This file is indexed.

/usr/share/gap/doc/ref/chap51.html is in gap-doc 4r8p6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 51: Semigroups and Monoids</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap51"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap50.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap52.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap51_mj.html">[MathJax on]</a></p>
<p><a id="X8665D8737FDD5B10" name="X8665D8737FDD5B10"></a></p>
<div class="ChapSects"><a href="chap51.html#X8665D8737FDD5B10">51 <span class="Heading">Semigroups and Monoids</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X80AF5F307DBDC2B4">51.1 <span class="Heading">Semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7B412E5B8543E9B7">51.1-1 IsSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7F55D28F819B2817">51.1-2 <span class="Heading">Semigroup</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X8678D40878CC09A1">51.1-3 Subsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X782B7BDD8252581C">51.1-4 IsSubsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X79FBBEC9841544F3">51.1-5 SemigroupByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X80ED104F85AE5134">51.1-6 AsSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7B1EEA3E82BFE09F">51.1-7 AsSubsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X78147A247963F23B">51.1-8 GeneratorsOfSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X79776D7C8399F2CF">51.1-9 IsGeneratorsOfSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7C72E4747BF642BB">51.1-10 <span class="Heading">FreeSemigroup</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7E67E13F7A01F8D3">51.1-11 SemigroupByMultiplicationTable</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X872FE34A7814C0DC">51.2 <span class="Heading">Monoids</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X861C523483C6248C">51.2-1 IsMonoid</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7F95328B7C7E49EA">51.2-2 <span class="Heading">Monoid</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X8322D01E84912FD7">51.2-3 Submonoid</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X85129EE387CC4D28">51.2-4 MonoidByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7B22038F832B9C0F">51.2-5 AsMonoid</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7C9A12DE8287B2D3">51.2-6 AsSubmonoid</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X83CA2E7279C44718">51.2-7 GeneratorsOfMonoid</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7EC77C0184587181">51.2-8 TrivialSubmonoid</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X79FA3FA978CA2E43">51.2-9 <span class="Heading">FreeMonoid</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7BFE938E857CA27D">51.2-10 MonoidByMultiplicationTable</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X840847B6810BD0E1">51.3 <span class="Heading">Inverse semigroups and monoids</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X78B13FED7AFB4326">51.3-1 InverseSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X80D9B9A98736051B">51.3-2 InverseMonoid</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X87C373597F787250">51.3-3 GeneratorsOfInverseSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7A3B262C85B6D475">51.3-4 GeneratorsOfInverseMonoid</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7C4C6EE681E7A57E">51.3-5 IsInverseSubsemigroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X78274024827F306D">51.4 <span class="Heading">Properties of Semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7C4663827C5ACEF1">51.4-1 IsRegularSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X87532A76854347E0">51.4-2 IsRegularSemigroupElement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7AFDE0F17AE516C5">51.4-3 InversesOfSemigroupElement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X836F4692839F4874">51.4-4 IsSimpleSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X8193A60F839C064E">51.4-5 IsZeroSimpleSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X85F7E5CD86F0643B">51.4-6 IsZeroGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7FFEC81F7F2C4EAA">51.4-7 IsReesCongruenceSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X83F1529479D56665">51.4-8 IsInverseSemigroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X7BB32D508183C0F1">51.5 <span class="Heading">Ideals of semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7D5CEE4D7D4318ED">51.5-1 SemigroupIdealByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7F01FFB18125DED5">51.5-2 ReesCongruenceOfSemigroupIdeal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7A3FF85984345540">51.5-3 IsLeftSemigroupIdeal</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X7C0782D57C01E327">51.6 <span class="Heading">Congruences for semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X78E34B737F0E009F">51.6-1 IsSemigroupCongruence</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X822DB78579BCB7B5">51.6-2 IsReesCongruence</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X87CE9EAB7EE3A128">51.7 <span class="Heading">Quotients</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X80EF3E6F842BE64E">51.7-1 IsQuotientSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7CAD3D1687956F7F">51.7-2 HomomorphismQuotientSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X87120C46808F7289">51.7-3 QuotientSemigroupPreimage</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X80C6C718801855E9">51.8 <span class="Heading">Green's Relations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X786CEDD4814A9079">51.8-1 GreensRRelation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X8364D69987D49DE1">51.8-2 IsGreensRelation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X82A11A087AFB3EB0">51.8-3 IsGreensClass</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7AA204C8850F9070">51.8-4 IsGreensLessThanOrEqual</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X86FE5F5585EBCF13">51.8-5 RClassOfHClass</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X78C56F4A78E0088A">51.8-6 EggBoxOfDClass</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X803237F17ACD44E3">51.8-7 DisplayEggBoxOfDClass</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X87C75A9D86122D93">51.8-8 GreensRClassOfElement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X844D20467A644811">51.8-9 GreensRClasses</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7CB4A18685B850E2">51.8-10 GroupHClassOfGreensDClass</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X79D740EF7F0E53BD">51.8-11 IsGroupHClass</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7F5860927CAD920F">51.8-12 IsRegularDClass</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap51.html#X8225A9EC87A255E6">51.9 <span class="Heading">Rees Matrix Semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X8526AA557CDF6C49">51.9-1 ReesMatrixSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X78D2A48C87FC8E38">51.9-2 ReesMatrixSubsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7964B5C97FB9C07D">51.9-3 IsomorphismReesMatrixSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7F6B852B81488C86">51.9-4 IsReesMatrixSemigroupElement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7A0DE1F28470295E">51.9-5 ReesMatrixSemigroupElement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7F03BE707AC7F8A0">51.9-6 IsReesMatrixSubsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X780BB78A79275244">51.9-7 IsReesMatrixSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X879384D479EB1D82">51.9-8 Matrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X82FC5D6980C66AC4">51.9-9 <span class="Heading">Rows and columns</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7D9719F887AFCF8F">51.9-10 UnderlyingSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap51.html#X7D1D9A0382064B8F">51.9-11 AssociatedReesMatrixSemigroupOfDClass</a></span>
</div></div>
</div>

