/usr/share/gap/doc/ref/chap57.html is in gap-doc 4r8p6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 57: Modules</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap57" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap56.html">[Previous Chapter]</a> <a href="chap58.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap57_mj.html">[MathJax on]</a></p>
<p><a id="X8183A6857B0C3633" name="X8183A6857B0C3633"></a></p>
<div class="ChapSects"><a href="chap57.html#X8183A6857B0C3633">57 <span class="Heading">Modules</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap57.html#X87A33EFD7CC179C1">57.1 <span class="Heading">Generating modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7C62FE5282E9C505">57.1-1 IsLeftOperatorAdditiveGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7ED323027B291BDF">57.1-2 IsLeftModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7F76B1FD84775025">57.1-3 GeneratorsOfLeftOperatorAdditiveGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7C7684EF867323C2">57.1-4 GeneratorsOfLeftModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7EB3E46D7BC4A35C">57.1-5 AsLeftModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7F19AD3D799D0469">57.1-6 IsRightOperatorAdditiveGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X8479A5AA7DF25F50">57.1-7 IsRightModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7DBC4BCB876EEE1C">57.1-8 GeneratorsOfRightOperatorAdditiveGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X8586A83B85F176F6">57.1-9 GeneratorsOfRightModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X79ED1D7D7F0AE59A">57.1-10 LeftModuleByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X86F070E0807DC34E">57.1-11 LeftActingDomain</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap57.html#X7934FAE97B6D2AD8">57.2 <span class="Heading">Submodules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X8465103F874BC07B">57.2-1 Submodule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X83CF3AD18050C982">57.2-2 SubmoduleNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7C68C4E287481EC0">57.2-3 ClosureLeftModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7980BC20856B2B7D">57.2-4 TrivialSubmodule</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap57.html#X85BD57F27F513D3E">57.3 <span class="Heading">Free Modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7C4832187F3D9228">57.3-1 IsFreeLeftModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7C043E307E344AEE">57.3-2 FreeLeftModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7E6926C6850E7C4E">57.3-3 Dimension</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X802DB9FB824B0167">57.3-4 IsFiniteDimensional</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7909E8E785420F0E">57.3-5 UseBasis</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7C8F844783F4FA09">57.3-6 IsRowModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X81FCC1D780435CF1">57.3-7 IsMatrixModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X853E085C868196EF">57.3-8 IsFullRowModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X848041A47BC4B038">57.3-9 FullRowModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X814CEA62842CF5BB">57.3-10 IsFullMatrixModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap57.html#X7A0C871B7C446F1F">57.3-11 FullMatrixModule</a></span>
</div></div>
</div>
<h3>57 <span class="Heading">Modules</span></h3>
<p><a id="X87A33EFD7CC179C1" name="X87A33EFD7CC179C1"></a></p>
<h4>57.1 <span class="Heading">Generating modules</span></h4>
<p><a id="X7C62FE5282E9C505" name="X7C62FE5282E9C505"></a></p>
<h5>57.1-1 IsLeftOperatorAdditiveGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLeftOperatorAdditiveGroup</code>( <var class="Arg">D</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A domain <var class="Arg">D</var> lies in <code class="code">IsLeftOperatorAdditiveGroup</code> if it is an additive group that is closed under scalar multiplication from the left, and such that <span class="SimpleMath">λ * ( x + y ) = λ * x + λ * y</span> for all scalars <span class="SimpleMath">λ</span> and elements <span class="SimpleMath">x, y ∈ D</span> (here and below by scalars we mean elements of a domain acting on <var class="Arg">D</var> from left or right as appropriate).</p>
<p><a id="X7ED323027B291BDF" name="X7ED323027B291BDF"></a></p>
