/usr/share/julia/base/array.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## array.jl: Dense arrays
typealias Vector{T} Array{T,1}
typealias Matrix{T} Array{T,2}
typealias VecOrMat{T} Union{Vector{T}, Matrix{T}}
typealias DenseVector{T} DenseArray{T,1}
typealias DenseMatrix{T} DenseArray{T,2}
typealias DenseVecOrMat{T} Union{DenseVector{T}, DenseMatrix{T}}
call{T}(::Type{Vector{T}}, m::Integer) = Array{T}(m)
call{T}(::Type{Vector{T}}) = Array{T}(0)
call(::Type{Vector}, m::Integer) = Array{Any}(m)
call(::Type{Vector}) = Array{Any}(0)
call{T}(::Type{Matrix{T}}, m::Integer, n::Integer) = Array{T}(m, n)
call{T}(::Type{Matrix{T}}) = Array{T}(0, 0)
call(::Type{Matrix}, m::Integer, n::Integer) = Array{Any}(m, n)
call(::Type{Matrix}) = Array{Any}(0, 0)
## Basic functions ##
# convert Arrays to pointer arrays for ccall
function call{P<:Ptr,T<:Ptr}(::Type{Ref{P}}, a::Array{T}) # Ref{P<:Ptr}(a::Array{T<:Ptr})
return RefArray(a) # effectively a no-op
end
function call{P<:Ptr,T}(::Type{Ref{P}}, a::Array{T}) # Ref{P<:Ptr}(a::Array)
if (!isbits(T) && T <: eltype(P))
# this Array already has the right memory layout for the requested Ref
return RefArray(a,1,false) # root something, so that this function is type-stable
else
ptrs = Array(P, length(a)+1)
roots = Array(Any, length(a))
for i = 1:length(a)
root = cconvert(P, a[i])
ptrs[i] = unsafe_convert(P, root)::P
roots[i] = root
end
ptrs[length(a)+1] = C_NULL
return RefArray(ptrs,1,roots)
end
end
cconvert{P<:Ptr,T<:Ptr}(::Union{Type{Ptr{P}},Type{Ref{P}}}, a::Array{T}) = a
cconvert{P<:Ptr}(::Union{Type{Ptr{P}},Type{Ref{P}}}, a::Array) = Ref{P}(a)
size(a::Array, d) = arraysize(a, d)
size(a::Vector) = (arraysize(a,1),)
size(a::Matrix) = (arraysize(a,1), arraysize(a,2))
size{_}(a::Array{_,3}) = (arraysize(a,1), arraysize(a,2), arraysize(a,3))
size{_}(a::Array{_,4}) = (arraysize(a,1), arraysize(a,2), arraysize(a,3), arraysize(a,4))
asize_from(a::Array, n) = n > ndims(a) ? () : (arraysize(a,n), asize_from(a, n+1)...)
size{_,N}(a::Array{_,N}) = asize_from(a, 1)::NTuple{N,Int}
length(a::Array) = arraylen(a)
elsize{T}(a::Array{T}) = isbits(T) ? sizeof(T) : sizeof(Ptr)
sizeof(a::Array) = elsize(a) * length(a)
strides{T}(a::Array{T,1}) = (1,)
strides{T}(a::Array{T,2}) = (1, size(a,1))
strides{T}(a::Array{T,3}) = (1, size(a,1), size(a,1)*size(a,2))
function isassigned{T}(a::Array{T}, i::Int...)
ii = sub2ind(size(a), i...)
1 <= ii <= length(a) || return false
ccall(:jl_array_isassigned, Cint, (Any, UInt), a, ii-1) == 1
end
## copy ##
function unsafe_copy!{T}(dest::Ptr{T}, src::Ptr{T}, n)
ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, UInt),
dest, src, n*sizeof(T))
return dest
end
function unsafe_copy!{T}(dest::Array{T}, doffs, src::Array{T}, soffs, n)
if isbits(T)
unsafe_copy!(pointer(dest, doffs), pointer(src, soffs), n)
else
for i=0:n-1
@inbounds arrayset(dest, src[i+soffs], i+doffs)
end
end
return dest
end
function copy!{T}(dest::Array{T}, doffs::Integer, src::Array{T}, soffs::Integer, n::Integer)
n == 0 && return dest
if n < 0 || soffs < 1 || doffs < 1 || soffs+n-1 > length(src) || doffs+n-1 > length(dest)
throw(BoundsError())
end
unsafe_copy!(dest, doffs, src, soffs, n)
end
copy!{T}(dest::Array{T}, src::Array{T}) = copy!(dest, 1, src, 1, length(src))
function copy(a::Array)
b = similar(a)
ccall(:memcpy, Ptr{Void}, (Ptr{Void}, Ptr{Void}, UInt), b, a, sizeof(a))
return b
end
function reinterpret{T,S}(::Type{T}, a::Array{S,1})
nel = Int(div(length(a)*sizeof(S),sizeof(T)))
