/usr/share/doc/julia/examples/hpl.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## Based on "Multi-Threading and One-Sided Communication in Parallel LU Factorization"
## http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.4361&rank=7
function hpl_seq(A::Matrix, b::Vector)
blocksize = 5
n = size(A,1)
A = [A b]
B_rows = linspace(0, n, div(n,blocksize)+1)
B_rows[end] = n
B_cols = [B_rows, [n+1]]
nB = length(B_rows)
depend = zeros(Bool, nB, nB) # In parallel, depend needs to be able to hold futures
## Small matrix case
if nB <= 1
x = A[1:n, 1:n] \ A[:,n+1]
return x
end
## Add a ghost row of dependencies to boostrap the computation
for j=1:nB; depend[1,j] = true; end
for i=1:(nB-1)
## Threads for panel factorizations
I = (B_rows[i]+1):B_rows[i+1]
#(depend[i+1,i], panel_p) = spawn(panel_factor_seq, I, depend[i,i])
(depend[i+1,i], panel_p) = panel_factor_seq(A, I, depend[i,i])
## Threads for trailing updates
for j=(i+1):nB
J = (B_cols[j]+1):B_cols[j+1]
#depend[i+1,j] = spawn(trailing_update_seq, I, J, panel_p, depend[i+1,i],depend[i,j])
depend[i+1,j] = trailing_update_seq(A, I, J, panel_p, depend[i+1,i],depend[i,j])
end
end
## Completion of the last diagonal block signals termination
#wait(depend[nB, nB])
## Solve the triangular system
x = triu(A[1:n,1:n]) \ A[:,n+1]
return x
end ## hpl()
### Panel factorization ###
function panel_factor_seq(A, I, col_dep)
n = size (A, 1)
## Enforce dependencies
#wait(col_dep)
## Factorize a panel
K = I[1]:n
panel_p = lufact!(sub(A, K, I))[:p] # Economy mode
## Panel permutation
panel_p = K[panel_p]
return (true, panel_p)
end ## panel_factor_seq()
### Trailing update ###
function trailing_update_seq(A, I, J, panel_p, row_dep, col_dep)
n = size (A, 1)
## Enforce dependencies
#wait(row_dep, col_dep)
## Apply permutation from pivoting
K = (I[end]+1):n
A[I[1]:n, J] = A[panel_p, J]
## Compute blocks of U
L = tril(A[I,I],-1) + eye(length(I))
A[I, J] = L \ A[I, J]
## Trailing submatrix update
if !isempty(K)
A[K,J] = A[K,J] - A[K,I]*A[I,J]
end
return true
end ## trailing_update_seq()
# This version is written for a shared memory implementation.
# The matrix A is local to the first Worker, which allocates work to other Workers
# All updates to A are carried out by the first Worker. Thus A is not distributed
hpl_par(A::Matrix, b::Vector) = hpl_par(A, b, max(1, div(max(size(A)),4)), true)
hpl_par(A::Matrix, b::Vector, bsize::Integer) = hpl_par(A, b, bsize, true)
function hpl_par(A::Matrix, b::Vector, blocksize::Integer, run_parallel::Bool)
n = size(A,1)
A = [A b]
if blocksize < 1
throw(ArgumentError("hpl_par: invalid blocksize: $blocksize < 1"))
end
B_rows = linspace(0, n, div(n,blocksize)+1)
B_rows[end] = n
B_cols = [B_rows, [n+1]]
nB = length(B_rows)
depend = cell(nB, nB)