<h5>57.1-2 IsLeftModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLeftModule</code>( <var class="Arg">M</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A domain <var class="Arg">M</var> lies in <code class="code">IsLeftModule</code> if it lies in <code class="code">IsLeftOperatorAdditiveGroup</code>, <em>and</em> the set of scalars forms a ring, <em>and</em> <span class="SimpleMath">(λ + μ) * x = λ * x + μ * x</span> for scalars <span class="SimpleMath">λ, μ</span> and <span class="SimpleMath">x ∈ M</span>, <em>and</em> scalar multiplication satisfies <span class="SimpleMath">λ * (μ * x) = (λ * μ) * x</span> for scalars <span class="SimpleMath">λ, μ</span> and <span class="SimpleMath">x ∈ M</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FullRowSpace( Rationals, 3 );</span>
( Rationals^3 )
<span class="GAPprompt">gap></span> <span class="GAPinput">IsLeftModule( V );</span>
true
</pre></div>
<p><a id="X7F76B1FD84775025" name="X7F76B1FD84775025"></a></p>
<h5>57.1-3 GeneratorsOfLeftOperatorAdditiveGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfLeftOperatorAdditiveGroup</code>( <var class="Arg">D</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of elements of <var class="Arg">D</var> that generates <var class="Arg">D</var> as a left operator additive group.</p>
<p><a id="X7C7684EF867323C2" name="X7C7684EF867323C2"></a></p>
<h5>57.1-4 GeneratorsOfLeftModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfLeftModule</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of elements of <var class="Arg">M</var> that generate <var class="Arg">M</var> as a left module.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FullRowSpace( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfLeftModule( V );</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
</pre></div>
<p><a id="X7EB3E46D7BC4A35C" name="X7EB3E46D7BC4A35C"></a></p>
<h5>57.1-5 AsLeftModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsLeftModule</code>( <var class="Arg">R</var>, <var class="Arg">D</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>if the domain <var class="Arg">D</var> forms an additive group and is closed under left multiplication by the elements of <var class="Arg">R</var>, then <code class="code">AsLeftModule( <var class="Arg">R</var>, <var class="Arg">D</var> )</code> returns the domain <var class="Arg">D</var> viewed as a left module.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">coll:= [[0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];</span>
[ [ 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ],
[ Z(2)^0, Z(2)^0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AsLeftModule( GF(2), coll );</span>
<vector space of dimension 2 over GF(2)>
</pre></div>
<p><a id="X7F19AD3D799D0469" name="X7F19AD3D799D0469"></a></p>
<h5>57.1-6 IsRightOperatorAdditiveGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRightOperatorAdditiveGroup</code>( <var class="Arg">D</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A domain <var class="Arg">D</var> lies in <code class="code">IsRightOperatorAdditiveGroup</code> if it is an additive group that is closed under scalar multiplication from the right, and such that <span class="SimpleMath">( x + y ) * λ = x * λ + y * λ</span> for all scalars <span class="SimpleMath">λ</span> and elements <span class="SimpleMath">x, y ∈ D</span>.</p>
<p><a id="X8479A5AA7DF25F50" name="X8479A5AA7DF25F50"></a></p>
<h5>57.1-7 IsRightModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRightModule</code>( <var class="Arg">M</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A domain <var class="Arg">M</var> lies in <code class="code">IsRightModule</code> if it lies in <code class="code">IsRightOperatorAdditiveGroup</code>, <em>and</em> the set of scalars forms a ring, <em>and</em> <span class="SimpleMath">x * (λ + μ) = x * λ + x * μ</span> for scalars <span class="SimpleMath">λ, μ</span> and <span class="SimpleMath">x ∈ M</span>, <em>and</em> scalar multiplication satisfies <span class="SimpleMath">(x * μ) * λ = x * (μ * λ)</span> for scalars <span class="SimpleMath">λ, μ</span> and <span class="SimpleMath">x ∈ M</span>.</p>
<p><a id="X7DBC4BCB876EEE1C" name="X7DBC4BCB876EEE1C"></a></p>
<h5>57.1-8 GeneratorsOfRightOperatorAdditiveGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfRightOperatorAdditiveGroup</code>( <var class="Arg">D</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of elements of <var class="Arg">D</var> that generates <var class="Arg">D</var> as a right operator additive group.</p>
<p><a id="X8586A83B85F176F6" name="X8586A83B85F176F6"></a></p>
<h5>57.1-9 GeneratorsOfRightModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfRightModule</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of elements of <var class="Arg">M</var> that generate <var class="Arg">M</var> as a left module.</p>
