This file is indexed.

/usr/share/hyphy/TemplateBatchFiles/Plato.bf is in hyphy-common 2.2.7+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/************************************************************************************/
/* A Likelihood Method for the Detection of Selection and Recombination using Nucleotide Sequences 
	-Grassly and Holmes, 1997
  HBL implementation by Olivier Fedrigo (ofedrigo@duke.edu) 
  October 2006
*/

RequireVersion ("0.9920060901");

VERBOSITY_LEVEL		  = -1; /* HELPS REDUCE GUI REFRESH OVERHEAD */
ACCEPT_BRANCH_LENGTHS = 1;
ACCEPT_ROOTED_TREES   = 1;
nreps=100;

fprintf			(stdout, "Partial Likelihood Anomalies detected Through Optimization - PLATO\nVersion 2.0\n(c) Copyright, 1998 Nick Grassly and Andrew Rambaut\nDepartment of Zoology, University of Oxford\nSouth Parks Road, Oxford OX1 3PS, U.K.\n");

SetDialogPrompt ("Please locate an alignment file:");
DataSet 			nucleotideSequences = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter       filteredData 	    = CreateFilter (nucleotideSequences,1);
HarvestFrequencies (observedFreqs, filteredData, 1, 1, 1);

fprintf (stdout, "\nLoaded a ", filteredData.species, " sequence alignment with ", filteredData.sites,"\n");
fprintf (stdout, "\nBase composition:\n\tA: ", Format (observedFreqs[0],10,5),
									"\n\tC: ", Format (observedFreqs[1],10,5),
									"\n\tG: ", Format (observedFreqs[2],10,5),
									"\n\tT: ", Format (observedFreqs[3],10,5), "\n\n");
									
ExecuteAFile (HYPHY_LIB_DIRECTORY+"TemplateBatchFiles"+DIRECTORY_SEPARATOR+"queryTree.bf");
SelectTemplateModel(filteredData);

/*CALCULATE ML PARAMETERS AND LIKELIHOOD PER SITES*/
Tree givenTree				= treeString;
LikelihoodFunction theLnLik = (filteredData, givenTree);
Optimize 					  (paramValues, theLnLik);

/* SLKP: NEED TO SAVE GLOBAL VARIABLES; OTHERWISE THEY WILL BE OVERWRITTEN
   DURING OPTIMIZATIONS FROM SIMULATED DATA */
   
GetString 			  (likelihoodInfo, theLnLik, -1);   
globalVariableList 	= likelihoodInfo["Global Independent"];
globalVariableCount	= Columns (globalVariableList);

if (globalVariableCount)
{
	stashed_GV = {globalVariableCount,1};
	for (vc = 0; vc < globalVariableCount; vc = vc + 1)
	{
		ExecuteCommands ("stashed_GV[vc]="+globalVariableList[vc]+";");
	}
}


ConstructCategoryMatrix		  (L, theLnLik, COMPLETE);

/* SLKP: If there are category variables involved in the model, one needs to collapse site likelihoods 
   conditional on the value of the category into an averaged value at a site */
 
if (Rows(L)>1)
{
	catVars 	= likelihoodInfo["Categories"];
	catVarCount = Columns 		(catVars);
	
	if (catVarCount > 1)
	{
		fprintf (stdout, "ERROR: only one category variable can be handled by this code\n");
		return 0;
	}

	ExecuteCommands ("GetInformation (catWeight,"+catVars[vc]+");");
	L = catWeight[1][-1]*L;
}

/* END SLKP */

fprintf						  (stdout,"\nML parameters estimated. Log(L) = ", paramValues[1][0], "\n");

/*CALCULATE THE RATIO: (SUM OF LIKELIHOOD INSIDE THE WINDOW PER SITE)/(SUM OF LIKELIHOOD OUTSITE THE WINDOW PER SITE)*/
/*FOR EACH WINDOW SIZE (FROM 5bp TO HALF OF THE DATASET*/
fprintf(stdout,"Actual surface \n");

smin			=	5;
smax			=	filteredData.sites$2;
liktable		=	getSurface(smin,smax,filteredData.sites,paramValues[1][0],L);