## Small matrix case
if nB <= 1
x = A[1:n, 1:n] \ A[:,n+1]
return x
end
## Add a ghost row of dependencies to boostrap the computation
for j=1:nB; depend[1,j] = true; end
for i=2:nB, j=1:nB; depend[i,j] = false; end
for i=1:(nB-1)
#println("A=$A") #####
## Threads for panel factorizations
I = (B_rows[i]+1):B_rows[i+1]
K = I[1]:n
(A_KI, panel_p) = panel_factor_par(A[K,I], depend[i,i])
## Write the factorized panel back to A
A[K,I] = A_KI
## Panel permutation
panel_p = K[panel_p]
depend[i+1,i] = true
## Apply permutation from pivoting
J = (B_cols[i+1]+1):B_cols[nB+1]
A[K, J] = A[panel_p, J]
## Threads for trailing updates
#L_II = tril(A[I,I], -1) + eye(length(I))
L_II = tril(sub(A,I,I), -1) + eye(length(I))
K = (I[length(I)]+1):n
A_KI = A[K,I]
for j=(i+1):nB
J = (B_cols[j]+1):B_cols[j+1]
## Do the trailing update (Compute U, and DGEMM - all flops are here)
if run_parallel
A_IJ = A[I,J]
#A_KI = A[K,I]
A_KJ = A[K,J]
depend[i+1,j] = @spawn trailing_update_par(L_II, A_IJ, A_KI, A_KJ, depend[i+1,i], depend[i,j])
else
depend[i+1,j] = trailing_update_par(L_II, A[I,J], A[K,I], A[K,J], depend[i+1,i], depend[i,j])
end
end
# Wait for all trailing updates to complete, and write back to A
for j=(i+1):nB
J = (B_cols[j]+1):B_cols[j+1]
if run_parallel
(A_IJ, A_KJ) = fetch(depend[i+1,j])
else
(A_IJ, A_KJ) = depend[i+1,j]
end
A[I,J] = A_IJ
A[K,J] = A_KJ
depend[i+1,j] = true
end
end
## Completion of the last diagonal block signals termination
@assert depend[nB, nB]
## Solve the triangular system
x = triu(A[1:n,1:n]) \ A[:,n+1]
return x
end ## hpl()
### Panel factorization ###
function panel_factor_par(A_KI, col_dep)
@assert col_dep
## Factorize a panel
panel_p = lufact!(A_KI)[:p] # Economy mode
return (A_KI, panel_p)
end ## panel_factor_par()
### Trailing update ###
function trailing_update_par(L_II, A_IJ, A_KI, A_KJ, row_dep, col_dep)
@assert row_dep
@assert col_dep
## Compute blocks of U
A_IJ = L_II \ A_IJ
## Trailing submatrix update - All flops are here
if !isempty(A_KJ)
m, k = size(A_KI)
n = size(A_IJ,2)
blas_gemm('N','N',m,n,k,-1.0,A_KI,m,A_IJ,k,1.0,A_KJ,m)
#A_KJ = A_KJ - A_KI*A_IJ
end
return (A_IJ, A_KJ)
end ## trailing_update_par()
### using DArrays ###
function hpl_par2(A::Matrix, b::Vector)
n = size(A,1)
A = [A b]
C = distribute(A, 2)
nB = length(C.pmap)
## case if only one processor
if nB <= 1
x = A[1:n, 1:n] \ A[:,n+1]
return x
end
depend = Array(RemoteRef, nB, nB)
#pmap[i] is where block i's stuff is
#block i is dist[i] to dist[i+1]-1
for i = 1:nB
#println("C=$(convert(Array, C))") #####
##panel factorization
panel_p = remotecall_fetch(C.pmap[i], panel_factor_par2, C, i, n)
## Apply permutation from pivoting
for j = (i+1):nB
depend[i,j] = remotecall(C.pmap[j], permute, C, i, j, panel_p, n, false)
end