<p><a id="X79ED1D7D7F0AE59A" name="X79ED1D7D7F0AE59A"></a></p>
<h5>57.1-10 LeftModuleByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeftModuleByGenerators</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">zero</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the left module over <var class="Arg">R</var> generated by <var class="Arg">gens</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= LeftModuleByGenerators( GF(16), coll );</span>
<vector space over GF(2^4), with 3 generators>
</pre></div>
<p><a id="X86F070E0807DC34E" name="X86F070E0807DC34E"></a></p>
<h5>57.1-11 LeftActingDomain</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeftActingDomain</code>( <var class="Arg">D</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Let <var class="Arg">D</var> be an external left set, that is, <var class="Arg">D</var> is closed under the action of a domain <span class="SimpleMath">L</span> by multiplication from the left. Then <span class="SimpleMath">L</span> can be accessed as value of <code class="code">LeftActingDomain</code> for <var class="Arg">D</var>.</p>
<p><a id="X7934FAE97B6D2AD8" name="X7934FAE97B6D2AD8"></a></p>
<h4>57.2 <span class="Heading">Submodules</span></h4>
<p><a id="X8465103F874BC07B" name="X8465103F874BC07B"></a></p>
<h5>57.2-1 Submodule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Submodule</code>( <var class="Arg">M</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>is the left module generated by the collection <var class="Arg">gens</var>, with parent module <var class="Arg">M</var>. If the string <code class="code">"basis"</code> is entered as the third argument then the submodule of <var class="Arg">M</var> is created for which the list <var class="Arg">gens</var> is known to be a list of basis vectors; in this case, it is <em>not</em> checked whether <var class="Arg">gens</var> really is linearly independent and whether all in <var class="Arg">gens</var> lie in <var class="Arg">M</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= LeftModuleByGenerators( GF(16), coll );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:= Submodule( V, [ coll[1], coll[2] ] );</span>
<vector space over GF(2^4), with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">Parent( W ) = V;</span>
true
</pre></div>
<p><a id="X83CF3AD18050C982" name="X83CF3AD18050C982"></a></p>
<h5>57.2-2 SubmoduleNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubmoduleNC</code>( <var class="Arg">M</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">SubmoduleNC</code> does the same as <code class="func">Submodule</code> (<a href="chap57.html#X8465103F874BC07B"><span class="RefLink">57.2-1</span></a>), except that it does not check whether all in <var class="Arg">gens</var> lie in <var class="Arg">M</var>.</p>
<p><a id="X7C68C4E287481EC0" name="X7C68C4E287481EC0"></a></p>
<h5>57.2-3 ClosureLeftModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClosureLeftModule</code>( <var class="Arg">M</var>, <var class="Arg">m</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the left module generated by the left module generators of <var class="Arg">M</var> and the element <var class="Arg">m</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= LeftModuleByGenerators(Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ]);</span>
<vector space over Rationals, with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">ClosureLeftModule( V, [ 1, 1, 1 ] );</span>
<vector space over Rationals, with 3 generators>
</pre></div>
<p><a id="X7980BC20856B2B7D" name="X7980BC20856B2B7D"></a></p>
<h5>57.2-4 TrivialSubmodule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TrivialSubmodule</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the zero submodule of <var class="Arg">M</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= LeftModuleByGenerators(Rationals, [[ 1, 0, 0 ], [ 0, 1, 0 ]]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TrivialSubmodule( V );</span>
<vector space over Rationals, with 0 generators>
</pre></div>
<p><a id="X85BD57F27F513D3E" name="X85BD57F27F513D3E"></a></p>
<h4>57.3 <span class="Heading">Free Modules</span></h4>
<p><a id="X7C4832187F3D9228" name="X7C4832187F3D9228"></a></p>
<h5>57.3-1 IsFreeLeftModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFreeLeftModule</code>( <var class="Arg">M</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A left module is free as module if it is isomorphic to a direct sum of copies of its left acting domain.</p>