<h3>51 <span class="Heading">Semigroups and Monoids</span></h3>

<p>This chapter describes functions for creating semigroups and monoids and determining information about them.</p>

<p><a id="X80AF5F307DBDC2B4" name="X80AF5F307DBDC2B4"></a></p>

<h4>51.1 <span class="Heading">Semigroups</span></h4>

<p><a id="X7B412E5B8543E9B7" name="X7B412E5B8543E9B7"></a></p>

<h5>51.1-1 IsSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSemigroup</code>( <var class="Arg">D</var> )</td><td class="tdright">( synonym )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the object <var class="Arg">D</var> is a semigroup. A <em>semigroup</em> is a magma (see <a href="chap35.html#X873E502F7D21C39C"><span class="RefLink">35</span></a>) with associative multiplication.</p>

<p><a id="X7F55D28F819B2817" name="X7F55D28F819B2817"></a></p>

<h5>51.1-2 <span class="Heading">Semigroup</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Semigroup</code>( <var class="Arg">gen1</var>, <var class="Arg">gen2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Semigroup</code>( <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form, <code class="func">Semigroup</code> returns the semigroup generated by the arguments <var class="Arg">gen1</var>, <var class="Arg">gen2</var>, <span class="SimpleMath">...</span>, that is, the closure of these elements under multiplication. In the second form, <code class="func">Semigroup</code> returns the semigroup generated by the elements in the homogeneous list <var class="Arg">gens</var>; a square matrix as only argument is treated as one generator, not as a list of generators.</p>

<p>It is <em>not</em> checked whether the underlying multiplication is associative, use <code class="func">Magma</code> (<a href="chap35.html#X839147CF813312D6"><span class="RefLink">35.2-1</span></a>) and <code class="func">IsAssociative</code> (<a href="chap35.html#X7C83B5A47FD18FB7"><span class="RefLink">35.4-7</span></a>) if you want to check whether a magma is in fact a semigroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a:= Transformation( [ 2, 3, 4, 1 ] );</span>
Transformation( [ 2, 3, 4, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:= Transformation( [ 2, 2, 3, 4 ] );</span>
Transformation( [ 2, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s:= Semigroup(a, b);</span>
&lt;transformation semigroup of degree 4 with 2 generators&gt;
</pre></div>

