This file is indexed.

/usr/share/gap/doc/ref/chap54.html is in gap-doc 4r8p6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 54: Partial permutations</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap54"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap53.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap55.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap54_mj.html">[MathJax on]</a></p>
<p><a id="X7D6495F77B8A77BD" name="X7D6495F77B8A77BD"></a></p>
<div class="ChapSects"><a href="chap54.html#X7D6495F77B8A77BD">54 <span class="Heading">Partial permutations</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54.html#X87B0D6657A3F2B0E">54.1 <span class="Heading">The family and categories of partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7EECE133792B30FC">54.1-1 IsPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8262A827790DD1CC">54.1-2 IsPartialPermCollection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7E63D17780F64FBA">54.1-3 PartialPermFamily</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54.html#X7B9D451D7FDA1DD8">54.2 <span class="Heading">Creating partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8538BAE77F2FB2F8">54.2-1 PartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X81188D9F83F64222">54.2-2 PartialPermOp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X80ABBF4883C79060">54.2-3 RestrictedPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X849668DD7B0B9E3B">54.2-4 JoinOfPartialPerms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X81E2B6977E28CD00">54.2-5 MeetOfPartialPerms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X80EFB142817A0A9F">54.2-6 EmptyPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7E6ADC8583C31530">54.2-7 <span class="Heading">RandomPartialPerm</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54.html#X8779F0997D0FDA78">54.3 <span class="Heading">Attributes for partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8612A4DC864E7959">54.3-1 DegreeOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8413D0EF7DEE1FFF">54.3-2 CodegreeOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7C1ABD8A80E95B39">54.3-3 RankOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X784A14F787E041D7">54.3-4 DomainOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7CD84B107831E0FC">54.3-5 ImageOfPartialPermCollection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8333293F87F654FA">54.3-6 ImageListOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7F0724A07A14DCF7">54.3-7 ImageSetOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X82AAFF938623422E">54.3-8 FixedPointsOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X82FE981A87FAA2DC">54.3-9 MovedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7FAF969C84CDC742">54.3-10 NrFixedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X81F5C64E7DAD27A7">54.3-11 NrMovedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X84A49C977E1E29AA">54.3-12 SmallestMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7D4290A785ABC86D">54.3-13 LargestMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X85280F1A7B1014BA">54.3-14 SmallestImageOfMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7A95CD437BC1CB1A">54.3-15 LargestImageOfMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X873A9F717DA75CBC">54.3-16 IndexPeriodOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7C04AA377F080722">54.3-17 SmallestIdempotentPower</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8185065E788BDD0D">54.3-18 ComponentsOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7CB51EB67FFA95E9">54.3-19 NrComponentsOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7AAAAE4082B30E18">54.3-20 ComponentRepsOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7A8FB86C78C49F85">54.3-21 LeftOne</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X857FC10C81507E8B">54.3-22 One</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X83B6AE4881C7253B">54.3-23 Zero</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54.html#X8585AA8B78E9CDFB">54.4 <span class="Heading">Changing the representation of a partial permutation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X81B32CB182489ACA">54.4-1 AsPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X87EC67747B260E98">54.4-2 AsPartialPerm</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54.html#X848CD855802C6CE1">54.5 <span class="Heading">Operators and operations for partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8382A0F8875CEB08">54.5-1 PermLeftQuoPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7C7F5EAB7E9A381D">54.5-2 PreImagePartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X797A6CC084068219">54.5-3 ComponentPartialPermInt</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X87B1ED93785257C1">54.5-4 NaturalLeqPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X81BD69307D294A1C">54.5-5 ShortLexLeqPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X83560BE678ACF855">54.5-6 TrimPartialPerm</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54.html#X7849595B81D063EE">54.6 <span class="Heading">Displaying partial permutations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54.html#X7CCC82E07A73EB55">54.7 <span class="Heading">Semigroups and inverse semigroups of partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7D161674800B50E0">54.7-1 IsPartialPermSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7D7F0BAB82F0D820">54.7-2 DegreeOfPartialPermSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X81D271B380995F8A">54.7-3 SymmetricInverseSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7C8AEA50834060DD">54.7-4 IsSymmetricInverseSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7EA51F087CF7621F">54.7-5 NaturalPartialOrder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X857F68DF7EDA3BE4">54.7-6 IsomorphismPartialPermMonoid</a></span>
</div></div>
</div>

<h3>54 <span class="Heading">Partial permutations</span></h3>

<p>This chapter describes the functions in <strong class="pkg">GAP</strong> for partial permutations.</p>

<p>A <em>partial permutation</em> in <strong class="pkg">GAP</strong> is simply an injective function from any finite set of positive integers to any other finite set of positive integers. The largest point on which a partial permutation can be defined, and the largest value that the image of such a point can have, are defined by certain architecture dependent limits.</p>

<p>Every inverse semigroup is isomorphic to an inverse semigroup of partial permutations and, as such, partial permutations are to inverse semigroup theory what permutations are to group theory and transformations are to semigroup theory. In this way, partial permutations are the elements of inverse partial permutation semigroups.</p>

<p>A partial permutations in <strong class="pkg">GAP</strong> acts on a finite set of positive integers on the right. The image of a point <code class="code">i</code> under a partial permutation <code class="code">f</code> is expressed as <code class="code">i^f</code> in <strong class="pkg">GAP</strong>. This action is also implemented by the function <code class="func">OnPoints</code> (<a href="chap41.html#X7FE417DD837987B4"><span class="RefLink">41.2-1</span></a>). The preimage of a point <code class="code">i</code> under the partial permutation <code class="code">f</code> can be computed using <code class="code">i/f</code> without constructing the inverse of <code class="code">f</code>. Partial permutations in <strong class="pkg">GAP</strong> are created using the operations described in Section <a href="chap54.html#X7B9D451D7FDA1DD8"><span class="RefLink">54.2</span></a>. Partial permutations are, by default, displayed in component notation, which is described in Section <a href="chap54.html#X7849595B81D063EE"><span class="RefLink">54.6</span></a>.</p>

<p>The fundamental attributes of a partial permutation are:</p>


<dl>
<dt><strong class="Mark">Domain</strong></dt>
<dd><p>The <em>domain</em> of a partial permutation is just the set of positive integers where it is defined; see <code class="func">DomainOfPartialPerm</code> (<a href="chap54.html#X784A14F787E041D7"><span class="RefLink">54.3-4</span></a>). We will denote the domain of a partial permutation <code class="code">f</code> by dom(<code class="code">f</code>).</p>

</dd>
<dt><strong class="Mark">Degree</strong></dt>
<dd><p>The <em>degree</em> of a partial permutation <code class="code">f</code> is just the largest positive integer where <code class="code">f</code> is defined. In other words, the degree of <code class="code">f</code> is the largest element in the domain of <code class="code">f</code>; see <code class="func">DegreeOfPartialPerm</code> (<a href="chap54.html#X8612A4DC864E7959"><span class="RefLink">54.3-1</span></a>).</p>

</dd>
<dt><strong class="Mark">Image list</strong></dt>
<dd><p>The <em>image list</em> of a partial permutation <code class="code">f</code> is the list <code class="code">[i_1^f, i_2^f, .. , i_n^f]</code> where the domain of <code class="code">f</code> is <code class="code">[i_1, i_2, .., i_n]</code> see <code class="func">ImageListOfPartialPerm</code> (<a href="chap54.html#X8333293F87F654FA"><span class="RefLink">54.3-6</span></a>). For example, the partial perm sending <code class="code">1</code> to <code class="code">5</code> and <code class="code">2</code> to <code class="code">4</code> has image list <code class="code">[ 5, 4 ]</code>.</p>

</dd>
<dt><strong class="Mark">Image set</strong></dt>
<dd><p>The <em>image set</em> of a partial permutation <code class="code">f</code> is just the set of points in the image list (i.e. the image list after it has been sorted into increasing order); see <code class="func">ImageSetOfPartialPerm</code> (<a href="chap54.html#X7F0724A07A14DCF7"><span class="RefLink">54.3-7</span></a>). We will denote the image set of a partial permutation <code class="code">f</code> by im(<code class="code">f</code>).</p>

</dd>
<dt><strong class="Mark">Codegree</strong></dt>
<dd><p>The <em>codegree</em> of a partial permutation <code class="code">f</code> is just the largest positive integer of the form <code class="code">i^f</code> for any <code class="code">i</code> in the domain of <code class="code">f</code>. In other words, the codegree of <code class="code">f</code> is the largest element in the image of <code class="code">f</code>; see <code class="func">CodegreeOfPartialPerm</code> (<a href="chap54.html#X8413D0EF7DEE1FFF"><span class="RefLink">54.3-2</span></a>).</p>

</dd>
<dt><strong class="Mark">Rank</strong></dt>
<dd><p>The <em>rank</em> of a partial permutation <code class="code">f</code> is the size of its domain, or equivalently the size of its image set or image list; see <code class="func">RankOfPartialPerm</code> (<a href="chap54.html#X7C1ABD8A80E95B39"><span class="RefLink">54.3-3</span></a>).</p>

</dd>
</dl>
<p>A <em>functional digraph</em> is a directed graph where every vertex has out-degree <code class="code">1</code>. A partial permutation <var class="Arg">f</var> can be thought of as a functional digraph with vertices <code class="code">[1..DegreeOfPartialPerm(f)]</code> and edges from <code class="code">i</code> to <code class="code">i^f</code> for every <code class="code">i</code>. A <em>component</em> of a partial permutation is defined as a component of the corresponding functional digraph. More specifically, <code class="code">i</code> and <code class="code">j</code> are in the same component if and only if there are <span class="SimpleMath">i=v_0, v_1, ..., v_n=j</span> such that either <span class="SimpleMath">v_k+1=v_k^f</span> or <span class="SimpleMath">v_k=v_k+1^f</span> for all <code class="code">k</code>.</p>

<p>If <code class="code">S</code> is a semigroup and <code class="code">s</code> is an element of <code class="code">S</code>, then an element <code class="code">t</code> in <code class="code">S</code> is a <em>semigroup inverse</em> for <code class="code">s</code> if <code class="code">s*t*s=s</code> and <code class="code">t*s*t=t</code>; see, for example, <code class="func">InverseOfTransformation</code> (<a href="chap53.html#X860306EB7FAAD2D4"><span class="RefLink">53.5-13</span></a>). A semigroup in which every element has a unique semigroup inverse is called an <em>inverse semigroup</em>.</p>