<p>Free left modules can have bases.</p>
<p>The characteristic (see <code class="func">Characteristic</code> (<a href="chap31.html#X81278E53800BF64D"><span class="RefLink">31.10-1</span></a>)) of a free left module is defined as the characteristic of its left acting domain (see <code class="func">LeftActingDomain</code> (<a href="chap57.html#X86F070E0807DC34E"><span class="RefLink">57.1-11</span></a>)).</p>
<p><a id="X7C043E307E344AEE" name="X7C043E307E344AEE"></a></p>
<h5>57.3-2 FreeLeftModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeLeftModule</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">zero</var>][, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">FreeLeftModule( <var class="Arg">R</var>, <var class="Arg">gens</var> )</code> is the free left module over the ring <var class="Arg">R</var>, generated by the vectors in the collection <var class="Arg">gens</var>.</p>
<p>If there are three arguments, a ring <var class="Arg">R</var> and a collection <var class="Arg">gens</var> and an element <var class="Arg">zero</var>, then <code class="code">FreeLeftModule( <var class="Arg">R</var>, <var class="Arg">gens</var>, <var class="Arg">zero</var> )</code> is the <var class="Arg">R</var>-free left module generated by <var class="Arg">gens</var>, with zero element <var class="Arg">zero</var>.</p>
<p>If the last argument is the string <code class="code">"basis"</code> then the vectors in <var class="Arg">gens</var> are known to form a basis of the free module.</p>
<p>It should be noted that the generators <var class="Arg">gens</var> must be vectors, that is, they must support an addition and a scalar action of <var class="Arg">R</var> via left multiplication. (See also Section <a href="chap31.html#X82039A218274826F"><span class="RefLink">31.3</span></a> for the general meaning of "generators" in <strong class="pkg">GAP</strong>.) In particular, <code class="func">FreeLeftModule</code> is <em>not</em> an equivalent of commands such as <code class="func">FreeGroup</code> (<a href="chap37.html#X8215999E835290F0"><span class="RefLink">37.2-1</span></a>) in the sense of a constructor of a free group on abstract generators. Such a construction seems to be unnecessary for vector spaces, for that one can use for example row spaces (see <code class="func">FullRowSpace</code> (<a href="chap61.html#X80209A8785126AAB"><span class="RefLink">61.9-4</span></a>)) in the finite dimensional case and polynomial rings (see <code class="func">PolynomialRing</code> (<a href="chap66.html#X7D2F16E480060330"><span class="RefLink">66.15-1</span></a>)) in the infinite dimensional case. Moreover, the definition of a "natural" addition for elements of a given magma (for example a permutation group) is possible via the construction of magma rings (see Chapter <a href="chap65.html#X825897DC7A16E07D"><span class="RefLink">65</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FreeLeftModule(Rationals, [[ 1, 0, 0 ], [ 0, 1, 0 ]], "basis");</span>
<vector space of dimension 2 over Rationals>
</pre></div>
<p><a id="X7E6926C6850E7C4E" name="X7E6926C6850E7C4E"></a></p>
<h5>57.3-3 Dimension</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Dimension</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A free left module has dimension <span class="SimpleMath">n</span> if it is isomorphic to a direct sum of <span class="SimpleMath">n</span> copies of its left acting domain.</p>
<p>(We do <em>not</em> mark <code class="func">Dimension</code> as invariant under isomorphisms since we want to call <code class="func">UseIsomorphismRelation</code> (<a href="chap31.html#X839BE6467E8474D9"><span class="RefLink">31.13-3</span></a>) also for free left modules over different left acting domains.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( V );</span>
2
</pre></div>
<p><a id="X802DB9FB824B0167" name="X802DB9FB824B0167"></a></p>
<h5>57.3-4 IsFiniteDimensional</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFiniteDimensional</code>( <var class="Arg">M</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if <var class="Arg">M</var> is a free left module that is finite dimensional over its left acting domain, and <code class="keyw">false</code> otherwise.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsFiniteDimensional( V );</span>
true
</pre></div>
<p><a id="X7909E8E785420F0E" name="X7909E8E785420F0E"></a></p>