<p><a id="X8678D40878CC09A1" name="X8678D40878CC09A1"></a></p>

<h5>51.1-3 Subsemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Subsemigroup</code>( <var class="Arg">S</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubsemigroupNC</code>( <var class="Arg">S</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>are just synonyms of <code class="func">Submagma</code> (<a href="chap35.html#X8268EAA47E4A3A64"><span class="RefLink">35.2-7</span></a>) and <code class="func">SubmagmaNC</code> (<a href="chap35.html#X8268EAA47E4A3A64"><span class="RefLink">35.2-7</span></a>), respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a:=GeneratorsOfSemigroup(s)[1];</span>
Transformation( [ 2, 3, 4, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:=Subsemigroup(s,[a]);</span>
&lt;commutative transformation semigroup of degree 4 with 1 generator&gt;
</pre></div>

<p><a id="X782B7BDD8252581C" name="X782B7BDD8252581C"></a></p>

<h5>51.1-4 IsSubsemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSubsemigroup</code>( <var class="Arg">S</var>, <var class="Arg">T</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>This operation returns <code class="keyw">true</code> if the semigroup <var class="Arg">T</var> is a subsemigroup of the semigroup <var class="Arg">S</var> and <code class="keyw">false</code> if it is not.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] );</span>
Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=Semigroup(f);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubsemigroup(FullTransformationSemigroup(4), T);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=Semigroup(f);; T:=Semigroup(f^2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSubsemigroup(S, T);                             </span>
true</pre></div>

<p><a id="X79FBBEC9841544F3" name="X79FBBEC9841544F3"></a></p>

<h5>51.1-5 SemigroupByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SemigroupByGenerators</code>( <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the underlying operation of <code class="func">Semigroup</code> (<a href="chap51.html#X7F55D28F819B2817"><span class="RefLink">51.1-2</span></a>).</p>

<p><a id="X80ED104F85AE5134" name="X80ED104F85AE5134"></a></p>

<h5>51.1-6 AsSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsSemigroup</code>( <var class="Arg">C</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">C</var> is a collection whose elements form a semigroup (see <code class="func">IsSemigroup</code> (<a href="chap51.html#X7B412E5B8543E9B7"><span class="RefLink">51.1-1</span></a>)) then <code class="func">AsSemigroup</code> returns this semigroup. Otherwise <code class="keyw">fail</code> is returned.</p>

<p><a id="X7B1EEA3E82BFE09F" name="X7B1EEA3E82BFE09F"></a></p>

<h5>51.1-7 AsSubsemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsSubsemigroup</code>( <var class="Arg">D</var>, <var class="Arg">C</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a domain and <var class="Arg">C</var> a collection. If <var class="Arg">C</var> is a subset of <var class="Arg">D</var> that forms a semigroup then <code class="func">AsSubsemigroup</code> returns this semigroup, with parent <var class="Arg">D</var>. Otherwise <code class="keyw">fail</code> is returned.</p>

<p><a id="X78147A247963F23B" name="X78147A247963F23B"></a></p>

<h5>51.1-8 GeneratorsOfSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Semigroup generators of a semigroup <var class="Arg">D</var> are the same as magma generators, see <code class="func">GeneratorsOfMagma</code> (<a href="chap35.html#X872E05B478EC20CA"><span class="RefLink">35.4-1</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfSemigroup(s);</span>
[ Transformation( [ 2, 3, 4, 1 ] ), Transformation( [ 2, 2 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfSemigroup(t);</span>
[ Transformation( [ 2, 3, 4, 1 ] ) ]
</pre></div>

<p><a id="X79776D7C8399F2CF" name="X79776D7C8399F2CF"></a></p>

<h5>51.1-9 IsGeneratorsOfSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGeneratorsOfSemigroup</code>( <var class="Arg">C</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>This property reflects wheter the list or collection <var class="Arg">C</var> generates a semigroup. <code class="func">IsAssociativeElementCollection</code> (<a href="chap31.html#X7979AFAA80FF795A"><span class="RefLink">31.15-1</span></a>) implies  <code class="func">IsGeneratorsOfSemigroup</code>, but is not used directly in semigroup code, because of conflicts with matrices.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsGeneratorsOfSemigroup([Transformation([2,3,1])]);</span>
true
</pre></div>