# TODO: maybe check that remainder is zero?
return reinterpret(T, a, (nel,))
end
function reinterpret{T,S}(::Type{T}, a::Array{S})
if sizeof(S) != sizeof(T)
throw(ArgumentError("result shape not specified"))
end
reinterpret(T, a, size(a))
end
function reinterpret{T,S,N}(::Type{T}, a::Array{S}, dims::NTuple{N,Int})
if !isbits(T)
throw(ArgumentError("cannot reinterpret Array{$(S)} to ::Type{Array{$(T)}}, type $(T) is not a bitstype"))
end
if !isbits(S)
throw(ArgumentError("cannot reinterpret Array{$(S)} to ::Type{Array{$(T)}}, type $(S) is not a bitstype"))
end
nel = div(length(a)*sizeof(S),sizeof(T))
if prod(dims) != nel
throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(nel)"))
end
ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end
# reshaping to same # of dimensions
function reshape{T,N}(a::Array{T,N}, dims::NTuple{N,Int})
if prod(dims) != length(a)
throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))"))
end
if dims == size(a)
return a
end
ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end
# reshaping to different # of dimensions
function reshape{T,N}(a::Array{T}, dims::NTuple{N,Int})
if prod(dims) != length(a)
throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))"))
end
ccall(:jl_reshape_array, Array{T,N}, (Any, Any, Any), Array{T,N}, a, dims)
end
## Constructors ##
similar(a::Array, T, dims::Dims) = Array(T, dims)
similar{T}(a::Array{T,1}) = Array(T, size(a,1))
similar{T}(a::Array{T,2}) = Array(T, size(a,1), size(a,2))
similar{T}(a::Array{T,1}, dims::Dims) = Array(T, dims)
similar{T}(a::Array{T,1}, m::Int) = Array(T, m)
similar{T}(a::Array{T,1}, S) = Array(S, size(a,1))
similar{T}(a::Array{T,2}, dims::Dims) = Array(T, dims)
similar{T}(a::Array{T,2}, m::Int) = Array(T, m)
similar{T}(a::Array{T,2}, S) = Array(S, size(a,1), size(a,2))
# T[x...] constructs Array{T,1}
function getindex(T::Type, vals...)
a = Array(T,length(vals))
@inbounds for i = 1:length(vals)
a[i] = vals[i]
end
return a
end
function getindex(::Type{Any}, vals::ANY...)
a = Array(Any,length(vals))
@inbounds for i = 1:length(vals)
a[i] = vals[i]
end
return a
end
function fill!(a::Union{Array{UInt8}, Array{Int8}}, x::Integer)
ccall(:memset, Ptr{Void}, (Ptr{Void}, Cint, Csize_t), a, x, length(a))
return a
end
function fill!{T<:Union{Integer,AbstractFloat}}(a::Array{T}, x)
# note: checking bit pattern
xT = convert(T,x)
if isbits(T) && nfields(T)==0 &&
((sizeof(T)==1 && reinterpret(UInt8, xT) == 0) ||
(sizeof(T)==2 && reinterpret(UInt16, xT) == 0) ||
(sizeof(T)==4 && reinterpret(UInt32, xT) == 0) ||
(sizeof(T)==8 && reinterpret(UInt64, xT) == 0))
ccall(:memset, Ptr{Void}, (Ptr{Void}, Cint, Csize_t),
a, 0, length(a)*sizeof(T))
else
for i in eachindex(a)
@inbounds a[i] = xT
end
end
return a
end
fill(v, dims::Dims) = fill!(Array(typeof(v), dims), v)
fill(v, dims::Integer...) = fill!(Array(typeof(v), dims...), v)
cell(dims::Integer...) = Array(Any, dims...)