/*DO THE SAME THING FOR SIMULATIONS. 100 SIMULATION, FOR EACH ITERATE TAKE THE MAXIMAL VALUE FOR A GIVEN WINDOW SIZE*/
fprintf			(stdout,"Simulating \n");
winLikList		=	{nreps,smax};
for (simCounter=0;simCounter<nreps;simCounter=simCounter+1)
{
	Tree simTree=treeString;
	ClearConstraints(simTree);
	/* SLKP: NEED TO RESTORE GLOBAL VARIABLES BEFORE SIMULATION */
	if (globalVariableCount)
	{
		for (vc = 0; vc < globalVariableCount; vc = vc + 1)
		{
			ExecuteCommands (globalVariableList[vc]+"=stashed_GV[vc];");
		}
	}	 
	DataSet simData				=	SimulateDataSet(theLnLik);
	DataSetFilter simFilter		=	CreateFilter(simData,1);
	HarvestFrequencies				(simFreqs,simFilter,1,1,1);
	LikelihoodFunction simLik 	= (simFilter,simTree,simFreqs);
	Optimize (simParamValues,simLik);
	ConstructCategoryMatrix (Lsim,simLik, COMPLETE);
	if (catVarCount == 1)
	{
		ExecuteCommands ("GetInformation (catWeight,"+catVars[vc]+");");
		Lsim = catWeight[1][-1]*Lsim;
	}
	fprintf(stdout,"Replicate #",simCounter,"\nTree -ln Likelihood = ",simParamValues[1][0],"\n");
	liktableTemp=getSurface(smin,smax,simFilter.sites,simParamValues[1][0],Lsim);
	for (sp=0;sp<simFilter.sites-smin;sp=sp+1)
	{
		for (s=0;s<smax-smin+1;s=s+1) {winLikList[simCounter][s]=Max(liktableTemp[s][sp],winLikList[simCounter][s]);}
	}
}

fprintf(stdout,"\nSimulations done\n");

/*CALCULATE MEAN AND VARIANCE OF SIMUALTIONS FOR EACH WINDOW SIZE*/
fprintf(stdout,"Calculate mean and variance \n");
mean		=	{smax,1};
variance	=	{smax,1};
sumsq=0.0; sums=0.0;

for (i=0;i<(smax-smin+1);i=i+1)
{
	sumsq=0.0; sums=0.0;
	for(j=0;j<nreps;j=j+1)
	{
		sums=sums+winLikList[j][i];
		sumsq=sumsq+((winLikList[j][i])*(winLikList[j][i]));
	}
	variance[i]=((sumsq-((sums*sums)/nreps))/(nreps-1));
	mean[i]=sums/nreps;
	windowsize=i+smin;
}

/*CALCULATE Z-VALUES*/       
fprintf(stdout,"Results \n");
alpha=0.05/(smax-smin+1);
Z={smax,filteredData.sites};
for(i=0;i<(smax-smin+1);i=i+1)
  {
     for(j=0;j<(filteredData.sites+1-i-smin);j=j+1)
          {
        Z[i][j]=(liktable[i][j]-mean[i])/(Sqrt(variance[i]));
        }
      }
fprintf(stdout,"\nZ values calculated\n");

/*DETERMINE CUTOFF*/
fprintf(stdout, "\nBonferroni-corrected significance level for alpha=0.05: ", alpha,"\n");
Z_cutOff=-normZval(alpha);
fprintf(stdout, "Z-values greater than ",Z_cutOff," are significant\n\n");

/* GET THE BEST SCORE*/
temp=0.0;
for (i=smin;i<=smax;i=i+1)
{
	for (j=0;j<(filteredData.sites+1-i);j=j+1)
	{
		if (Z[i-smin][j]>temp && Z[i-smin][j]>Z_cutOff)
		{
			temp=Z[i-smin][j];
			size=i;
			sp=j;
		}
	}

}

map={filteredData.sites,1};
if (temp>Z_cutOff) /*IF THE BEST Z-SCORE IS SMALLER THAN THE CUTOFF THEN NO NEED TO DO IT*/
{
	while (temp>Z_cutOff)
	{
		for (i=sp;i<(sp+size);i=i+1) {map[i]=1;}
		fprintf(stdout,Format(sp+1,5,0)," - ",Format(sp+size,5,0)," : ",Format(Z[size-smin][site],6,2),"\n");
		temp=0.0;
		for (i=smin;i<=smax;i=i+1)
		{
			for (j=0;j<(filteredData.sites-i+1);j=j+1)
			{
			if (Z[i-smin][j]>temp && Z[i-smin][j]>Z_cutOff)
			{
				check=0;
				for (n=j;n<(j+i);n=n+1) {check=check+map[n];}
				if (check==0) /*RECORD A GOOD SCORE ONLY IF NONE OF ITS SITES HAS BEEN INCLUDED IN AN PREVIOUS BETTER SCORE*/
				{
					temp=Z[i-smin][j];
					size=i;
					sp=j;
				}
			}
			}
		}
	}
}
else
{
    fprintf(stdout, "No anomalous regions found\n");
}

fprintf(stdout,"\nFinished\n");