<p><a id="X7C72E4747BF642BB" name="X7C72E4747BF642BB"></a></p>

<h5>51.1-10 <span class="Heading">FreeSemigroup</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeSemigroup</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">rank</var>[, <var class="Arg">name</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeSemigroup</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">name1</var>, <var class="Arg">name2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeSemigroup</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">names</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeSemigroup</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">infinity</var>, <var class="Arg">name</var>, <var class="Arg">init</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with a positive integer <var class="Arg">rank</var>, <code class="func">FreeSemigroup</code> returns a free semigroup on <var class="Arg">rank</var> generators. If the optional argument <var class="Arg">name</var> is given then the generators are printed as <var class="Arg">name</var><code class="code">1</code>, <var class="Arg">name</var><code class="code">2</code> etc., that is, each name is the concatenation of the string <var class="Arg">name</var> and an integer from <code class="code">1</code> to <var class="Arg">range</var>. The default for <var class="Arg">name</var> is the string <code class="code">"s"</code>.</p>

<p>Called in the second form, <code class="func">FreeSemigroup</code> returns a free semigroup on as many generators as arguments, printed as <var class="Arg">name1</var>, <var class="Arg">name2</var> etc.</p>

<p>Called in the third form, <code class="func">FreeSemigroup</code> returns a free semigroup on as many generators as the length of the list <var class="Arg">names</var>, the <span class="SimpleMath">i</span>-th generator being printed as <var class="Arg">names</var><span class="SimpleMath">[i]</span>.</p>

<p>Called in the fourth form, <code class="func">FreeSemigroup</code> returns a free semigroup on infinitely many generators, where the first generators are printed by the names in the list <var class="Arg">init</var>, and the other generators by <var class="Arg">name</var> and an appended number.</p>

<p>If the extra argument <var class="Arg">wfilt</var> is given, it must be either <code class="func">IsSyllableWordsFamily</code> (<a href="chap37.html#X7869716C84EA9D81"><span class="RefLink">37.6-6</span></a>) or <code class="func">IsLetterWordsFamily</code> (<a href="chap37.html#X7E36F7897D82417F"><span class="RefLink">37.6-2</span></a>) or <code class="func">IsWLetterWordsFamily</code> (<a href="chap37.html#X8719E7F27CDA1995"><span class="RefLink">37.6-4</span></a>) or <code class="func">IsBLetterWordsFamily</code> (<a href="chap37.html#X8719E7F27CDA1995"><span class="RefLink">37.6-4</span></a>). This filter then specifies the representation used for the elements of the free semigroup (see <a href="chap37.html#X80A9F39582ED296E"><span class="RefLink">37.6</span></a>). If no such filter is given, a letter representation is used.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f1 := FreeSemigroup( 3 );</span>
&lt;free semigroup on the generators [ s1, s2, s3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f2 := FreeSemigroup( 3 , "generator" );</span>
&lt;free semigroup on the generators 
[ generator1, generator2, generator3 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f3 := FreeSemigroup( "gen1" , "gen2" );</span>
&lt;free semigroup on the generators [ gen1, gen2 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f4 := FreeSemigroup( ["gen1" , "gen2"] );</span>
&lt;free semigroup on the generators [ gen1, gen2 ]&gt;
</pre></div>

<p>Also see Chapter <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>.</p>

<p>Each free object defines a unique alphabet (and a unique family of words). Its generators are the letters of this alphabet, thus words of length one.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FreeGroup( 5 );</span>
&lt;free group on the generators [ f1, f2, f3, f4, f5 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FreeGroup( "a", "b" );</span>
&lt;free group on the generators [ a, b ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FreeGroup( infinity );</span>
&lt;free group with infinity generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FreeSemigroup( "x", "y" );</span>
&lt;free semigroup on the generators [ x, y ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FreeMonoid( 7 );</span>
&lt;free monoid on the generators [ m1, m2, m3, m4, m5, m6, m7 ]&gt;
</pre></div>