## Special case for last column
if i == nB
depend[nB,nB] = remotecall(C.pmap[nB], permute, C, i, nB+1, panel_p, n, true)
end
##Trailing updates
(i == nB) ? (I = (C.dist[i]):n) :
(I = (C.dist[i]):(C.dist[i+1]-1))
C_II = C[I,I]
L_II = tril(C_II, -1) + eye(length(I))
K = (I[length(I)]+1):n
if length(K) > 0
C_KI = C[K,I]
else
C_KI = zeros(0)
end
for j=(i+1):nB
dep = depend[i,j]
depend[j,i] = remotecall(C.pmap[j], trailing_update_par2, C, L_II, C_KI, i, j, n, false, dep)
end
## Special case for last column
if i == nB
dep = depend[nB,nB]
remotecall_fetch(C.pmap[nB], trailing_update_par2, C, L_II, C_KI, i, nB+1, n, true, dep)
else
#enforce dependencies for nonspecial case
for j=(i+1):nB
wait(depend[j,i])
end
end
end
A = convert(Array, C)
x = triu(A[1:n,1:n]) \ A[:,n+1]
end ## hpl_par2()
function panel_factor_par2(C, i, n)
(C.dist[i+1] == n+2) ? (I = (C.dist[i]):n) :
(I = (C.dist[i]):(C.dist[i+1]-1))
K = I[1]:n
C_KI = C[K,I]
#(C_KI, panel_p) = lu!(C_KI) #economy mode
panel_p = lu!(C_KI)[2]
C[K,I] = C_KI
return panel_p
end ##panel_factor_par2()
function permute(C, i, j, panel_p, n, flag)
if flag
K = (C.dist[i]):n
J = (n+1):(n+1)
C_KJ = C[K,J]
C_KJ = C_KJ[panel_p,:]
C[K,J] = C_KJ
else
K = (C.dist[i]):n
J = (C.dist[j]):(C.dist[j+1]-1)
C_KJ = C[K,J]
C_KJ = C_KJ[panel_p,:]
C[K,J] = C_KJ
end
end ##permute()
function trailing_update_par2(C, L_II, C_KI, i, j, n, flag, dep)
if isa(dep, RemoteRef); wait(dep); end
if flag
#(C.dist[i+1] == n+2) ? (I = (C.dist[i]):n) :
# (I = (C.dist[i]):(C.dist[i+1]-1))
I = C.dist[i]:n
J = (n+1):(n+1)
K = (I[length(I)]+1):n
C_IJ = C[I,J]
if length(K) > 0
C_KJ = C[K,J]
else
C_KJ = zeros(0)
end
## Compute blocks of U
C_IJ = L_II \ C_IJ
C[I,J] = C_IJ
else
#(C.dist[i+1] == n+2) ? (I = (C.dist[i]):n) :
# (I = (C.dist[i]):(C.dist[i+1]-1))
I = (C.dist[i]):(C.dist[i+1]-1)
J = (C.dist[j]):(C.dist[j+1]-1)
K = (I[length(I)]+1):n
C_IJ = C[I,J]
if length(K) > 0
C_KJ = C[K,J]
else
C_KJ = zeros(0)
end
## Compute blocks of U
C_IJ = L_II \ C_IJ
C[I,J] = C_IJ
## Trailing submatrix update - All flops are here
if !isempty(C_KJ)
cm, ck = size(C_KI)
cn = size(C_IJ,2)
blas_gemm('N','N',cm,cn,ck,-1.0,C_KI,cm,C_IJ,ck,1.0,C_KJ,cm)
#C_KJ = C_KJ - C_KI*C_IJ
C[K,J] = C_KJ
end
end
end ## trailing_update_par2()
## Test n*n matrix on np processors
## Prints 5 numbers that should be close to zero
function test(n, np)
A = rand(n,n); b = rand(n);
X = (@elapsed x = A \ b);
Y = (@elapsed y = hpl_par(A,b, max(1,div(n,np))));
Z = (@elapsed z = hpl_par2(A,b));
for i=1:(min(5,n))
print(z[i]-y[i], " ")
end
println()
return (X,Y,Z)
end
## test k times and collect average
function test(n,np,k)
sum1 = 0; sum2 = 0; sum3 = 0;
for i = 1:k
(X,Y,Z) = test(n,np)
sum1 += X
sum2 += Y
sum3 += Z
end
return (sum1/k, sum2/k, sum3/k)
end
|