<p>Every partial permutation belongs to a symmetric inverse monoid; see <code class="func">SymmetricInverseSemigroup</code> (<a href="chap54.html#X81D271B380995F8A"><span class="RefLink">54.7-3</span></a>). Inverse semigroups of partial permutations are hence inverse subsemigroups of the symmetric inverse monoids.</p>

<p>The inverse <code class="code">f^-1</code> of a partial permutation <code class="code">f</code> is simply the partial permutation that maps <code class="code">i^f</code> to <code class="code">i</code> for all <code class="code">i</code> in the image of <code class="code">f</code>. It follows that the domain of <code class="code">f^-1</code> equals the image of <code class="code">f</code> and that the image of <code class="code">f^-1</code> equals the domain of <code class="code">f</code>. The inverse <code class="code">f^-1</code> is the unique partial permutation with the property that <code class="code">f*f^-1*f=f</code> and <code class="code">f^-1*f*f^-1=f^-1</code>. In other words, <code class="code">f^-1</code> is the unique semigroup inverse of <code class="code">f</code> in the symmetric inverse monoid.</p>

<p>If <code class="code">f</code> and <code class="code">g</code> are partial permutations, then the domain and image of the product are:</p>

<p class="pcenter">
    \textrm{dom}(fg)=(\textrm{im}(f)\cap \textrm{dom}(g))f^{-1}\textrm{ and }
    \textrm{im}(fg)=(\textrm{im}(f)\cap \textrm{dom}(g))g
  </p>

<p>A partial permutation is an idempotent if and only if it is the identity function on its domain. The products <code class="code">f*f^-1</code> and <code class="code">f^-1*f</code> are just the identity functions on the domain and image of <code class="code">f</code>, respectively. It follows that <code class="code">f*f^-1</code> is a left identity for <code class="code">f</code> and <code class="code">f^-1*f</code> is a right identity. These products will be referred to here as the <em>left one</em> and <em>right one</em> of the partial permutation <code class="code">f</code>; see <code class="func">LeftOne</code> (<a href="chap54.html#X7A8FB86C78C49F85"><span class="RefLink">54.3-21</span></a>). The <em>one</em> of a partial permutation is just the identity on the union of its domain and its image, and the <em>zero</em> of a partial permutation is just the empty partial permutation; see <code class="func">One</code> (<a href="chap54.html#X857FC10C81507E8B"><span class="RefLink">54.3-22</span></a>) and <code class="func">Zero</code> (<a href="chap54.html#X83B6AE4881C7253B"><span class="RefLink">54.3-23</span></a>).</p>

<p>If <code class="code">S</code> is an arbitrary inverse semigroup, the <em>natural partial order</em> on <code class="code">S</code> is defined as follows: for elements <code class="code">x</code> and <code class="code">y</code> of <code class="code">S</code> we say <code class="code">x</code><span class="SimpleMath"></span><code class="code">y</code> if there exists an idempotent element <code class="code">e</code> in <code class="code">S</code> such that <code class="code">x=ey</code>. In the context of the symmetric inverse monoid, a partial permutation <code class="code">f</code> is less than or equal to a partial permutation <code class="code">g</code> in the natural partial order if and only if <code class="code">f</code> is a restriction of <code class="code">g</code>. The natural partial order is a meet semilattice, in other words, every pair of elements has a greatest lower bound; see <code class="func">MeetOfPartialPerms</code> (<a href="chap54.html#X81E2B6977E28CD00"><span class="RefLink">54.2-5</span></a>).</p>

<p>Note that unlike permutations, partial permutations do not fix unspecified points but are simply undefined on such points; see Chapter <a href="chap42.html#X80F808307A2D5AB8"><span class="RefLink">42</span></a>. Similar to permutations, and unlike transformations, it is possible to multiply any two partial permutations in <strong class="pkg">GAP</strong>.</p>

<p>Internally, <strong class="pkg">GAP</strong> stores a partial permutation <code class="code">f</code> as a list consisting of the codegree of <code class="code">f</code> and the images <code class="code">i^f</code> of the points <code class="code">i</code> that are less than or equal to the degree of <code class="code">f</code>; the value <code class="code">0</code> is stored where <code class="code">i^f</code> is undefined. The domain and image set of <code class="code">f</code> are also stored after either of these values is computed. When the codegree of a partial permutation <code class="code">f</code> is less than 65536, the codegree and images <code class="code">i^f</code> are stored as 16-bit integers, the domain and image set are subobjects of <code class="code">f</code> which are immutable plain lists of <strong class="pkg">GAP</strong> integers. When the codegree of <code class="code">f</code> is greater than or equal to 65536, the codegree and images are stored as 32-bit integers; the domain and image set are stored in the same way as before. A partial permutation belongs to <code class="code">IsPPerm2Rep</code> if it is stored using 16-bit integers and to <code class="code">IsPPerm4Rep</code> otherwise.</p>

<p>In the names of the <strong class="pkg">GAP</strong> functions that deal with partial permutations, the word "Permutation" is usually abbreviated to "Perm", to save typing. For example, the category test function for partial permutations is <code class="func">IsPartialPerm</code> (<a href="chap54.html#X7EECE133792B30FC"><span class="RefLink">54.1-1</span></a>).</p>

<p><a id="X87B0D6657A3F2B0E" name="X87B0D6657A3F2B0E"></a></p>

<h4>54.1 <span class="Heading">The family and categories of partial permutations</span></h4>

<p><a id="X7EECE133792B30FC" name="X7EECE133792B30FC"></a></p>

<h5>54.1-1 IsPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPartialPerm</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>Every partial permutation in <strong class="pkg">GAP</strong> belongs to the category <code class="code">IsPartialPerm</code>. Basic operations for partial permutations are <code class="func">DomainOfPartialPerm</code> (<a href="chap54.html#X784A14F787E041D7"><span class="RefLink">54.3-4</span></a>), <code class="func">ImageListOfPartialPerm</code> (<a href="chap54.html#X8333293F87F654FA"><span class="RefLink">54.3-6</span></a>), <code class="func">ImageSetOfPartialPerm</code> (<a href="chap54.html#X7F0724A07A14DCF7"><span class="RefLink">54.3-7</span></a>), <code class="func">RankOfPartialPerm</code> (<a href="chap54.html#X7C1ABD8A80E95B39"><span class="RefLink">54.3-3</span></a>), <code class="func">DegreeOfPartialPerm</code> (<a href="chap54.html#X8612A4DC864E7959"><span class="RefLink">54.3-1</span></a>), multiplication of two partial permutations is via <code class="keyw">*</code>, and exponentiation with the first argument a positive integer <code class="code">i</code> and second argument a partial permutation <code class="code">f</code> where the result is the image <code class="code">i^f</code> of the point <code class="code">i</code> under <code class="code">f</code>. The inverse of a partial permutation <code class="code">f</code> can be obtains using <code class="code">f^-1</code>.</p>

<p><a id="X8262A827790DD1CC" name="X8262A827790DD1CC"></a></p>

<h5>54.1-2 IsPartialPermCollection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPartialPermCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Every collection of partial permutations belongs to the category <code class="code">IsPartialPermCollection</code>. For example, a semigroup of partial permutations belongs in <code class="code">IsPartialPermCollection</code>.</p>

<p><a id="X7E63D17780F64FBA" name="X7E63D17780F64FBA"></a></p>

<h5>54.1-3 PartialPermFamily</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPermFamily</code></td><td class="tdright">( family )</td></tr></table></div>
<p>The family of all partial permutations is <code class="code">PartialPermFamily</code></p>

<p><a id="X7B9D451D7FDA1DD8" name="X7B9D451D7FDA1DD8"></a></p>

<h4>54.2 <span class="Heading">Creating partial permutations</span></h4>

<p>There are several ways of creating partial permutations in <strong class="pkg">GAP</strong>, which are described in this section.</p>

<p><a id="X8538BAE77F2FB2F8" name="X8538BAE77F2FB2F8"></a></p>

<h5>54.2-1 PartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPerm</code>( <var class="Arg">dom</var>, <var class="Arg">img</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPerm</code>( <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p>Partial permutations can be created in two ways: by giving the domain and the image, or the dense image list.</p>


<dl>
<dt><strong class="Mark">Domain and image</strong></dt>
<dd><p>The partial permutation defined by a domain <var class="Arg">dom</var> and image <var class="Arg">img</var>, where <var class="Arg">dom</var> is a set of positive integers and <var class="Arg">img</var> is a duplicate free list of positive integers, maps <var class="Arg">dom</var><code class="code">[i]</code> to <var class="Arg">img</var><code class="code">[i]</code>. For example, the partial permutation mapping <code class="code">1</code> and <code class="code">5</code> to <code class="code">20</code> and <code class="code">2</code> can be created using:</p>


<div class="example"><pre>PartialPerm([1,5],[20,2]); </pre></div>

<p>In this setting, <code class="code">PartialPerm</code> is the analogue in the context of partial permutations of <code class="func">MappingPermListList</code> (<a href="chap42.html#X8087DCC780B9656A"><span class="RefLink">42.5-3</span></a>).</p>

</dd>
<dt><strong class="Mark">Dense image list</strong></dt>
<dd><p>The partial permutation defined by a dense image list <var class="Arg">list</var>, maps the positive integer <code class="code">i</code> to <var class="Arg">list</var><code class="code">[i]</code> if <var class="Arg">list</var><code class="code">[i]&lt;&gt;0</code> and is undefined at <code class="code">i</code> if <var class="Arg">list</var><code class="code">[i]=0</code>. For example, the partial permutation mapping <code class="code">1</code> and <code class="code">5</code> to <code class="code">20</code> and <code class="code">2</code> can be created using:</p>


<div class="example"><pre>PartialPerm([20,0,0,0,2]);</pre></div>

<p>In this setting, <code class="code">PartialPerm</code> is the analogue in the context of partial permutations of <code class="func">PermList</code> (<a href="chap42.html#X78D611D17EA6E3BC"><span class="RefLink">42.5-2</span></a>).</p>

</dd>
</dl>
<p>Regardless of which of these two methods are used to create a partial permutation in <strong class="pkg">GAP</strong> the internal representation is the same.</p>

<p>If the largest point in the domain is larger than the rank of the partial permutation, then using the dense image list to define the partial permutation will require less typing; otherwise using the domain and the image will require less typing. For example, the partial permutation mapping <code class="code">10000</code> to <code class="code">1</code> can be defined using:</p>