<p>Remember that names are just a help for printing and do not necessarily distinguish letters. It is possible to create arbitrarily weird situations by choosing strange names for the letters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:= FreeGroup( "x", "x" );  gens:= GeneratorsOfGroup( f );;</span>
&lt;free group on the generators [ x, x ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens[1] = gens[2];</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:= FreeGroup( "f1*f2", "f2^-1", "Group( [ f1, f2 ] )" );</span>
&lt;free group on the generators [ f1*f2, f2^-1, Group( [ f1, f2 ] ) ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= GeneratorsOfGroup( f );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens[1]*gens[2];</span>
f1*f2*f2^-1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens[1]/gens[3];</span>
f1*f2*Group( [ f1, f2 ] )^-1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens[3]/gens[1]/gens[2];</span>
Group( [ f1, f2 ] )*f1*f2^-1*f2^-1^-1
</pre></div>

<p><a id="X7E67E13F7A01F8D3" name="X7E67E13F7A01F8D3"></a></p>

<h5>51.1-11 SemigroupByMultiplicationTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SemigroupByMultiplicationTable</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the semigroup whose multiplication is defined by the square matrix <var class="Arg">A</var> (see <code class="func">MagmaByMultiplicationTable</code> (<a href="chap35.html#X85CD1E7678295CA6"><span class="RefLink">35.3-1</span></a>)) if such a semigroup exists. Otherwise <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SemigroupByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);</span>
&lt;semigroup of size 3, with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SemigroupByMultiplicationTable([[1,2,3],[2,3,1],[3,2,1]]);</span>
fail
</pre></div>

<p><a id="X872FE34A7814C0DC" name="X872FE34A7814C0DC"></a></p>

<h4>51.2 <span class="Heading">Monoids</span></h4>

<p><a id="X861C523483C6248C" name="X861C523483C6248C"></a></p>

<h5>51.2-1 IsMonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsMonoid</code>( <var class="Arg">D</var> )</td><td class="tdright">( synonym )</td></tr></table></div>
<p>A <em>monoid</em> is a magma-with-one (see <a href="chap35.html#X873E502F7D21C39C"><span class="RefLink">35</span></a>) with associative multiplication.</p>

<p><a id="X7F95328B7C7E49EA" name="X7F95328B7C7E49EA"></a></p>

<h5>51.2-2 <span class="Heading">Monoid</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Monoid</code>( <var class="Arg">gen1</var>, <var class="Arg">gen2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Monoid</code>( <var class="Arg">gens</var>[, <var class="Arg">id</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form, <code class="func">Monoid</code> returns the monoid generated by the arguments <var class="Arg">gen1</var>, <var class="Arg">gen2</var>, <span class="SimpleMath">...</span>, that is, the closure of these elements under multiplication and taking the 0-th power. In the second form, <code class="func">Monoid</code> returns the monoid generated by the elements in the homogeneous list <var class="Arg">gens</var>; a square matrix as only argument is treated as one generator, not as a list of generators. In the second form, the identity element <var class="Arg">id</var> may be given as the second argument.</p>

<p>It is <em>not</em> checked whether the underlying multiplication is associative, use <code class="func">MagmaWithOne</code> (<a href="chap35.html#X7854B23286B17321"><span class="RefLink">35.2-2</span></a>) and <code class="func">IsAssociative</code> (<a href="chap35.html#X7C83B5A47FD18FB7"><span class="RefLink">35.4-7</span></a>) if you want to check whether a magma-with-one is in fact a monoid.</p>

<p><a id="X8322D01E84912FD7" name="X8322D01E84912FD7"></a></p>

<h5>51.2-3 Submonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Submonoid</code>( <var class="Arg">M</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubmonoidNC</code>( <var class="Arg">M</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>are just synonyms of <code class="func">SubmagmaWithOne</code> (<a href="chap35.html#X7F295EBC7A9CE87E"><span class="RefLink">35.2-8</span></a>) and <code class="func">SubmagmaWithOneNC</code> (<a href="chap35.html#X7F295EBC7A9CE87E"><span class="RefLink">35.2-8</span></a>), respectively.</p>

<p><a id="X85129EE387CC4D28" name="X85129EE387CC4D28"></a></p>

<h5>51.2-4 MonoidByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MonoidByGenerators</code>( <var class="Arg">gens</var>[, <var class="Arg">one</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the underlying operation of <code class="func">Monoid</code> (<a href="chap51.html#X7F95328B7C7E49EA"><span class="RefLink">51.2-2</span></a>).</p>