<h5>57.3-5 UseBasis</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UseBasis</code>( <var class="Arg">V</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The vectors in the list <var class="Arg">gens</var> are known to form a basis of the free left module <var class="Arg">V</var>. <code class="func">UseBasis</code> stores information in <var class="Arg">V</var> that can be derived form this fact, namely</p>
<ul>
<li><p><var class="Arg">gens</var> are stored as left module generators if no such generators were bound (this is useful especially if <var class="Arg">V</var> is an algebra),</p>
</li>
<li><p>the dimension of <var class="Arg">V</var> is stored.</p>
</li>
</ul>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">UseBasis( V, [ [ 1, 0 ], [ 1, 1 ] ] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V; # now V knows its dimension</span>
<vector space of dimension 2 over Rationals>
</pre></div>
<p><a id="X7C8F844783F4FA09" name="X7C8F844783F4FA09"></a></p>
<h5>57.3-6 IsRowModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRowModule</code>( <var class="Arg">V</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A <em>row module</em> is a free left module whose elements are row vectors.</p>
<p><a id="X81FCC1D780435CF1" name="X81FCC1D780435CF1"></a></p>
<h5>57.3-7 IsMatrixModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMatrixModule</code>( <var class="Arg">V</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A <em>matrix module</em> is a free left module whose elements are matrices.</p>
<p><a id="X853E085C868196EF" name="X853E085C868196EF"></a></p>
<h5>57.3-8 IsFullRowModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFullRowModule</code>( <var class="Arg">M</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A <em>full row module</em> is a module <span class="SimpleMath">R^n</span>, for a ring <span class="SimpleMath">R</span> and a nonnegative integer <span class="SimpleMath">n</span>.</p>
<p>More precisely, a full row module is a free left module over a ring <span class="SimpleMath">R</span> such that the elements are row vectors of the same length <span class="SimpleMath">n</span> and with entries in <span class="SimpleMath">R</span> and such that the dimension is equal to <span class="SimpleMath">n</span>.</p>
<p>Several functions delegate their tasks to full row modules, for example <code class="func">Iterator</code> (<a href="chap30.html#X83ADF8287ED0668E"><span class="RefLink">30.8-1</span></a>) and <code class="func">Enumerator</code> (<a href="chap30.html#X7EF8910F82B45EC7"><span class="RefLink">30.3-2</span></a>).</p>
<p><a id="X848041A47BC4B038" name="X848041A47BC4B038"></a></p>
<h5>57.3-9 FullRowModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FullRowModule</code>( <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is the row module <code class="code"><var class="Arg">R</var>^<var class="Arg">n</var></code>, for a ring <var class="Arg">R</var> and a nonnegative integer <var class="Arg">n</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FullRowModule( Integers, 5 );</span>
( Integers^5 )
</pre></div>
<p><a id="X814CEA62842CF5BB" name="X814CEA62842CF5BB"></a></p>
<h5>57.3-10 IsFullMatrixModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFullMatrixModule</code>( <var class="Arg">M</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A <em>full matrix module</em> is a module <span class="SimpleMath">R^{[m,n]}</span>, for a ring <span class="SimpleMath">R</span> and two nonnegative integers <span class="SimpleMath">m</span>, <span class="SimpleMath">n</span>.</p>
<p>More precisely, a full matrix module is a free left module over a ring <span class="SimpleMath">R</span> such that the elements are <span class="SimpleMath">m</span> by <span class="SimpleMath">n</span> matrices with entries in <span class="SimpleMath">R</span> and such that the dimension is equal to <span class="SimpleMath">m n</span>.</p>
<p><a id="X7A0C871B7C446F1F" name="X7A0C871B7C446F1F"></a></p>
<h5>57.3-11 FullMatrixModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FullMatrixModule</code>( <var class="Arg">R</var>, <var class="Arg">m</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is the matrix module <code class="code"><var class="Arg">R</var>^[<var class="Arg">m</var>,<var class="Arg">n</var>]</code>, for a ring <var class="Arg">R</var> and nonnegative integers <var class="Arg">m</var> and <var class="Arg">n</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">FullMatrixModule( GaussianIntegers, 3, 6 );</span>
( GaussianIntegers^[ 3, 6 ] )
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap56.html">[Previous Chapter]</a> <a href="chap58.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|