<div class="example"><pre>PartialPerm([10000], [1]);</pre></div>

<p>but using the dense image list would require a list with <code class="code">9999</code> entries equal to <code class="code">0</code> and the final entry equal to <code class="code">1</code>. On the other hand, the identity on <code class="code">[1,2,3,4,6]</code> can be defined using:</p>


<div class="example"><pre>PartialPerm([1,2,3,4,0,6]);</pre></div>

<p>Please note that a partial permutation in <strong class="pkg">GAP</strong> is never a permutation nor is a permutation ever a partial permutation. For example, the permutation <code class="code">(1,4,2)</code> fixes <code class="code">3</code> but the partial permutation <code class="code">PartialPerm([4,1,0,2]);</code> is not defined on <code class="code">3</code>.</p>

<p><a id="X81188D9F83F64222" name="X81188D9F83F64222"></a></p>

<h5>54.2-2 PartialPermOp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPermOp</code>( <var class="Arg">obj</var>, <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPermOpNC</code>( <var class="Arg">obj</var>, <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A partial permutation or <code class="keyw">fail</code>.</p>

<p><code class="func">PartialPermOp</code> returns the partial permutation that corresponds to the action of the object <var class="Arg">obj</var> on the domain or list <var class="Arg">list</var> via the function <var class="Arg">func</var>. If the optional third argument <var class="Arg">func</var> is not specified, then the action <code class="func">OnPoints</code> (<a href="chap41.html#X7FE417DD837987B4"><span class="RefLink">41.2-1</span></a>) is used by default. Note that the returned partial permutation refers to the positions in <var class="Arg">list</var> even if <var class="Arg">list</var> itself consists of integers.</p>

<p>This function is the analogue in the context of partial permutations of <code class="func">Permutation</code> (<a href="../../doc/ref/chap41.html#X7807A33381DCAB26"><span class="RefLink">Reference: Permutation (for a group, an action domain, etc.)</span></a>) or <code class="func">TransformationOp</code> (<a href="chap53.html#X7C2A3FC9782F2099"><span class="RefLink">53.2-5</span></a>).</p>

<p>If <var class="Arg">obj</var> does not map the elements of <var class="Arg">list</var> injectively, then <code class="keyw">fail</code> is returned.</p>

<p><code class="func">PartialPermOpNC</code> does not check that <var class="Arg">obj</var> maps elements of <var class="Arg">list</var> injectively or that a partial permutation is defined by the action of <var class="Arg">obj</var> on <var class="Arg">list</var> via <var class="Arg">func</var>. This function should be used only with caution, in situations where it is guaranteed that the arguments have the required properties.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 9, 10, 4, 2, 10, 5, 9, 10, 9, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PartialPermOp(f, [ 6 .. 8 ], OnPoints);</span>
[1,4][2,5][3,6]</pre></div>

<p><a id="X80ABBF4883C79060" name="X80ABBF4883C79060"></a></p>

<h5>54.2-3 RestrictedPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">set</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p><code class="code">RestrictedPartialPerm</code> returns a new partial permutation that acts on the points in the set of positive integers <var class="Arg">set</var> in the same way as the partial permutation <var class="Arg">f</var>, and that is undefined on those points that are not in <var class="Arg">set</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 3, 4, 7, 8, 9 ], [ 9, 4, 1, 6, 2, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RestrictedPartialPerm(f, [ 2, 3, 6, 10 ] );</span>
[3,4]</pre></div>

<p><a id="X849668DD7B0B9E3B" name="X849668DD7B0B9E3B"></a></p>

<h5>54.2-4 JoinOfPartialPerms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; JoinOfPartialPerms</code>( <var class="Arg">arg</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; JoinOfIdempotentPartialPermsNC</code>( <var class="Arg">arg</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: A partial permutation or <code class="keyw">fail</code>.</p>

<p>The join of partial permutations <var class="Arg">f</var> and <var class="Arg">g</var> is just the join, or supremum, of <var class="Arg">f</var> and <var class="Arg">g</var> under the natural partial ordering of partial permutations.</p>

<p><code class="code">JoinOfPartialPerms</code> returns the union of the partial permutations in its argument if this defines a partial permutation, and <code class="keyw">fail</code> if it is not. The argument <var class="Arg">arg</var> can be a partial permutation collection or a number of partial permutations.</p>

<p>The function <code class="code">JoinOfIdempotentPartialPermsNC</code> returns the join of its argument which is assumed to be a collection of idempotent partial permutations or a number of idempotent partial permutations. It is not checked that the arguments are idempotents. The performance of this function is higher than <code class="code">JoinOfPartialPerms</code> when it is known <em>a priori</em> that the argument consists of idempotents.</p>

<p>The union of <var class="Arg">f</var> and <var class="Arg">g</var> is a partial permutation if and only if <var class="Arg">f</var> and <var class="Arg">g</var> agree on the intersection dom(<var class="Arg">f</var>)<span class="SimpleMath"></span> dom(<var class="Arg">g</var>) of their domains and the images of dom(<var class="Arg">f</var>)<span class="SimpleMath"></span> dom(<var class="Arg">g</var>) and dom(<var class="Arg">g</var>)<span class="SimpleMath"></span> dom(<var class="Arg">f</var>) under <var class="Arg">f</var> and <var class="Arg">g</var>, respectively, are disjoint.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );</span>
[3,7][8,1,2,6,9][10,5]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 11, 12, 14, 16, 18, 19 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 17, 20, 11, 19, 14, 12 ] );</span>
[16,19,12,20][18,14,11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JoinOfPartialPerms(f, g);</span>
[3,7][8,1,2,6,9][10,5][16,19,12,20][18,14,11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 4, 5, 6, 7 ], [ 5, 7, 3, 1, 4 ] );</span>
[6,1,5,3](4,7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 100 ], [ 1 ] );</span>
[100,1]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JoinOfPartialPerms(f, g);</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 3, 4 ], [ 3, 2, 4 ] );</span>
[1,3,2](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 4 ], [ 2, 3, 4 ] );</span>
[1,2,3](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JoinOfPartialPerms(f, g);</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1 ], [ 2 ] ); </span>
[1,2]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JoinOfPartialPerms(f, f^-1);</span>
(1,2)</pre></div>

<p><a id="X81E2B6977E28CD00" name="X81E2B6977E28CD00"></a></p>

<h5>54.2-5 MeetOfPartialPerms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MeetOfPartialPerms</code>( <var class="Arg">arg</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p>The meet of partial permutations <var class="Arg">f</var> and <var class="Arg">g</var> is just the meet, or infimum, of <var class="Arg">f</var> and <var class="Arg">g</var> under the natural partial ordering of partial permutations. In other words, the meet is the greatest partial permuation which is a restriction of both <var class="Arg">f</var> and <var class="Arg">g</var>.</p>

<p>Note that unlike the join of partial permutations, the meet always exists.</p>

<p><code class="func">MeetOfPartialPerms</code> returns the meet of the partial permutations in its argument. The argument <var class="Arg">arg</var> can be a partial permutation collection or a number of partial permutations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 6, 100000 ], [ 2, 6, 7, 1, 5 ] );</span>
[3,7][100000,5](1,2,6)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 4, 6 ], [ 2, 4, 6, 1, 5 ] );</span>
[3,6,5](1,2,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MeetOfPartialPerms(f, g);</span>
[1,2]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 5, 6, 7, 9, 10 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 4, 10, 5, 6, 7, 1, 3, 2 ] );</span>
[9,3,5,6,7,1,4](2,10)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MeetOfPartialPerms(f, g);</span>
&lt;empty partial perm&gt;</pre></div>

<p><a id="X80EFB142817A0A9F" name="X80EFB142817A0A9F"></a></p>

<h5>54.2-6 EmptyPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EmptyPartialPerm</code>(  )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: The empty partial permutation.</p>

<p>The empty partial permutation is returned by this function when it is called with no arguments. This is just short hand for <code class="code">PartialPerm([]);</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">EmptyPartialPerm();</span>
&lt;empty partial perm&gt;</pre></div>

<p><a id="X7E6ADC8583C31530" name="X7E6ADC8583C31530"></a></p>

<h5>54.2-7 <span class="Heading">RandomPartialPerm</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomPartialPerm</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomPartialPerm</code>( <var class="Arg">set</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomPartialPerm</code>( <var class="Arg">dom</var>, <var class="Arg">img</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: A random partial permutation.</p>

<p>In its first form, <code class="code">RandomPartialPerm</code> returns a randomly chosen partial permutation where points in the domain and image are bounded above by the positive integer <var class="Arg">n</var>.</p>


<div class="example"><pre><span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomPartialPerm(10);  </span>
[2,9][4,1,6,5][7,3](8)</pre></div>

<p>In its second form, <code class="code">RandomPartialPerm</code> returns a randomly chosen partial permutation with points in the domain and image contained in the set of positive integers <var class="Arg">set</var>.</p>


<div class="example"><pre><span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomPartialPerm([1,2,3,1000]);</span>
[2,3,1000](1)</pre></div>

<p>In its third form, <code class="code">RandomPartialPerm</code> creates a randomly chosen partial permutation with domain contained in the set of positive integers <var class="Arg">dom</var> and image contained in the set of positive integers <var class="Arg">img</var>. The arguments <var class="Arg">dom</var> and <var class="Arg">img</var> do not have to have equal length.</p>

<p>Note that it is not guarenteed in either of these cases that partial permutations are chosen with a uniform distribution.</p>

<p><a id="X8779F0997D0FDA78" name="X8779F0997D0FDA78"></a></p>

<h4>54.3 <span class="Heading">Attributes for partial permutations</span></h4>

<p>In this section we describe the functions available in <strong class="pkg">GAP</strong> for finding various attributes of partial permutations.</p>

<p><a id="X8612A4DC864E7959" name="X8612A4DC864E7959"></a></p>

<h5>54.3-1 DegreeOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfPartialPermCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>degree</em> of a partial permutation <var class="Arg">f</var> is the largest positive integer where it is defined, i.e. the maximum element in the domain of <var class="Arg">f</var>.</p>

<p>The degree a collection of partial permutations <var class="Arg">coll</var> is the largest degree of any partial permutation in <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );</span>
[3,7][8,1,2,6,9][10,5]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfPartialPerm(f);</span>
10</pre></div>