<p><a id="X7B22038F832B9C0F" name="X7B22038F832B9C0F"></a></p>

<h5>51.2-5 AsMonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsMonoid</code>( <var class="Arg">C</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">C</var> is a collection whose elements form a monoid (see <code class="func">IsMonoid</code> (<a href="chap51.html#X861C523483C6248C"><span class="RefLink">51.2-1</span></a>)) then <code class="func">AsMonoid</code> returns this monoid. Otherwise <code class="keyw">fail</code> is returned.</p>

<p><a id="X7C9A12DE8287B2D3" name="X7C9A12DE8287B2D3"></a></p>

<h5>51.2-6 AsSubmonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsSubmonoid</code>( <var class="Arg">D</var>, <var class="Arg">C</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a domain and <var class="Arg">C</var> a collection. If <var class="Arg">C</var> is a subset of <var class="Arg">D</var> that forms a monoid then <code class="func">AsSubmonoid</code> returns this monoid, with parent <var class="Arg">D</var>. Otherwise <code class="keyw">fail</code> is returned.</p>

<p><a id="X83CA2E7279C44718" name="X83CA2E7279C44718"></a></p>

<h5>51.2-7 GeneratorsOfMonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfMonoid</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Monoid generators of a monoid <var class="Arg">M</var> are the same as magma-with-one generators (see <code class="func">GeneratorsOfMagmaWithOne</code> (<a href="chap35.html#X87DD93EC8061DD81"><span class="RefLink">35.4-2</span></a>)).</p>

<p><a id="X7EC77C0184587181" name="X7EC77C0184587181"></a></p>

<h5>51.2-8 TrivialSubmonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TrivialSubmonoid</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is just a synonym for <code class="func">TrivialSubmagmaWithOne</code> (<a href="chap35.html#X837DA95883CFB985"><span class="RefLink">35.4-13</span></a>).</p>

<p><a id="X79FA3FA978CA2E43" name="X79FA3FA978CA2E43"></a></p>

<h5>51.2-9 <span class="Heading">FreeMonoid</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeMonoid</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">rank</var>[, <var class="Arg">name</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeMonoid</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">name1</var>, <var class="Arg">name2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeMonoid</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">names</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeMonoid</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">infinity</var>, <var class="Arg">name</var>, <var class="Arg">init</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with a positive integer <var class="Arg">rank</var>, <code class="func">FreeMonoid</code> returns a free monoid on <var class="Arg">rank</var> generators. If the optional argument <var class="Arg">name</var> is given then the generators are printed as <var class="Arg">name</var><code class="code">1</code>, <var class="Arg">name</var><code class="code">2</code> etc., that is, each name is the concatenation of the string <var class="Arg">name</var> and an integer from <code class="code">1</code> to <var class="Arg">range</var>. The default for <var class="Arg">name</var> is the string <code class="code">"m"</code>.</p>

<p>Called in the second form, <code class="func">FreeMonoid</code> returns a free monoid on as many generators as arguments, printed as <var class="Arg">name1</var>, <var class="Arg">name2</var> etc.</p>

<p>Called in the third form, <code class="func">FreeMonoid</code> returns a free monoid on as many generators as the length of the list <var class="Arg">names</var>, the <span class="SimpleMath">i</span>-th generator being printed as <var class="Arg">names</var><code class="code">[</code><span class="SimpleMath">i</span><code class="code">]</code>.</p>

<p>Called in the fourth form, <code class="func">FreeMonoid</code> returns a free monoid on infinitely many generators, where the first generators are printed by the names in the list <var class="Arg">init</var>, and the other generators by <var class="Arg">name</var> and an appended number.</p>

<p>If the extra argument <var class="Arg">wfilt</var> is given, it must be either <code class="func">IsSyllableWordsFamily</code> (<a href="chap37.html#X7869716C84EA9D81"><span class="RefLink">37.6-6</span></a>) or <code class="func">IsLetterWordsFamily</code> (<a href="chap37.html#X7E36F7897D82417F"><span class="RefLink">37.6-2</span></a>) or <code class="func">IsWLetterWordsFamily</code> (<a href="chap37.html#X8719E7F27CDA1995"><span class="RefLink">37.6-4</span></a>) or <code class="func">IsBLetterWordsFamily</code> (<a href="chap37.html#X8719E7F27CDA1995"><span class="RefLink">37.6-4</span></a>). This filter then specifies the representation used for the elements of the free monoid (see <a href="chap37.html#X80A9F39582ED296E"><span class="RefLink">37.6</span></a>). If no such filter is given, a letter representation is used.</p>