cell(dims::Tuple{Vararg{Integer}}) = Array(Any, convert(Tuple{Vararg{Int}}, dims))
for (fname, felt) in ((:zeros,:zero), (:ones,:one))
@eval begin
($fname)(T::Type, dims...) = fill!(Array(T, dims...), ($felt)(T))
($fname)(dims...) = fill!(Array(Float64, dims...), ($felt)(Float64))
($fname){T}(A::AbstractArray{T}) = fill!(similar(A), ($felt)(T))
end
end
function eye(T::Type, m::Integer, n::Integer)
a = zeros(T,m,n)
for i = 1:min(m,n)
a[i,i] = one(T)
end
return a
end
eye(m::Integer, n::Integer) = eye(Float64, m, n)
eye(T::Type, n::Integer) = eye(T, n, n)
eye(n::Integer) = eye(Float64, n)
eye{T}(x::AbstractMatrix{T}) = eye(T, size(x, 1), size(x, 2))
function one{T}(x::AbstractMatrix{T})
m,n = size(x)
m==n || throw(DimensionMismatch("multiplicative identity defined only for square matrices"))
eye(T, m)
end
## Conversions ##
convert{T,n}(::Type{Array{T}}, x::Array{T,n}) = x
convert{T,n}(::Type{Array{T,n}}, x::Array{T,n}) = x
convert{T,n,S}(::Type{Array{T}}, x::AbstractArray{S,n}) = convert(Array{T,n}, x)
convert{T,n,S}(::Type{Array{T,n}}, x::AbstractArray{S,n}) = copy!(Array(T, size(x)), x)
promote_rule{T,n,S}(::Type{Array{T,n}}, ::Type{Array{S,n}}) = Array{promote_type(T,S),n}
"""
collect(element_type, collection)
Return an array of type `Array{element_type,1}` of all items in a collection.
"""
function collect{T}(::Type{T}, itr)
if applicable(length, itr)
# when length() isn't defined this branch might pollute the
# type of the other.
a = Array(T,length(itr)::Integer)
i = 0
for x in itr
a[i+=1] = x
end
else
a = Array(T,0)
for x in itr
push!(a,x)
end
end
return a
end
"""
collect(collection)
Return an array of all items in a collection. For associative collections, returns Pair{KeyType, ValType}.
"""
collect(itr) = collect(eltype(itr), itr)
## Iteration ##
start(A::Array) = 1
next(a::Array,i) = (a[i],i+1)
done(a::Array,i) = i == length(a)+1
## Indexing: getindex ##
# This is more complicated than it needs to be in order to get Win64 through bootstrap
getindex(A::Array, i1::Real) = arrayref(A, to_index(i1))
getindex(A::Array, i1::Real, i2::Real, I::Real...) = arrayref(A, to_index(i1), to_index(i2), to_indexes(I...)...)
unsafe_getindex(A::Array, i1::Real, I::Real...) = @inbounds return arrayref(A, to_index(i1), to_indexes(I...)...)
# Faster contiguous indexing using copy! for UnitRange and Colon
getindex(A::Array, I::UnitRange{Int}) = (checkbounds(A, I); unsafe_getindex(A, I))
function unsafe_getindex(A::Array, I::UnitRange{Int})
lI = length(I)
X = similar(A, lI)
if lI > 0
unsafe_copy!(X, 1, A, first(I), lI)
end
return X
end
getindex(A::Array, c::Colon) = unsafe_getindex(A, c)
function unsafe_getindex(A::Array, ::Colon)
lI = length(A)
X = similar(A, lI)
if lI > 0
unsafe_copy!(X, 1, A, 1, lI)
end
return X
end
# This is redundant with the abstract fallbacks, but needed for bootstrap
function getindex{T<:Real}(A::Array, I::Range{T})
return [ A[to_index(i)] for i in I ]
end
## Indexing: setindex! ##
setindex!{T}(A::Array{T}, x, i1::Real) = arrayset(A, convert(T,x)::T, to_index(i1))
setindex!{T}(A::Array{T}, x, i1::Real, i2::Real, I::Real...) = arrayset(A, convert(T,x)::T, to_index(i1), to_index(i2), to_indexes(I...)...)