<p><a id="X8413D0EF7DEE1FFF" name="X8413D0EF7DEE1FFF"></a></p>

<h5>54.3-2 CodegreeOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodegreeOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodegreeOfPartialPermCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>codegree</em> of a partial permutation <var class="Arg">f</var> is the largest positive integer in its image.</p>

<p>The codegree a collection of partial permutations <var class="Arg">coll</var> is the largest codegree of any partial permutation in <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], [ 7, 1, 4, 3, 2, 6, 5 ] );</span>
[8,6][10,5,2,1,7](3,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodegreeOfPartialPerm(f);</span>
7</pre></div>

<p><a id="X7C1ABD8A80E95B39" name="X7C1ABD8A80E95B39"></a></p>

<h5>54.3-3 RankOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfPartialPermCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>rank</em> of a partial permutation <var class="Arg">f</var> is the size of its domain, or equivalently the size of its image set or image list.</p>

<p>The rank of a partial permutation collection <var class="Arg">coll</var> is the size of the union of the domains of the elements of <var class="Arg">coll</var>, or equivalently, the total number of points on which the elements of <var class="Arg">coll</var> act. Note that this is value may not the same as the size of the union of the images of the elements in <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 4, 6, 8, 9 ], [ 7, 10, 1, 9, 4, 2 ] );</span>
[6,9,2,10][8,4,1,7]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfPartialPerm(f);</span>
6</pre></div>

<p><a id="X784A14F787E041D7" name="X784A14F787E041D7"></a></p>

<h5>54.3-4 DomainOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DomainOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DomainOfPartialPermCollection</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A set of positive integers (maybe empty).</p>

<p>The <em>domain</em> of a partial permutation <var class="Arg">f</var> is the set of positive integers where <var class="Arg">f</var> is defined.</p>

<p>The domain of a partial permutation collection <var class="Arg">coll</var> is the union of the domains of its elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );</span>
[3,7][8,1,2,6,9][10,5]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DomainOfPartialPerm(f);</span>
[ 1, 2, 3, 6, 8, 10 ]</pre></div>

<p><a id="X7CD84B107831E0FC" name="X7CD84B107831E0FC"></a></p>

<h5>54.3-5 ImageOfPartialPermCollection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageOfPartialPermCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A set of positive integers (maybe empty).</p>

<p>The <em>image</em> of a partial permutation collection <var class="Arg">coll</var> is the union of the images of its elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(5);                                </span>
&lt;symmetric inverse monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageOfPartialPermCollection(GeneratorsOfInverseSemigroup(S));</span>
[ 1, 2, 3, 4, 5 ]</pre></div>

<p><a id="X8333293F87F654FA" name="X8333293F87F654FA"></a></p>

<h5>54.3-6 ImageListOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageListOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The list of images of a partial permutation.</p>

<p>The <em>image list</em> of a partial permutation <var class="Arg">f</var> is the list of images of the elements of the domain <var class="Arg">f</var> where <code class="code">ImageListOfPartialPerm(<var class="Arg">f</var>)[i]=DomainOfPartialPerm(<var class="Arg">f</var>)[i]^<var class="Arg">f</var></code> for any <code class="code">i</code> in the range from <code class="code">1</code> to the rank of <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], [ 7, 1, 4, 3, 2, 6, 5 ] );</span>
[8,6][10,5,2,1,7](3,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageListOfPartialPerm(f);</span>
[ 7, 1, 4, 3, 2, 6, 5 ]</pre></div>

<p><a id="X7F0724A07A14DCF7" name="X7F0724A07A14DCF7"></a></p>

<h5>54.3-7 ImageSetOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageSetOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The image set of a partial permutation.</p>

<p>The <em>image set</em> of a partial permutation <code class="code">f</code> is just the set of points in the image list (i.e. the image list after it has been sorted into increasing order).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 5, 7, 10 ], [ 10, 2, 3, 5, 7, 6 ] );</span>
[1,10,6](2)(3)(5)(7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfPartialPerm(f);</span>
[ 2, 3, 5, 6, 7, 10 ]</pre></div>

<p><a id="X82AAFF938623422E" name="X82AAFF938623422E"></a></p>

<h5>54.3-8 FixedPointsOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FixedPointsOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FixedPointsOfPartialPerm</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p><code class="code">FixedPointsOfPartialPerm</code> returns the set of points <code class="code">i</code> in the domain of the partial permutation <var class="Arg">f</var> such that <code class="code">i^<var class="Arg">f</var>=i</code>.</p>

<p>When the argument is a collection of partial permutations <var class="Arg">coll</var>, <code class="code">FixedPointsOfPartialPerm</code> returns the set of points fixed by every element of the collection of partial permutations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 6, 7 ], [ 1, 3, 4, 7, 5 ] );</span>
[2,3,4][6,7,5](1)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FixedPointsOfPartialPerm(f);</span>
[ 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm([1 .. 10]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FixedPointsOfPartialPerm(f);</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]</pre></div>

<p><a id="X82FE981A87FAA2DC" name="X82FE981A87FAA2DC"></a></p>

<h5>54.3-9 MovedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MovedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MovedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p><code class="code">MovedPoints</code> returns the set of points <code class="code">i</code> in the domain of the partial permutation <var class="Arg">f</var> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code>.</p>

<p>When the argument is a collection of partial permutations <var class="Arg">coll</var>, <code class="code">MovedPoints</code> returns the set of points moved by some element of the collection of partial permutations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4 ], [ 5, 7, 1, 6 ] );</span>
[2,7][3,1,5][4,6]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MovedPoints(f);</span>
[ 1, 2, 3, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FixedPointsOfPartialPerm(f);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FixedPointsOfPartialPerm(PartialPerm([1 .. 4]));</span>
[ 1, 2, 3, 4 ]</pre></div>

<p><a id="X7FAF969C84CDC742" name="X7FAF969C84CDC742"></a></p>

<h5>54.3-10 NrFixedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrFixedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrFixedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">NrFixedPoints</code> returns the number of points <code class="code">i</code> in the domain of the partial permutation <var class="Arg">f</var> such that <code class="code">i^<var class="Arg">f</var>=i</code>.</p>

<p>When the argument is a collection of partial permutations <var class="Arg">coll</var>, <code class="code">NrFixedPoints</code> returns the number of points fixed by every element of the collection of partial permutations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4, 5 ], [ 3, 2, 4, 6, 1 ] );</span>
[5,1,3,4,6](2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrFixedPoints(f);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrFixedPoints(PartialPerm([1 .. 10]));</span>
10</pre></div>

<p><a id="X81F5C64E7DAD27A7" name="X81F5C64E7DAD27A7"></a></p>

<h5>54.3-11 NrMovedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrMovedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrMovedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">NrMovedPoints</code> returns the number of points <code class="code">i</code> in the domain of the partial permutation <var class="Arg">f</var> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code>.</p>

<p>When the argument is a collection of partial permutations <var class="Arg">coll</var>, <code class="code">NrMovedPoints</code> returns the number of points moved by some element of the collection of partial permutations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4, 5, 7, 8 ], [ 4, 5, 6, 7, 1, 3, 2 ] );</span>
[8,2,5,1,4,7,3,6]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints(f);</span>
7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints(PartialPerm([1 .. 4]));</span>
0</pre></div>

<p><a id="X84A49C977E1E29AA" name="X84A49C977E1E29AA"></a></p>

<h5>54.3-12 SmallestMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">SmallestMovedPoint</code> returns the smallest positive integer <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is an identity partial permutation, then <code class="keyw">infinity</code> is returned.</p>

<p>If the argument is a collection of partial permutations <var class="Arg">coll</var>, then the smallest point which is moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity partial permutations, then <code class="code">SmallestMovedPoint</code> returns <code class="keyw">infinity</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 3 ], [ 4, 3 ] );</span>
[1,4](3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint(f);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint(PartialPerm([1 .. 10]));</span>
infinity</pre></div>

<p><a id="X7D4290A785ABC86D" name="X7D4290A785ABC86D"></a></p>

<h5>54.3-13 LargestMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">LargestMovedPoint</code> returns the largest positive integers <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity partial permutation, then <code class="code">0</code> is returned.</p>

<p>If the argument is a collection of partial permutations <var class="Arg">coll</var>, then the largest point which is moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity partial permutations, then <code class="code">LargestMovedPoint</code> returns <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 3, 4, 5 ], [ 5, 1, 6, 4 ] );</span>
[3,1,5,4,6]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint(f);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint(PartialPerm([1 .. 10]));</span>
0</pre></div>

<p><a id="X85280F1A7B1014BA" name="X85280F1A7B1014BA"></a></p>

<h5>54.3-14 SmallestImageOfMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestImageOfMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestImageOfMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">SmallestImageOfMovedPoint</code> returns the smallest positive integer <code class="code">i^<var class="Arg">f</var></code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity partial permutation, then <code class="keyw">infinity</code> is returned.</p>

<p>If the argument is a collection of partial permutations <var class="Arg">coll</var>, then the smallest integer which is the image a point moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity partial permutations, then <code class="code">SmallestImageOfMovedPoint</code> returns <code class="keyw">infinity</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(5);</span>
&lt;symmetric inverse monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(S);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(PartialPerm([10 .. 100], [10 .. 100]));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(S);</span>
infinity
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 6 ] );</span>
[4,6](1)(2)(3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(f);</span>
6</pre></div>

<p><a id="X7A95CD437BC1CB1A" name="X7A95CD437BC1CB1A"></a></p>

<h5>54.3-15 LargestImageOfMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestImageOfMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestImageOfMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">LargestImageOfMovedPoint</code> returns the largest positive integer <code class="code">i^<var class="Arg">f</var></code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is an identity partial permutation, then <code class="code">0</code> is returned.</p>

<p>If the argument is a collection of partial permutations <var class="Arg">coll</var>, then the largest integer which is the image of a point moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity partial permutations, then <code class="code">LargestImageOfMovedPoint</code> returns <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(5);</span>
&lt;symmetric inverse monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(S);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(PartialPerm([10 .. 100], [10 .. 100]));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(S);</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(f);</span>
6</pre></div>

<p><a id="X873A9F717DA75CBC" name="X873A9F717DA75CBC"></a></p>

<h5>54.3-16 IndexPeriodOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IndexPeriodOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A pair of positive integers.</p>