<p>Also see Chapter <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>.</p>

<p><a id="X7BFE938E857CA27D" name="X7BFE938E857CA27D"></a></p>

<h5>51.2-10 MonoidByMultiplicationTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MonoidByMultiplicationTable</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the monoid whose multiplication is defined by the square matrix <var class="Arg">A</var> (see <code class="func">MagmaByMultiplicationTable</code> (<a href="chap35.html#X85CD1E7678295CA6"><span class="RefLink">35.3-1</span></a>)) if such a monoid exists. Otherwise <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MonoidByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);</span>
&lt;monoid of size 3, with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MonoidByMultiplicationTable([[1,2,3],[2,3,1],[1,3,2]]);</span>
fail
</pre></div>

<p><a id="X840847B6810BD0E1" name="X840847B6810BD0E1"></a></p>

<h4>51.3 <span class="Heading">Inverse semigroups and monoids</span></h4>

<p><a id="X78B13FED7AFB4326" name="X78B13FED7AFB4326"></a></p>

<h5>51.3-1 InverseSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InverseSemigroup</code>( <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: An inverse semigroup.</p>

<p>If <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, ... are (any combination) of associative elements with unique semigroup inverses, semigroups of such elements, or collections of such elements, then <code class="code">InverseSemigroup</code> returns the inverse semigroup generated by the union of <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, .... This equals the semigroup generated by the union of <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, ... and their inverses.</p>

<p>For example if <code class="code">S</code> and <code class="code">T</code> are inverse semigroups, then <code class="code">InverseSemigroup(S, f, Idempotents(T));</code> is the inverse semigroup generated by <code class="code">Union(GeneratorsOfInverseSemigroup(S), [f], Idempotents(T)));</code>.</p>

<p>As present, the only associative elements with unique semigroup inverses, which do not always generate a group, are partial permutations; see Chapter <a href="chap54.html#X7D6495F77B8A77BD"><span class="RefLink">54</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := InverseSemigroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 7, 1, 4, 3, 2, 6, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := InverseSemigroup(S, f, Idempotents(SymmetricInverseSemigroup(5)));</span>
&lt;inverse partial perm semigroup of rank 10 with 34 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
1233</pre></div>

<p><a id="X80D9B9A98736051B" name="X80D9B9A98736051B"></a></p>

<h5>51.3-2 InverseMonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InverseMonoid</code>( <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: An inverse monoid.</p>

<p>If <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, ... are (any combination) of associative elements with unique semigroup inverses, semigroups of such elements, or collections of such elements, then <code class="code">InverseMonoid</code> returns the inverse monoid generated by the union of <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, .... This equals the monoid generated by the union of <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, ... and their inverses.</p>

<p>As present, the only associative elements with unique semigroup inverses are partial permutations; see Chapter <a href="chap54.html#X7D6495F77B8A77BD"><span class="RefLink">54</span></a>.</p>

<p>For example if <code class="code">S</code> and <code class="code">T</code> are inverse monoids, then <code class="code">InverseMonoid(S, f, Idempotents(T));</code> is the inverse monoid generated by <code class="code">Union(GeneratorsOfInverseMonoid(S), [f], Idempotents(T)));</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := InverseMonoid(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 7, 1, 4, 3, 2, 6, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := InverseMonoid(S, f, Idempotents(SymmetricInverseSemigroup(5)));</span>
&lt;inverse partial perm monoid of rank 10 with 35 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
1243</pre></div>

<p><a id="X87C373597F787250" name="X87C373597F787250"></a></p>

<h5>51.3-3 GeneratorsOfInverseSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfInverseSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The generators of an inverse semigroup.</p>

<p>If <var class="Arg">S</var> is an inverse semigroup, then <code class="code">GeneratorsOfInverseSemigroup</code> returns the generators used to define <var class="Arg">S</var>, i.e. an inverse semigroup generating set for <var class="Arg">S</var>.</p>