# Type inference is confused by `@inbounds return ...` and introduces a
# !ispointerfree local variable and a GC frame
unsafe_setindex!{T}(A::Array{T}, x, i1::Real, I::Real...) =
(@inbounds arrayset(A, convert(T,x)::T, to_index(i1), to_indexes(I...)...); A)
# These are redundant with the abstract fallbacks but needed for bootstrap
function setindex!(A::Array, x, I::AbstractVector{Int})
is(A, I) && (I = copy(I))
for i in I
A[i] = x
end
return A
end
function setindex!(A::Array, X::AbstractArray, I::AbstractVector{Int})
setindex_shape_check(X, length(I))
count = 1
if is(X,A)
X = copy(X)
is(I,A) && (I = X::typeof(I))
elseif is(I,A)
I = copy(I)
end
for i in I
A[i] = X[count]
count += 1
end
return A
end
# Faster contiguous setindex! with copy!
setindex!{T}(A::Array{T}, X::Array{T}, I::UnitRange{Int}) = (checkbounds(A, I); unsafe_setindex!(A, X, I))
function unsafe_setindex!{T}(A::Array{T}, X::Array{T}, I::UnitRange{Int})
lI = length(I)
setindex_shape_check(X, lI)
if lI > 0
unsafe_copy!(A, first(I), X, 1, lI)
end
return A
end
setindex!{T}(A::Array{T}, X::Array{T}, c::Colon) = unsafe_setindex!(A, X, c)
function unsafe_setindex!{T}(A::Array{T}, X::Array{T}, ::Colon)
lI = length(A)
setindex_shape_check(X, lI)
if lI > 0
unsafe_copy!(A, 1, X, 1, lI)
end
return A
end
# efficiently grow an array
function _growat!(a::Vector, i::Integer, delta::Integer)
n = length(a)
if i < div(n,2)
_growat_beg!(a, i, delta)
else
_growat_end!(a, i, delta)
end
return a
end
function _growat_beg!(a::Vector, i::Integer, delta::Integer)
ccall(:jl_array_grow_beg, Void, (Any, UInt), a, delta)
if i > 1
ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, Csize_t),
pointer(a, 1), pointer(a, 1+delta), (i-1)*elsize(a))
end
return a
end
function _growat_end!(a::Vector, i::Integer, delta::Integer)
ccall(:jl_array_grow_end, Void, (Any, UInt), a, delta)
n = length(a)
if n >= i+delta
ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, Csize_t),
pointer(a, i+delta), pointer(a, i), (n-i-delta+1)*elsize(a))
end
return a
end
# efficiently delete part of an array
function _deleteat!(a::Vector, i::Integer, delta::Integer)
n = length(a)
last = i+delta-1
if i-1 < n-last
_deleteat_beg!(a, i, delta)
else
_deleteat_end!(a, i, delta)
end
return a
end
function _deleteat_beg!(a::Vector, i::Integer, delta::Integer)
if i > 1
ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, Csize_t),
pointer(a, 1+delta), pointer(a, 1), (i-1)*elsize(a))
end
ccall(:jl_array_del_beg, Void, (Any, UInt), a, delta)
return a
end
function _deleteat_end!(a::Vector, i::Integer, delta::Integer)
n = length(a)
if n >= i+delta
ccall(:memmove, Ptr{Void}, (Ptr{Void}, Ptr{Void}, Csize_t),
pointer(a, i), pointer(a, i+delta), (n-i-delta+1)*elsize(a))
end
ccall(:jl_array_del_end, Void, (Any, UInt), a, delta)
return a
end
## Dequeue functionality ##
function push!{T}(a::Array{T,1}, item)
# convert first so we don't grow the array if the assignment won't work
itemT = convert(T, item)
ccall(:jl_array_grow_end, Void, (Any, UInt), a, 1)
a[end] = itemT
return a
end
function push!(a::Array{Any,1}, item::ANY)
ccall(:jl_array_grow_end, Void, (Any, UInt), a, 1)
arrayset(a, item, length(a))
return a
end
function append!{T}(a::Array{T,1}, items::AbstractVector)
n = length(items)
ccall(:jl_array_grow_end, Void, (Any, UInt), a, n)
copy!(a, length(a)-n+1, items, 1, n)
return a
end
function prepend!{T}(a::Array{T,1}, items::AbstractVector)
n = length(items)
ccall(:jl_array_grow_beg, Void, (Any, UInt), a, n)
if a === items
copy!(a, 1, items, n+1, n)
else
copy!(a, 1, items, 1, n)
end
return a
end
function resize!(a::Vector, nl::Integer)
l = length(a)