<p>Returns the least positive integers <code class="code">m, r</code> such that <code class="code"><var class="Arg">f</var>^(m+r)=<var class="Arg">f</var>^m</code>, which are known as the <em>index</em> and <em>period</em> of the partial permutation <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1 ] );</span>
[2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfPartialPerm(f);</span>
[ 6, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f^6=f^7;</span>
true</pre></div>

<p><a id="X7C04AA377F080722" name="X7C04AA377F080722"></a></p>

<h5>54.3-17 SmallestIdempotentPower</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestIdempotentPower</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p>This function returns the least positive integer <code class="code">n</code> such that the partial permutation <code class="code"><var class="Arg">f</var>^n</code> is an idempotent. The smallest idempotent power of <var class="Arg">f</var> is the least multiple of the period of <var class="Arg">f</var> that is greater than or equal to the index of <var class="Arg">f</var>; see <code class="func">IndexPeriodOfPartialPerm</code> (<a href="chap54.html#X873A9F717DA75CBC"><span class="RefLink">54.3-16</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 18, 19, 20 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 5, 1, 7, 3, 10, 2, 12, 14, 11, 16, 6, 9, 15 ] );</span>
[4,3,7,2,1,5,10,14][8,12][13,16][18,6][19,9][20,15](11)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestIdempotentPower(f);</span>
8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f^8;</span>
&lt;identity partial perm on [ 11 ]&gt;</pre></div>

<p><a id="X8185065E788BDD0D" name="X8185065E788BDD0D"></a></p>

<h5>54.3-18 ComponentsOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentsOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A list of lists of positive integer.</p>

<p><code class="code">ComponentsOfPartialPerm</code> returns a list of the components of the partial permutation <var class="Arg">f</var>. Each component is a subset of the domain of <var class="Arg">f</var>, and the union of the components equals the domain.</p>


<div class="example"><pre> 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );</span>
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentsOfPartialPerm(f);</span>
[ [ 1, 20 ], [ 2, 4, 19, 13, 15 ], [ 7, 14 ], [ 8, 3, 6 ], 
  [ 10, 12, 5, 9 ], [ 11, 17 ] ]</pre></div>

<p><a id="X7CB51EB67FFA95E9" name="X7CB51EB67FFA95E9"></a></p>

<h5>54.3-19 NrComponentsOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrComponentsOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">NrComponentsOfPartialPerm</code> returns the number of components of the partial permutation <var class="Arg">f</var> on its domain.</p>


<div class="example"><pre> 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );</span>
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrComponentsOfPartialPerm(f);</span>
6</pre></div>

<p><a id="X7AAAAE4082B30E18" name="X7AAAAE4082B30E18"></a></p>

<h5>54.3-20 ComponentRepsOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentRepsOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A list of positive integers.</p>

<p><code class="code">ComponentRepsOfPartialPerm</code> returns the representatives, in the following sense, of the components of the partial permutation <var class="Arg">f</var>. Every component of <var class="Arg">f</var> contains a unique element in the domain but not the image of <var class="Arg">f</var>; this element is called the <em>representative</em> of the component. If <code class="code">i</code> is a representative of a component of <var class="Arg">f</var>, then for every <code class="code">j</code><span class="SimpleMath">not=</span><code class="code">i</code> in the component of <code class="code">i</code>, there exists a positive integer <code class="code">k</code> such that <code class="code">i ^ (<var class="Arg">f</var> ^ k) = j</code>. Unlike transformations, there is exactly one representative for every component of <var class="Arg">f</var>. <code class="code">ComponentRepsOfPartialPerm</code> returns the least number of representatives.</p>


<div class="example"><pre> 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );</span>
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentRepsOfPartialPerm(f);</span>
[ 1, 2, 7, 8, 10, 11 ]</pre></div>

<p><a id="X7A8FB86C78C49F85" name="X7A8FB86C78C49F85"></a></p>

<h5>54.3-21 LeftOne</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftOne</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightOne</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p><code class="code">LeftOne</code> returns the identity partial permutation <code class="code">e</code> such that the domain and image of <code class="code">e</code> equal the domain of the partial permutation <var class="Arg">f</var> and such that <code class="code">e*<var class="Arg">f</var>=f</code>.</p>

<p><code class="code">RightOne</code> returns the identity partial permutation <code class="code">e</code> such that the domain and image of <code class="code">e</code> equal the image of <var class="Arg">f</var> and such that <code class="code"><var class="Arg">f</var>*e=f</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 4, 5, 6, 7 ], [ 10, 1, 6, 5, 8, 7 ] ); </span>
[2,1,10][4,6,8](5)(7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RightOne(f);</span>
&lt;identity partial perm on [ 1, 5, 6, 7, 8, 10 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LeftOne(f);</span>
&lt;identity partial perm on [ 1, 2, 4, 5, 6, 7 ]&gt;</pre></div>

<p><a id="X857FC10C81507E8B" name="X857FC10C81507E8B"></a></p>

<h5>54.3-22 One</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; One</code>( <var class="Arg">f</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p>As described in <code class="func">OneImmutable</code> (<a href="../../doc/ref/chap31.html#X8046262384895B2A"><span class="RefLink">Reference: OneImmutable</span></a>), <code class="code">One</code> returns the multiplicative neutral element of the partial permutation <var class="Arg">f</var>, which is the identity partial permutation on the union of the domain and image of <var class="Arg">f</var>. Equivalently, the one of <var class="Arg">f</var> is the join of the right one and left one of <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm([ 1, 2, 3, 4, 5, 7, 10 ], [ 3, 7, 9, 6, 1, 10, 2 ]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">One(f);</span>
&lt;identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 9, 10 ]&gt;</pre></div>

<p><a id="X83B6AE4881C7253B" name="X83B6AE4881C7253B"></a></p>

<h5>54.3-23 Zero</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Zero</code>( <var class="Arg">f</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: The empty partial permutation.</p>

<p>As described in <code class="func">ZeroImmutable</code> (<a href="../../doc/ref/chap31.html#X8040AC7A79FFC442"><span class="RefLink">Reference: ZeroImmutable</span></a>), <code class="code">Zero</code> returns the multiplicative zero element of the partial permutation <var class="Arg">f</var>, which is the empty partial permutation.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm([ 1, 2, 3, 4, 5, 7, 10 ], [ 3, 7, 9, 6, 1, 10, 2 ]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Zero(f);</span>
&lt;empty partial perm&gt;</pre></div>

<p><a id="X8585AA8B78E9CDFB" name="X8585AA8B78E9CDFB"></a></p>

<h4>54.4 <span class="Heading">Changing the representation of a partial permutation</span></h4>

<p>It is possible that a partial permutation in <strong class="pkg">GAP</strong> can be represented by other types of objects, or that other types of <strong class="pkg">GAP</strong> objects can be represented by partial permutations. Partial permutations which are mathematically permutations can be converted into permutations in <strong class="pkg">GAP</strong> using the function <code class="func">AsPermutation</code> (<a href="chap42.html#X8353AB8987E35DF3"><span class="RefLink">42.5-5</span></a>). Similarly, a partial permutation can be converted into a transformation using <code class="func">AsTransformation</code> (<a href="chap53.html#X7C5360B2799943F3"><span class="RefLink">53.3-1</span></a>).</p>

<p>In this section we describe functions for converting other types of objects in <strong class="pkg">GAP</strong> into partial permutations.</p>

<p><a id="X81B32CB182489ACA" name="X81B32CB182489ACA"></a></p>

<h5>54.4-1 AsPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">set</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( method )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p>A permutation <var class="Arg">f</var> defines a partial permutation when it is restricted to any finite set of positive integers. <code class="code">AsPartialPerm</code> can be used to obtain this partial permutation.</p>

<p>There are several possible arguments for <code class="code">AsPartialPerm</code>:</p>


<dl>
<dt><strong class="Mark">for a permutation and set of positive integers</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation that equals <var class="Arg">f</var> on the set of positive integers <var class="Arg">set</var> and that is undefined on every other positive integer.</p>

<p>Note that as explained in <code class="func">PartialPerm</code> (<a href="chap54.html#X8538BAE77F2FB2F8"><span class="RefLink">54.2-1</span></a>) <em>a permutation is never a partial permutation</em> in <strong class="pkg">GAP</strong>, please keep this in mind when using <code class="code">AsPartialPerm</code>.</p>

</dd>
<dt><strong class="Mark">for a permutation</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation that agrees with <var class="Arg">f</var> on <code class="code">[1..LargestMovedPoint(<var class="Arg">f</var>)]</code> and that is not defined on any other positive integer.</p>

</dd>
<dt><strong class="Mark">for a permutation and a positive integer</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation that agrees with <var class="Arg">f</var> on <code class="code">[1..<var class="Arg">n</var>]</code>, when <var class="Arg">n</var> is a positive integer, and that is not defined on any other positive integer.</p>

</dd>
</dl>
<p>The operation <code class="func">PartialPermOp</code> (<a href="chap54.html#X81188D9F83F64222"><span class="RefLink">54.2-2</span></a>) can also be used to convert permutations into partial permutations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=(2,8,19,9,14,10,20,17,4,13,12,3,5,7,18,16);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f);</span>
(1)(2,8,19,9,14,10,20,17,4,13,12,3,5,7,18,16)(6)(11)(15)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f, [ 1, 2, 3 ] );</span>
[2,8][3,5](1)</pre></div>

<p><a id="X87EC67747B260E98" name="X87EC67747B260E98"></a></p>

<h5>54.4-2 AsPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">set</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">( method )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A partial permutation or <code class="keyw">fail</code>.</p>

<p>A transformation <var class="Arg">f</var> defines a partial permutation when it is restricted to a set of positive integers where it is injective. <code class="code">AsPartialPerm</code> can be used to obtain this partial permutation.</p>

<p>There are several possible arguments for <code class="code">AsPartialPerm</code>:</p>


<dl>
<dt><strong class="Mark">for a transformation and set of positive integers</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation obtained by restricting <var class="Arg">f</var> to the set of positive integers <var class="Arg">set</var> when:</p>


<ul>
<li><p><var class="Arg">set</var> contains no elements exceeding the degree of <var class="Arg">f</var>;</p>

</li>
<li><p><var class="Arg">f</var> is injective on <var class="Arg">set</var>.</p>

</li>
</ul>
</dd>
<dt><strong class="Mark">for a transformation and a positive integer</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation that agrees with <var class="Arg">f</var> on <code class="code">[1..<var class="Arg">n</var>]</code> when <var class="Arg">A</var> is a positive integer and this set satisfies the conditions given above.</p>

