{K,V}, key)
    pq.xs[pq.index[key]].second
end


function get{K,V}(pq::PriorityQueue{K,V}, key, deflt)
    i = get(pq.index, key, 0)
    i == 0 ? deflt : pq.xs[i].second
end


# Change the priority of an existing element, or equeue it if it isn't present.
function setindex!{K,V}(pq::PriorityQueue{K, V}, value, key)
    if haskey(pq, key)
        i = pq.index[key]
        oldvalue = pq.xs[i].second
        pq.xs[i] = Pair{K,V}(key, value)
        if lt(pq.o, oldvalue, value)
            percolate_down!(pq, i)
        else
            percolate_up!(pq, i)
        end
    else
        enqueue!(pq, key, value)
    end
    value
end


function enqueue!{K,V}(pq::PriorityQueue{K,V}, key, value)
    if haskey(pq, key)
        throw(ArgumentError("PriorityQueue keys must be unique"))
    end
    push!(pq.xs, Pair{K,V}(key, value))
    pq.index[key] = length(pq)
    percolate_up!(pq, length(pq))
    pq
end


function dequeue!(pq::PriorityQueue)
    x = pq.xs[1]
    y = pop!(pq.xs)
    if !isempty(pq)
        pq.xs[1] = y
        pq.index[y.first] = 1
        percolate_down!(pq, 1)
    end
    delete!(pq.index, x.first)
    x.first
end

function dequeue!(pq::PriorityQueue, key)
    idx = pq.index[key]
    force_up!(pq, idx)
    dequeue!(pq)
    key
end

# Unordered iteration through key value pairs in a PriorityQueue
start(pq::PriorityQueue) = start(pq.index)

done(pq::PriorityQueue, i) = done(pq.index, i)

function next{K,V}(pq::PriorityQueue{K,V}, i)
    (k, idx), i = next(pq.index, i)
    return (pq.xs[idx], i)
end

end # module Collections