if nl > l
ccall(:jl_array_grow_end, Void, (Any, UInt), a, nl-l)
else
if nl < 0
throw(ArgumentError("new length must be ≥ 0"))
end
ccall(:jl_array_del_end, Void, (Any, UInt), a, l-nl)
end
return a
end
function sizehint!(a::Vector, sz::Integer)
ccall(:jl_array_sizehint, Void, (Any, UInt), a, sz)
a
end
function pop!(a::Vector)
if isempty(a)
throw(ArgumentError("array must be non-empty"))
end
item = a[end]
ccall(:jl_array_del_end, Void, (Any, UInt), a, 1)
return item
end
function unshift!{T}(a::Array{T,1}, item)
item = convert(T, item)
ccall(:jl_array_grow_beg, Void, (Any, UInt), a, 1)
a[1] = item
return a
end
function shift!(a::Vector)
if isempty(a)
throw(ArgumentError("array must be non-empty"))
end
item = a[1]
ccall(:jl_array_del_beg, Void, (Any, UInt), a, 1)
return item
end
function insert!{T}(a::Array{T,1}, i::Integer, item)
if !(1 <= i <= length(a)+1)
throw(BoundsError())
end
if i == length(a)+1
return push!(a, item)
end
item = convert(T, item)
_growat!(a, i, 1)
a[i] = item
return a
end
function deleteat!(a::Vector, i::Integer)
if !(1 <= i <= length(a))
throw(BoundsError())
end
return _deleteat!(a, i, 1)
end
function deleteat!{T<:Integer}(a::Vector, r::UnitRange{T})
n = length(a)
isempty(r) && return a
f = first(r)
l = last(r)
if !(1 <= f && l <= n)
throw(BoundsError())
end
return _deleteat!(a, f, length(r))
end
function deleteat!(a::Vector, inds)
n = length(a)
s = start(inds)
done(inds, s) && return a
(p, s) = next(inds, s)
q = p+1
while !done(inds, s)
(i,s) = next(inds, s)
if !(q <= i <= n)
if i < q
throw(ArgumentError("indices must be unique and sorted"))
else
throw(BoundsError())
end
end
while q < i
@inbounds a[p] = a[q]
p += 1; q += 1
end
q = i+1
end
while q <= n
@inbounds a[p] = a[q]
p += 1; q += 1
end
ccall(:jl_array_del_end, Void, (Any, UInt), a, n-p+1)
return a
end
const _default_splice = []
function splice!(a::Vector, i::Integer, ins=_default_splice)
v = a[i]
m = length(ins)
if m == 0
_deleteat!(a, i, 1)
elseif m == 1
a[i] = ins[1]
else
_growat!(a, i, m-1)
k = 1
for x in ins
a[i+k-1] = x
k += 1
end
end
return v
end
function splice!{T<:Integer}(a::Vector, r::UnitRange{T}, ins=_default_splice)
v = a[r]
m = length(ins)
if m == 0
deleteat!(a, r)
return v
end
n = length(a)
f = first(r)
l = last(r)
d = length(r)
if m < d
delta = d - m
if f-1 < n-l
_deleteat_beg!(a, f, delta)
else
_deleteat_end!(a, l-delta+1, delta)
end
elseif m > d
delta = m - d
if f-1 < n-l
_growat_beg!(a, f, delta)
else
_growat_end!(a, l+1, delta)
end
end
k = 1
for x in ins
a[f+k-1] = x
k += 1
end
return v
end
function empty!(a::Vector)
ccall(:jl_array_del_end, Void, (Any, UInt), a, length(a))
return a
end
# use memcmp for lexcmp on byte arrays
function lexcmp(a::Array{UInt8,1}, b::Array{UInt8,1})
c = ccall(:memcmp, Int32, (Ptr{UInt8}, Ptr{UInt8}, UInt),
a, b, min(length(a),length(b)))
c < 0 ? -1 : c > 0 ? +1 : cmp(length(a),length(b))
end
# note: probably should be StridedVector or AbstractVector
function reverse(A::AbstractVector, s=1, n=length(A))
B = similar(A)
for i = 1:s-1
B[i] = A[i]
end
for i = s:n
B[i] = A[n+s-i]
end
for i = n+1:length(A)
B[i] = A[i]
end
B
end
reverseind(a::AbstractVector, i::Integer) = length(a) + 1 - i
reverse(v::StridedVector) = (n=length(v); [ v[n-i+1] for i=1:n ])
reverse(v::StridedVector, s, n=length(v)) = reverse!(copy(v), s, n)
function reverse!(v::StridedVector, s=1, n=length(v))
if n <= s # empty case; ok
elseif !(1 ≤ s ≤ endof(v))
throw(BoundsError(v, s))
elseif !(1 ≤ n ≤ endof(v))
throw(BoundsError(v, n))
end
r = n
@inbounds for i in s:div(s+n-1, 2)
v[i], v[r] = v[r], v[i]
r -= 1
end
v
end
function vcat{T}(arrays::Vector{T}...)