</dd>
<dt><strong class="Mark">for a transformation</strong></dt>
<dd><p>Let <code class="code">n</code> denote the degree of <var class="Arg">f</var>. If <code class="code">n^<var class="Arg">f</var>=n</code> and <var class="Arg">f</var> is injective on those <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;n</code>, then <code class="code">AsPartialPerm</code> returns the partial permutation obtained by restricting <var class="Arg">f</var> to those <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;n</code>.</p>

</dd>
</dl>
<p><code class="code">AsPartialPerm</code> returns <code class="keyw">fail</code> if the arguments do not describe a partial permutation.</p>

<p>The operation <code class="func">PartialPermOp</code> (<a href="chap54.html#X81188D9F83F64222"><span class="RefLink">54.2-2</span></a>) can also be used to convert transformations into partial permutations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 8, 3, 5, 9, 6, 2, 9, 7, 9 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f);</span>
[1,8,7](2,3,5,6)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f, 3);</span>
[1,8][2,3,5]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f, [ 2 .. 4 ] );</span>
[2,3,5][4,9]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 2, 10, 2, 4, 4, 7, 6, 9, 10, 1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f);</span>
fail</pre></div>

<p><a id="X848CD855802C6CE1" name="X848CD855802C6CE1"></a></p>

<h4>54.5 <span class="Heading">Operators and operations for partial permutations</span></h4>


<dl>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> ^ -1</code></strong></dt>
<dd><p>returns the inverse of the partial permutation <var class="Arg">f</var>.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">i</var> ^ <var class="Arg">f</var></code></strong></dt>
<dd><p>returns the image of the positive integer <var class="Arg">i</var> under the partial permutation <var class="Arg">f</var> if it is defined and <code class="code">0</code> if it is not.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">i</var> / <var class="Arg">f</var></code></strong></dt>
<dd><p>returns the preimage of the positive integer <var class="Arg">i</var> under the partial permutation <var class="Arg">f</var> if it is defined and <code class="code">0</code> if it is not. Note that the inverse of <var class="Arg">f</var> is not calculated to find the preimage of <var class="Arg">i</var>.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> ^ <var class="Arg">g</var></code></strong></dt>
<dd><p>returns <code class="code"><var class="Arg">g</var>^-1*<var class="Arg">f</var>*<var class="Arg">g</var></code> when <var class="Arg">f</var> is a partial permutation and <var class="Arg">g</var> is a permutation or partial permutation; see <code class="func">\^</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>). This operation requires essentially the same number of steps as multiplying partial permutations, which is around one third as many as inverting and multiplying twice.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> * <var class="Arg">g</var></code></strong></dt>
<dd><p>returns the composition of <var class="Arg">f</var> and <var class="Arg">g</var> when <var class="Arg">f</var> and <var class="Arg">g</var> are partial permutations or permutations. The product of a permutation and a partial permutation is returned as a partial permutation.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> / <var class="Arg">g</var></code></strong></dt>
<dd><p>returns <code class="code"><var class="Arg">f</var>*<var class="Arg">g</var>^-1</code> when <var class="Arg">f</var> is a partial permutation and <var class="Arg">g</var> is a permutation or partial permutation. This operation requires essentially the same number of steps as multiplying partial permutations, which is approximately half that required to first invert <var class="Arg">g</var> and then take the product with <var class="Arg">f</var>.</p>

</dd>
<dt><strong class="Mark"><code class="code">LQUO(<var class="Arg">g</var>, <var class="Arg">f</var>)</code></strong></dt>
<dd><p>returns <code class="code"><var class="Arg">g</var>^-1*<var class="Arg">f</var></code> when <var class="Arg">f</var> is a partial permutation and <var class="Arg">g</var> is a permutation or partial permutation. This operation requires essentially the same number of steps as multiplying partial permutations, which is approximately half that required to first invert <var class="Arg">g</var> and then take the product with <var class="Arg">f</var>.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> &lt; <var class="Arg">g</var></code></strong></dt>
<dd><p>returns <code class="keyw">true</code> if the image of <var class="Arg">f</var> on the range from 1 to the degree of <var class="Arg">f</var> is lexicographically less than the corresponding image for <var class="Arg">g</var> and <code class="keyw">false</code> if it is not. See <code class="func">NaturalLeqPartialPerm</code> (<a href="chap54.html#X87B1ED93785257C1"><span class="RefLink">54.5-4</span></a>) and <code class="func">ShortLexLeqPartialPerm</code> (<a href="chap54.html#X81BD69307D294A1C"><span class="RefLink">54.5-5</span></a>) for additional orders for partial permutations.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> = <var class="Arg">g</var></code></strong></dt>
<dd><p>returns <code class="keyw">true</code> if the partial permutation <var class="Arg">f</var> equals the partial permutation <var class="Arg">g</var> and returns <code class="keyw">false</code> if it does not.</p>

</dd>
</dl>
<p><a id="X8382A0F8875CEB08" name="X8382A0F8875CEB08"></a></p>

<h5>54.5-1 PermLeftQuoPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoPartialPermNC</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A permutation.</p>

<p>Returns the permutation on the image set of <var class="Arg">f</var> induced by <code class="code"><var class="Arg">f</var>^-1*<var class="Arg">g</var></code> when the partial permutations <var class="Arg">f</var> and <var class="Arg">g</var> have equal domain and image set.</p>

<p><code class="code">PermLeftQuoPartialPerm</code> verifies that <var class="Arg">f</var> and <var class="Arg">g</var> have equal domains and image sets, and returns an error if they do not. <code class="code">PermLeftQuoPartialPermNC</code> does no checks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7 ], [ 7, 9, 10, 4, 2, 5 ] );</span>
[1,7,5,2,9][3,10](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 4, 5, 7 ], [ 7, 4, 9, 2, 5, 10 ] );</span>
[1,7,10][3,9](2,4)(5)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermLeftQuoPartialPerm(f, g);</span>
(2,5,10,9,4)</pre></div>

<p><a id="X7C7F5EAB7E9A381D" name="X7C7F5EAB7E9A381D"></a></p>

<h5>54.5-2 PreImagePartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PreImagePartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">i</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">fail</code>.</p>

<p><code class="code">PreImagePartialPerm</code> returns the preimage of the positive integer <var class="Arg">i</var> under the partial permutation <var class="Arg">f</var> if <var class="Arg">i</var> belongs to the image of <var class="Arg">f</var>. If <var class="Arg">i</var> does not belong to the image of <var class="Arg">f</var>, then <code class="keyw">fail</code> is returned.</p>

<p>The same result can be obtained by using <code class="code"><var class="Arg">i</var>/<var class="Arg">f</var></code> as described in Section <a href="chap54.html#X848CD855802C6CE1"><span class="RefLink">54.5</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 5, 9, 10 ], [ 5, 10, 7, 8, 9, 1 ] );</span>
[2,10,1,5,8][3,7](9)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 8);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 5);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 1);</span>
10
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 10);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 2); </span>
fail</pre></div>

<p><a id="X797A6CC084068219" name="X797A6CC084068219"></a></p>

<h5>54.5-3 ComponentPartialPermInt</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentPartialPermInt</code>( <var class="Arg">f</var>, <var class="Arg">i</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p><code class="code">ComponentPartialPermInt</code> returns the elements of the component of <var class="Arg">f</var> containing <var class="Arg">i</var> that can be obtained by repeatedly applying <var class="Arg">f</var> to <var class="Arg">i</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 4, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 11, 4, 14, 16, 15, 3, 20, 8, 17, 19, 1, 6, 12 ] );</span>
[2,4,14,17,6,15,19][5,16,1,11][7,3][10,8,20][18,12]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentPartialPermInt(f, 4);</span>
[ 4, 14, 17, 6, 15, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentPartialPermInt(f, 3);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentPartialPermInt(f, 10);</span>
[ 10, 8, 20 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentPartialPermInt(f, 100);</span>
[  ]</pre></div>

<p><a id="X87B1ED93785257C1" name="X87B1ED93785257C1"></a></p>

<h5>54.5-4 NaturalLeqPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NaturalLeqPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>The <em>natural partial order</em> <span class="SimpleMath"></span> on an inverse semigroup <code class="code">S</code> is defined by <code class="code">s</code><span class="SimpleMath"></span><code class="code">t</code> if there exists an idempotent <code class="code">e</code> in <code class="code">S</code> such that <code class="code">s=et</code>. Hence if <var class="Arg">f</var> and <var class="Arg">g</var> are partial permutations, then <var class="Arg">f</var><span class="SimpleMath"></span><var class="Arg">g</var> if and only if <var class="Arg">f</var> is a restriction of <var class="Arg">g</var>; see <code class="func">RestrictedPartialPerm</code> (<a href="chap54.html#X80ABBF4883C79060"><span class="RefLink">54.2-3</span></a>).</p>

<p><code class="code">NaturalLeqPartialPerm</code> returns <code class="keyw">true</code> if <var class="Arg">f</var> is a restriction of <var class="Arg">g</var> and <code class="keyw">false</code> if it is not. Note that since this is a partial order and not a total order, it is possible that <var class="Arg">f</var> and <var class="Arg">g</var> are incomparable with respect to the natural partial order.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=RestrictedPartialPerm(f, [ 1, 2, 3, 9, 13, 20 ] );</span>
[1,3,14][2,12]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(g,f);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(f,g);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 7, 1, 4, 3, 2, 6, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(f, g);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(g, f);</span>
false</pre></div>

<p><a id="X81BD69307D294A1C" name="X81BD69307D294A1C"></a></p>

<h5>54.5-5 ShortLexLeqPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ShortLexLeqPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p><code class="code">ShortLexLeqPartialPerm</code> returns <code class="keyw">true</code> if the concatenation of the domain and image list of <var class="Arg">f</var> is short-lex less than the corresponding concatenation for <var class="Arg">g</var> and <code class="keyw">false</code> otherwise.</p>

<p>Note that this is not the natural partial order on partial permutation or the same as comparing <var class="Arg">f</var> and <var class="Arg">g</var> using <code class="code">\&lt;</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 6, 7, 8, 10 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 3, 8, 1, 9, 4, 10, 5, 6 ] );</span>
[2,8,5][7,10,6,4,9](1,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 7, 1, 4, 3, 2, 6, 5 ] );</span>
[8,6][10,5,2,1,7](3,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f&lt;g;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g&lt;f;</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ShortLexLeqPartialPerm(f, g);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ShortLexLeqPartialPerm(g, f);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(f, g);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(g, f);</span>
false</pre></div>