        
/************************************************************************************/

function normZval(P)
  {
     /*modified from Fortran algorithm AS241
    APPL. STATIST. (1988) VOL. 37, NO. 3, 477-484.
 Produces the normal deviate Z corresponding to a given lower
       tail area of P; Z is accurate to about 1 part in 10e7.*/    
  SPLIT1 = 0.425;
  SPLIT2 = 5.0;
  CONST1 = 0.180625;
  CONST2 = 1.6;
  /*Coefficients for P close to 0.5*/
  A0 = 3.3871327179;
     A1 = 50.434271938;
  A2 = 159.29113202;
  A3 = 59.109374720;
  B1 = 17.895169469;
  B2 = 78.757757664;
  B3 = 67.187563600;
  /*Coefficients for P not close to 0, 0.5 or 1.*/
  C0 = 1.4234372777;
   C1 = 2.7568153900;
  C2 = 1.3067284816;
  C3 = 0.17023821103;
  D1 = 0.73700164250;
  D2 = 0.12021132975;
  /*Coefficients for P near 0 or 1.*/
      E0 = 6.6579051150;
      E1 = 3.0812263860;
  E2 = 0.42868294337;
  E3 = 0.017337203997;
  F1 = 0.24197894225;
  F2 = 0.012258202635;
      Q=P-0.5;
        if(Abs(Q)<=SPLIT1)
          {
              Rx=CONST1-(Q*Q);
                x=Q*((((((A3*Rx)+A2)*Rx)+A1)*Rx)+A0)/((((((B3*Rx)+B2)*Rx)+B1)*Rx)+1.0);
                return x;
         }
  else {if(Q<0.0) {Rx=P;} else {Rx=1.0-P;}}
  if(Rx<=0.0) {return 0.0;}    
         Rx=Sqrt(-Log(Rx));
        if(Rx<=SPLIT2)
         {
        Rx=Rx-CONST2;
        x=(((C3*Rx+C2)*Rx+C1)*Rx+C0)/((D2*Rx+D1)*Rx+1.0);
        }
       else
         {
              Rx=Rx-SPLIT2;
    x=(((E3*Rx+E2)*Rx+E1)*Rx+E0)/((F2*Rx+F1)*Rx+1.0);
      }
       if(Q<0.0) {x = -x;}
   return x;
  }

/************************************************************************************/

function getSurface(windowMin,windowMax,nsites,MLS,Likelihood)
{
    /*CALCULATE THE RATIO: (SUM OF Likelihood INSIDE THE WINDOW PER SITE)/(SUM OF Likelihood OUTSITE THE WINDOW PER SITE)*/
  	/*FOR EACH WINDOW SIZE (FROM windowMin TO windowMax FOR A DATASET WITH nsites AND MLS*/
  	
  	timer 		= 	Time(1);
    temp		=	{windowMax,nsites};
    loopUB  	= 	nsites-windowMin+1;
    windowSpan 	=   windowMax-windowMin+1;
    loggedL		=   Log (Likelihood);
    
    for 	(sp=0;sp<loopUB;sp=sp+1)
	{
		/*
		window	=	0;
		loopUB2 = windowMin+sp;
		for (s=sp;s<loopUB2;s=s+1) 
		{	
			window=window+Log(Likelihood[s]);
		}*/
		
		/* SLKP: matrix hackery to do the same as above; 
		   speeds things up quite a bit
		   see Examples/BatchLanguage/MatrixIndexing.bf */
		   
		logExtract = loggedL[{{0,sp}}][{{0,windowMin+sp-1}}];
		window  = (logExtract*Transpose(logExtract["1"]))[0];
		
		temp[0][sp]= 	window/windowMin / ((MLS-window) / (nsites-windowMin));
		
		localWS = Min (windowSpan, nsites-sp-windowMin-1);
		i		   =	1;
		while (i<=localWS)
		{
			cww			=   windowMin+i;
			window		=	window+loggedL[sp+cww];
			temp[i][sp]	=	(window/cww)/((MLS-window)/(nsites-cww));
			i			=	i+1;
		}
	}
	
	fprintf(stdout,"\nML surface done in ", Time(1)-timer, " seconds\n");      
	return temp;
}
/************************************************************************************/