n = 0
for a in arrays
n += length(a)
end
arr = Array(T, n)
ptr = pointer(arr)
offset = 0
if isbits(T)
elsz = sizeof(T)
else
elsz = div(WORD_SIZE,8)
end
for a in arrays
nba = length(a)*elsz
ccall(:memcpy, Ptr{Void}, (Ptr{Void}, Ptr{Void}, UInt),
ptr+offset, a, nba)
offset += nba
end
return arr
end
function hcat{T}(V::Vector{T}...)
height = length(V[1])
for j = 2:length(V)
if length(V[j]) != height
throw(DimensionMismatch("vectors must have same lengths"))
end
end
[ V[j][i]::T for i=1:length(V[1]), j=1:length(V) ]
end
## find ##
# returns the index of the next non-zero element, or 0 if all zeros
function findnext(A, start::Integer)
for i = start:length(A)
if A[i] != 0
return i
end
end
return 0
end
findfirst(A) = findnext(A, 1)
# returns the index of the next matching element
function findnext(A, v, start::Integer)
for i = start:length(A)
if A[i] == v
return i
end
end
return 0
end
findfirst(A, v) = findnext(A, v, 1)
# returns the index of the next element for which the function returns true
function findnext(testf::Function, A, start::Integer)
for i = start:length(A)
if testf(A[i])
return i
end
end
return 0
end
findfirst(testf::Function, A) = findnext(testf, A, 1)
# returns the index of the previous non-zero element, or 0 if all zeros
function findprev(A, start)
for i = start:-1:1
A[i] != 0 && return i
end
0
end
findlast(A) = findprev(A, length(A))
# returns the index of the matching element, or 0 if no matching
function findprev(A, v, start)
for i = start:-1:1
A[i] == v && return i
end
0
end
findlast(A, v) = findprev(A, v, length(A))
# returns the index of the previous element for which the function returns true, or zero if it never does
function findprev(testf::Function, A, start)
for i = start:-1:1
testf(A[i]) && return i
end
0
end
findlast(testf::Function, A) = findprev(testf, A, length(A))
function find(testf::Function, A::AbstractArray)
# use a dynamic-length array to store the indexes, then copy to a non-padded
# array for the return
tmpI = Array(Int, 0)
for i = 1:length(A)
if testf(A[i])
push!(tmpI, i)
end
end
I = Array(Int, length(tmpI))
copy!(I, tmpI)
I
end
function find(A::StridedArray)
nnzA = countnz(A)
I = similar(A, Int, nnzA)
count = 1
for i=1:length(A)
if A[i] != 0
I[count] = i
count += 1
end
end
return I
end
find(x::Number) = x == 0 ? Array(Int,0) : [1]
find(testf::Function, x::Number) = !testf(x) ? Array(Int,0) : [1]
findn(A::AbstractVector) = find(A)
function findn(A::StridedMatrix)
nnzA = countnz(A)
I = similar(A, Int, nnzA)
J = similar(A, Int, nnzA)
count = 1
for j=1:size(A,2), i=1:size(A,1)
if A[i,j] != 0
I[count] = i
J[count] = j
count += 1
end
end
return (I, J)
end
function findnz{T}(A::AbstractMatrix{T})
nnzA = countnz(A)
I = zeros(Int, nnzA)
J = zeros(Int, nnzA)
NZs = Array(T, nnzA)
count = 1
if nnzA > 0
for j=1:size(A,2), i=1:size(A,1)
Aij = A[i,j]
if Aij != 0
I[count] = i
J[count] = j
NZs[count] = Aij
count += 1
end
end
end
return (I, J, NZs)
end
function findmax(a)
if isempty(a)
throw(ArgumentError("collection must be non-empty"))
end
s = start(a)
mi = i = 1
m, s = next(a, s)
while !done(a, s)