<p><a id="X83560BE678ACF855" name="X83560BE678ACF855"></a></p>

<h5>54.5-6 TrimPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TrimPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: Nothing.</p>

<p>It can happen that the internal representation of a partial permutation uses more memory than necessary. For example, by composing a partial permutation with codegree less than 65536 with a partial permutation with codegree greater than 65535. It is possible that the resulting partial permutation <var class="Arg">f</var> has its codegree and images stored as 32-bit integers, while none of its image points exceeds 65536. The purpose of this function is to change the internal representation of such an <var class="Arg">f</var> from using 32-bit to using 16-bit integers.</p>

<p>Note that the partial permutation <var class="Arg">f</var> is changed in-place, and nothing is returned by this function.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2 ], [ 3, 4 ] )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">*PartialPerm( [ 3, 5 ], [ 3, 100000 ] );</span>
[1,3]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPPerm4Rep(f);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TrimPartialPerm(f); f;</span>
[1,3]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPPerm4Rep(f);</span>
false</pre></div>

<p><a id="X7849595B81D063EE" name="X7849595B81D063EE"></a></p>

<h4>54.6 <span class="Heading">Displaying partial permutations</span></h4>

<p>It is possible to change the way that <strong class="pkg">GAP</strong> displays partial permutations using the user preferences <code class="code">PartialPermDisplayLimit</code> and <code class="code">NotationForPartialPerms</code>; see Section <code class="func">UserPreference</code> (<a href="chap3.html#X7B0AD104839B6C3C"><span class="RefLink">3.2-3</span></a>) for more information about user preferences.</p>

<p>If <code class="code">f</code> is a partial permutation of rank <code class="code">r</code> exceeding the value of the user preference <code class="code">PartialPermDisplayLimit</code>, then <code class="code">f</code> is displayed as:</p>


<div class="example"><pre>&lt;partial perm on r pts with degree m, codegree n&gt;</pre></div>

<p>where the degree and codegree are <code class="code">m</code> and <code class="code">n</code>, respectively. The idea is to abbreviate the display of partial permutations defined on many points. The default value for the <code class="code">PartialPermDisplayLimit</code> is <code class="code">100</code>.</p>

<p>If the rank of <code class="code">f</code> does not exceed the value of <code class="code">PartialPermDisplayLimit</code>, then how <code class="code">f</code> is displayed depends on the value of the user preference <code class="code">NotationForPartialPerms</code> except in the case that <code class="code">f</code> is the empty partial permutation or an identity partial permutation.</p>

<p>There are three possible values for <code class="code">NotationForPartialPerms</code> user preference, which are described below.</p>


<dl>
<dt><strong class="Mark">component</strong></dt>
<dd><p>Similar to permutations, and unlike transformations, partial permutations can be expressed as products of disjoint permutations and chains. A <em>chain</em> is a list <code class="code">c</code> of some length <code class="code">n</code> such that:</p>


<ul>
<li><p><code class="code">c[1]</code> is an element of the domain of <var class="Arg">f</var> but not the image</p>

</li>
<li><p><code class="code">c[i]^<var class="Arg">f</var>=c[i+1]</code> for all <code class="code">i</code> in the range from <code class="code">1</code> to <code class="code">n-1</code>.</p>

</li>
<li><p><code class="code">c[n]</code> is in the image of <var class="Arg">f</var> but not the domain.</p>

</li>
</ul>
<p>In the display, permutations are displayed as they usually are in <strong class="pkg">GAP</strong>, except that fixed points are displayed enclosed in round brackets, and chains are displayed enclosed in square brackets.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm([ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ]);</span>
[1,3,14][16,8,2,12,15](4)(5,11)[6,18,10,9][7,17,20](19)</pre></div>

<p>This option is the most compact way to display a partial permutation and is the default value of the user preference <code class="code">NotationForPartialPerms</code>.</p>

</dd>
<dt><strong class="Mark">domainimage</strong></dt>
<dd><p>With this option a partial permutation <code class="code">f</code> is displayed in the format: <code class="code">DomainOfPartialPerm(<var class="Arg">f</var>)-&gt; ImageListOfPartialPerm(<var class="Arg">f</var>)</code>.</p>


<div class="example"><pre><span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 4, 5, 6, 7 ], [ 10, 1, 6, 5, 8, 7 ]);</span>
[ 1, 2, 4, 5, 6, 7 ] -&gt; [ 10, 1, 6, 5, 8, 7 ]</pre></div>

</dd>
<dt><strong class="Mark">input</strong></dt>
<dd><p>With this option a partial permutation <var class="Arg">f</var> is displayed as: <code class="code">PartialPerm(DomainOfPartialPerm(<var class="Arg">f</var>), ImageListOfPartialPerm(<var class="Arg">f</var>))</code> which corresponds to the input (of the first type described in <code class="func">PartialPerm</code> (<a href="chap54.html#X8538BAE77F2FB2F8"><span class="RefLink">54.2-1</span></a>)).</p>


<div class="example"><pre><span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 5, 6, 9, 10 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 4, 7, 3, 8, 2, 1, 6 ] );</span>
PartialPerm( [ 1, 2, 3, 5, 6, 9, 10 ], [ 4, 7, 3, 8, 2, 1, 6 ] )</pre></div>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("PartialPermDisplayLimit", 12);                </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UserPreference("PartialPermDisplayLimit");</span>
12
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm([1,2,3,4,5,6], [6,7,1,4,3,2]);</span>
[5,3,1,6,2,7](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] );</span>
&lt;partial perm on 15 pts with degree 19, codegree 20&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("PartialPermDisplayLimit", 100);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
[1,3,14][6,18,10,9][7,17,20][16,8,2,12,15](4)(5,11)(19)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UserPreference("NotationForPartialPerms");</span>
"component"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("NotationForPartialPerms", "domainimage");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ] -&gt; 
[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("NotationForPartialPerms", "input");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
PartialPerm( 
[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ], 
[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] )</pre></div>

<p><a id="X7CCC82E07A73EB55" name="X7CCC82E07A73EB55"></a></p>

<h4>54.7 <span class="Heading">Semigroups and inverse semigroups of partial permutations</span></h4>

<p>As mentioned at the start of the chapter, every inverse semigroup is isomorphic to a semigroup of partial permutations, and in this section we describe the functions in <strong class="pkg">GAP</strong> specific to partial permutation semigroups. For more information about semigroups and inverse semigroups see Chapter <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>.</p>

<p>The <strong class="pkg">Semigroups</strong> package contains many additional functions and methods for computing with semigroups of partial permutations. In particular, <strong class="pkg">Semigroups</strong> contains more efficient methods than those available in the <strong class="pkg">GAP</strong> library (and in many cases more efficient than any other software) for creating semigroups of transformations, calculating their Green's classes, size, elements, group of units, minimal ideal, small generating sets, testing membership, finding the inverses of a regular element, factorizing elements over the generators, and more.</p>

<p>Since a partial permutation semigroup is also a partial permutation collection, there are special methods for <code class="func">DomainOfPartialPermCollection</code> (<a href="chap54.html#X784A14F787E041D7"><span class="RefLink">54.3-4</span></a>), <code class="func">ImageOfPartialPermCollection</code> (<a href="chap54.html#X7CD84B107831E0FC"><span class="RefLink">54.3-5</span></a>), <code class="func">FixedPointsOfPartialPerm</code> (<a href="chap54.html#X82AAFF938623422E"><span class="RefLink">54.3-8</span></a>), <code class="func">MovedPoints</code> (<a href="chap54.html#X82FE981A87FAA2DC"><span class="RefLink">54.3-9</span></a>), <code class="func">NrFixedPoints</code> (<a href="chap54.html#X7FAF969C84CDC742"><span class="RefLink">54.3-10</span></a>), <code class="func">NrMovedPoints</code> (<a href="chap54.html#X81F5C64E7DAD27A7"><span class="RefLink">54.3-11</span></a>), <code class="func">LargestMovedPoint</code> (<a href="chap54.html#X7D4290A785ABC86D"><span class="RefLink">54.3-13</span></a>), and <code class="func">SmallestMovedPoint</code> (<a href="chap54.html#X84A49C977E1E29AA"><span class="RefLink">54.3-12</span></a>) when applied to a partial permutation semigroup.</p>

<p><a id="X7D161674800B50E0" name="X7D161674800B50E0"></a></p>

<h5>54.7-1 IsPartialPermSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPartialPermSemigroup</code>( <var class="Arg">obj</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPartialPermMonoid</code>( <var class="Arg">obj</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>A <em>partial perm semigroup</em> is simply a semigroup consisting of partial permutations, which may or may not be an inverse semigroup. An object <var class="Arg">obj</var> in <strong class="pkg">GAP</strong> is a partial perm semigroup if and only if it satisfies <code class="func">IsSemigroup</code> (<a href="chap51.html#X7B412E5B8543E9B7"><span class="RefLink">51.1-1</span></a>) and <code class="func">IsPartialPermCollection</code> (<a href="chap54.html#X8262A827790DD1CC"><span class="RefLink">54.1-2</span></a>).</p>

<p>A <em>partial perm monoid</em> is a monoid consisting of partial permutations. An object in <strong class="pkg">GAP</strong> is a partial perm monoid if it satisfies <code class="func">IsMonoid</code> (<a href="chap51.html#X861C523483C6248C"><span class="RefLink">51.2-1</span></a>) and <code class="func">IsPartialPermCollection</code> (<a href="chap54.html#X8262A827790DD1CC"><span class="RefLink">54.1-2</span></a>).</p>

<p>Note that it is possible for a partial perm semigroup to have a multiplicative neutral element (i.e. an identity element) but not to satisfy <code class="code">IsPartialPermMonoid</code>. For example,</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(f, One(f));</span>
&lt;commutative partial perm monoid of rank 9 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonoid(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPartialPermMonoid(S);</span>
true</pre></div>

<p>Note that unlike transformation semigroups, the <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>) of a partial permutation semigroup must coincide with the multiplicative neutral element, if either exists.</p>

<p>For more details see <code class="func">IsMagmaWithOne</code> (<a href="chap35.html#X86071DE7835F1C7C"><span class="RefLink">35.1-2</span></a>).</p>