ai, s = next(a, s)
i += 1
if ai > m || m!=m
m = ai
mi = i
end
end
return (m, mi)
end
function findmin(a)
if isempty(a)
throw(ArgumentError("collection must be non-empty"))
end
s = start(a)
mi = i = 1
m, s = next(a, s)
while !done(a, s)
ai, s = next(a, s)
i += 1
if ai < m || m!=m
m = ai
mi = i
end
end
return (m, mi)
end
indmax(a) = findmax(a)[2]
indmin(a) = findmin(a)[2]
# similar to Matlab's ismember
# returns a vector containing the highest index in b for each value in a that is a member of b
function indexin(a::AbstractArray, b::AbstractArray)
bdict = Dict(zip(b, 1:length(b)))
[get(bdict, i, 0) for i in a]
end
# findin (the index of intersection)
function findin(a, b::UnitRange)
ind = Array(Int, 0)
f = first(b)
l = last(b)
for i = 1:length(a)
if f <= a[i] <= l
push!(ind, i)
end
end
ind
end
function findin(a, b)
ind = Array(Int, 0)
bset = Set(b)
@inbounds for i = 1:length(a)
a[i] in bset && push!(ind, i)
end
ind
end
# Copying subregions
function indcopy(sz::Dims, I::Vector)
n = length(I)
s = sz[n]
for i = n+1:length(sz)
s *= sz[i]
end
dst = eltype(I)[findin(I[i], i < n ? (1:sz[i]) : (1:s)) for i = 1:n]
src = eltype(I)[I[i][findin(I[i], i < n ? (1:sz[i]) : (1:s))] for i = 1:n]
dst, src
end
function indcopy(sz::Dims, I::Tuple{Vararg{RangeIndex}})
n = length(I)
s = sz[n]
for i = n+1:length(sz)
s *= sz[i]
end
dst::typeof(I) = ntuple(i-> findin(I[i], i < n ? (1:sz[i]) : (1:s)), n)::typeof(I)
src::typeof(I) = ntuple(i-> I[i][findin(I[i], i < n ? (1:sz[i]) : (1:s))], n)::typeof(I)
dst, src
end
## Filter ##
# given a function returning a boolean and an array, return matching elements
filter(f, As::AbstractArray) = As[map(f, As)::AbstractArray{Bool}]
function filter!(f, a::Vector)
insrt = 1
for curr = 1:length(a)
if f(a[curr])
a[insrt] = a[curr]
insrt += 1
end
end
deleteat!(a, insrt:length(a))
return a
end
function filter(f, a::Vector)
r = Array(eltype(a), 0)
for i = 1:length(a)
if f(a[i])
push!(r, a[i])
end
end
return r
end
# set-like operators for vectors
# These are moderately efficient, preserve order, and remove dupes.
function intersect(v1, vs...)
ret = Array(eltype(v1),0)
for v_elem in v1
inall = true
for i = 1:length(vs)
if !in(v_elem, vs[i])
inall=false; break
end
end
if inall
push!(ret, v_elem)
end
end
ret
end
function union(vs...)
ret = Array(promote_eltype(vs...),0)
seen = Set()
for v in vs
for v_elem in v
if !in(v_elem, seen)
push!(ret, v_elem)
push!(seen, v_elem)
end
end
end
ret
end
# setdiff only accepts two args
function setdiff(a, b)
args_type = promote_type(eltype(a), eltype(b))
bset = Set(b)
ret = Array(args_type,0)
seen = Set{eltype(a)}()
for a_elem in a
if !in(a_elem, seen) && !in(a_elem, bset)
push!(ret, a_elem)
push!(seen, a_elem)
end
end
ret
end
# symdiff is associative, so a relatively clean
# way to implement this is by using setdiff and union, and
# recursing. Has the advantage of keeping order, too, but
# not as fast as other methods that make a single pass and
# store counts with a Dict.
symdiff(a) = a
symdiff(a, b) = union(setdiff(a,b), setdiff(b,a))
symdiff(a, b, rest...) = symdiff(a, symdiff(b, rest...))
|