<p><a id="X7D7F0BAB82F0D820" name="X7D7F0BAB82F0D820"></a></p>

<h5>54.7-2 DegreeOfPartialPermSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfPartialPermSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodegreeOfPartialPermSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfPartialPermSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>degree</em> of a partial permutation semigroup <var class="Arg">S</var> is the largest degree of any partial permutation in <var class="Arg">S</var>.</p>

<p>The <em>codegree</em> of a partial permutation semigroup <var class="Arg">S</var> is the largest positive integer in its image.</p>

<p>The <em>rank</em> of a partial permutation semigroup <var class="Arg">S</var> is the number of points on which it acts.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( PartialPerm( [ 1, 5 ], [ 10000, 3 ] ) );</span>
&lt;commutative partial perm semigroup of rank 2 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfPartialPermSemigroup(S);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodegreeOfPartialPermSemigroup(S);</span>
10000
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfPartialPermSemigroup(S);</span>
2</pre></div>

<p><a id="X81D271B380995F8A" name="X81D271B380995F8A"></a></p>

<h5>54.7-3 SymmetricInverseSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricInverseSemigroup</code>( <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricInverseMonoid</code>( <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: The symmetric inverse semigroup of degree <var class="Arg">n</var>.</p>

<p>If <var class="Arg">n</var> is a non-negative integer, then <code class="code">SymmetricInverseSemigroup</code> returns the inverse semigroup consisting of all partial permutations with degree and codegree at most <var class="Arg">n</var>. Note that <var class="Arg">n</var> must be non-negative, but in particular, can equal <code class="code">0</code>.</p>

<p>The symmetric inverse semigroup has <span class="SimpleMath">∑_r=0^nnchoose r^2⋅ r!</span> elements and is generated by any set that of partial permutations that generate the symmetric group on <var class="Arg">n</var> points and any partial permutation of rank <code class="code"><var class="Arg">n</var>-1</code>.</p>

<p><code class="code">SymmetricInverseMonoid</code> is a synonym for <code class="code">SymmetricInverseSemigroup</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(5);</span>
&lt;symmetric inverse monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
1546
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfInverseMonoid(S);</span>
[ (1,2,3,4,5), (1,2)(3)(4)(5), [5,4,3,2,1] ]</pre></div>

<p><a id="X7C8AEA50834060DD" name="X7C8AEA50834060DD"></a></p>

<h5>54.7-4 IsSymmetricInverseSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSymmetricInverseSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSymmetricInverseMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>If the partial perm semigroup <var class="Arg">S</var> of degree and codegree <var class="Arg">n</var> equals the symmetric inverse semigroup on <var class="Arg">n</var> points, then <code class="code">IsSymmetricInverseSemigroup</code> return <code class="keyw">true</code> and otherwise it returns <code class="keyw">false</code>.</p>

<p><code class="code">IsSymmetricInverseMonoid</code> is a synonym of <code class="code">IsSymmetricInverseSemigroup</code>. It is common in the literature for the symmetric inverse monoid to be referred to as the symmetric inverse semigroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(AsPartialPerm((1, 3, 4, 2), 5), AsPartialPerm((1, 3, 5), 5),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2, 3, 4 ] ) );</span>
&lt;partial perm semigroup of rank 5 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSymmetricInverseSemigroup(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S;</span>
&lt;symmetric inverse monoid of degree 5&gt;</pre></div>

<p><a id="X7EA51F087CF7621F" name="X7EA51F087CF7621F"></a></p>

<h5>54.7-5 NaturalPartialOrder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NaturalPartialOrder</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReverseNaturalPartialOrder</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The natural partial order on an inverse semigroup.</p>

<p>The <em>natural partial order</em> <span class="SimpleMath"></span> on an inverse semigroup <var class="Arg">S</var> is defined by <code class="code">s</code><span class="SimpleMath"></span><code class="code">t</code> if there exists an idempotent <code class="code">e</code> in <var class="Arg">S</var> such that <code class="code">s=et</code>. Hence if <code class="code">f</code> and <code class="code">g</code> are partial permutations, then <code class="code">f</code><span class="SimpleMath"></span><code class="code">g</code> if and only if <code class="code">f</code> is a restriction of <code class="code">g</code>; see <code class="func">RestrictedPartialPerm</code> (<a href="chap54.html#X80ABBF4883C79060"><span class="RefLink">54.2-3</span></a>).</p>

<p><code class="code">NaturalPartialOrder</code> returns the natural partial order on the inverse semigroup of partial permutations <var class="Arg">S</var> as a list of sets of positive integers where entry <code class="code">i</code> in <code class="code">NaturalPartialOrder(<var class="Arg">S</var>)</code> is the set of positions in <code class="code">Elements(<var class="Arg">S</var>)</code> of elements which are less than <code class="code">Elements(<var class="Arg">S</var>)[i]</code>. See also <code class="func">NaturalLeqPartialPerm</code> (<a href="chap54.html#X87B1ED93785257C1"><span class="RefLink">54.5-4</span></a>).</p>

<p><code class="code">ReverseNaturalPartialOrder</code> returns the reverse of the natural partial order on the inverse semigroup of partial permutations <var class="Arg">S</var> as a list of sets of positive integers where entry <code class="code">i</code> in <code class="code">ReverseNaturalPartialOrder(<var class="Arg">S</var>)</code> is the set of positions in <code class="code">Elements(<var class="Arg">S</var>)</code> of elements which are greater than <code class="code">Elements(<var class="Arg">S</var>)[i]</code>. See also <code class="func">NaturalLeqPartialPerm</code> (<a href="chap54.html#X87B1ED93785257C1"><span class="RefLink">54.5-4</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := InverseSemigroup([ PartialPerm( [ 1, 3 ], [ 1, 3 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2 ], [ 3, 2 ] ) ] );</span>
&lt;inverse partial perm semigroup of rank 3 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
11
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalPartialOrder(S);</span>
[ [  ], [ 1 ], [ 1 ], [ 1 ], [ 1, 2, 4 ], [ 1, 3, 4 ], [ 1 ], [ 1 ], 
  [ 1, 4, 7 ], [ 1, 4, 8 ], [ 1, 2, 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(Elements(S)[4], Elements(S)[10]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(Elements(S)[4], Elements(S)[1]); </span>
false</pre></div>

<p><a id="X857F68DF7EDA3BE4" name="X857F68DF7EDA3BE4"></a></p>

<h5>54.7-6 IsomorphismPartialPermMonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismPartialPermMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismPartialPermSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: An isomorphism.</p>

<p><code class="code">IsomorphismPartialPermSemigroup(<var class="Arg">S</var>)</code> returns an isomorphism from the inverse semigroup or group <var class="Arg">S</var> to an inverse semigroup of partial permutations.</p>

<p><code class="code">IsomorphismPartialPermMonoid(<var class="Arg">S</var>)</code> returns an isomorphism from the inverse monoid or group <var class="Arg">S</var> to an inverse monoid of partial permutations.</p>

<p>We only describe <code class="code">IsomorphismPartialPermMonoid</code>, the corresponding statements for <code class="code">IsomorphismPartialPermSemigroup</code> also hold.</p>


<dl>
<dt><strong class="Mark">Partial permutation semigroups</strong></dt>
<dd><p>If <var class="Arg">S</var> is a partial permutation semigroup that does not satisfy <code class="func">IsMonoid</code> (<a href="../../doc/ref/chap51.html#X861C523483C6248C"><span class="RefLink">Reference: IsMonoid</span></a>) but where <code class="code">MultiplicativeNeutralElement(<var class="Arg">S</var>)&lt;&gt;fail</code>, then <code class="code">IsomorphismPartialPermMonoid(<var class="Arg">S</var>)</code> returns an isomorphism from <var class="Arg">S</var> to an inverse monoid of partial permutations.</p>

</dd>
<dt><strong class="Mark">Permutation groups</strong></dt>
<dd><p>If <var class="Arg">S</var> is a permutation group, then <code class="code">IsomorphismPartialPermMonoid</code> returns an isomorphism from <var class="Arg">S</var> to an inverse monoid of partial permutations on the set <code class="code">MovedPoints(<var class="Arg">S</var>)</code> obtained using <code class="func">AsPartialPerm</code> (<a href="chap54.html#X81B32CB182489ACA"><span class="RefLink">54.4-1</span></a>). The inverse of this isomorphism is obtained using <code class="func">AsPermutation</code> (<a href="chap42.html#X8353AB8987E35DF3"><span class="RefLink">42.5-5</span></a>).</p>

</dd>
<dt><strong class="Mark">Transformation semigroups</strong></dt>
<dd><p>If <var class="Arg">S</var> is a transformation semigroup satisfying <code class="func">IsInverseMonoid</code> (<a href="chap51.html#X83F1529479D56665"><span class="RefLink">51.4-8</span></a>), then <code class="code">IsomorphismPartialPermMonoid</code> returns an isomorphism from <var class="Arg">S</var> to an inverse monoid of partial permutations on a subset of <code class="code">[1 .. DegreeOfTransformationSemigroup(<var class="Arg">S</var>)]</code>.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := InverseSemigroup( </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2, 3, 4, 5 ], [ 4, 2, 3, 1, 5 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2, 4, 5 ], [ 3, 1, 4, 2 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonoid(S); </span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso := IsomorphismPartialPermMonoid(S);</span>
MappingByFunction( &lt;inverse partial perm semigroup of rank 5 with 2 
 generators&gt;, &lt;inverse partial perm monoid of rank 5 with 2 
 generators&gt;, function( object ) ... end, function( object ) ... end )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
508
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(Range(iso));</span>
508
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Group((1,2)(3,8)(4,6)(5,7), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismPartialPermSemigroup(G);</span>
MappingByFunction( Group([ (1,2)(3,8)(4,6)(5,7), (1,3,4,7)
(2,5,6,8), (1,4)(2,6)(3,7)
(5,8) ]), &lt;inverse partial perm semigroup of rank 8 with 3 generators&gt;
 , function( p ) ... end, function( f ) ... end )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(Transformation( [ 2, 5, 1, 7, 3, 7, 7 ] ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 6, 5, 7, 2, 1, 7 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso := IsomorphismPartialPermMonoid(S);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MultiplicativeNeutralElement(S) ^ iso;</span>
&lt;identity partial perm on [ 1, 2, 3, 5, 6, 7 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">One(Range(iso));</span>
&lt;identity partial perm on [ 1, 2, 3, 5, 6, 7 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MovedPoints(Range(iso));</span>
[ 1, 2, 3, 5, 6 ]</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap53.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap55.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>