<p>The value of <code class="code">GeneratorsOfSemigroup(<var class="Arg">S</var>)</code>, for an inverse semigroup <var class="Arg">S</var>, is the union of inverse semigroup generator and their inverses. So, <var class="Arg">S</var> is the semigroup, as opposed to inverse semigroup, generated by the elements of <code class="code">GeneratorsOfInverseSemigroup(<var class="Arg">S</var>)</code> and their inverses.</p>

<p>If <var class="Arg">S</var> is an inverse monoid, then <code class="code">GeneratorsOfInverseSemigroup</code> returns the generators used to define <var class="Arg">S</var>, as described above, and the identity of <var class="Arg">S</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=InverseMonoid(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> PartialPerm( [ 1, 2 ], [ 1, 4 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> PartialPerm( [ 1, 2, 4 ], [ 3, 4, 1 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfSemigroup(S);</span>
[ &lt;identity partial perm on [ 1, 2, 3, 4 ]&gt;, [2,4](1), [2,4,1,3], 
  [4,2](1), [3,1,4,2] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfInverseSemigroup(S);</span>
[ [2,4](1), [2,4,1,3], &lt;identity partial perm on [ 1, 2, 3, 4 ]&gt; ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfMonoid(S);</span>
[ [2,4](1), [2,4,1,3], [4,2](1), [3,1,4,2] ]</pre></div>

<p><a id="X7A3B262C85B6D475" name="X7A3B262C85B6D475"></a></p>

<h5>51.3-4 GeneratorsOfInverseMonoid</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfInverseMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The generators of an inverse monoid.</p>

<p>If <var class="Arg">S</var> is an inverse monoid, then <code class="code">GeneratorsOfInverseMonoid</code> returns the generators used to define <var class="Arg">S</var>, i.e. an inverse monoid generating set for <var class="Arg">S</var>.</p>

<p>There are four different possible generating sets which define an inverse monoid. More precisely, an inverse monoid can be generated as an inverse monoid, inverse semigroup, monoid, or semigroup. The different generating sets in each case can be obtained using <code class="func">GeneratorsOfInverseMonoid</code>, <code class="func">GeneratorsOfInverseSemigroup</code> (<a href="chap51.html#X87C373597F787250"><span class="RefLink">51.3-3</span></a>), <code class="func">GeneratorsOfMonoid</code> (<a href="chap51.html#X83CA2E7279C44718"><span class="RefLink">51.2-7</span></a>), and <code class="func">GeneratorsOfSemigroup</code> (<a href="chap51.html#X78147A247963F23B"><span class="RefLink">51.1-8</span></a>), respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=InverseMonoid(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> PartialPerm( [ 1, 2 ], [ 1, 4 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> PartialPerm( [ 1, 2, 4 ], [ 3, 4, 1 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfInverseMonoid(S);</span>
[ [2,4](1), [2,4,1,3] ]</pre></div>

<p><a id="X7C4C6EE681E7A57E" name="X7C4C6EE681E7A57E"></a></p>

<h5>51.3-5 IsInverseSubsemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsInverseSubsemigroup</code>( <var class="Arg">S</var>, <var class="Arg">T</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>If the semigroup <var class="Arg">T</var> is an inverse subsemigroup of the semigroup <var class="Arg">S</var>, then this operation returns <code class="keyw">true</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=InverseSemigroup(RandomPartialPerm(4));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInverseSubsemigroup(SymmetricInverseSemigroup(4), T); </span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=Semigroup(Transformation( [ 1, 2, 4, 5, 6, 3, 7, 8 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 3, 4, 5, 6, 2, 7, 8 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation([ 1, 2, 5, 3, 6, 8, 4, 4 ] ));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInverseSubsemigroup(FullTransformationSemigroup(8), T);</span>
true</pre></div>

<p><a id="X78274024827F306D" name="X78274024827F306D"></a></p>

<h4>51.4 <span class="Heading">Properties of Semigroups</span></h4>

<p>The following functions determine information about semigroups.</p>

<p><a id="X7C4663827C5ACEF1" name="X7C4663827C5ACEF1"></a></p>

<h5>51.4-1 IsRegularSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRegularSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">S</var> is regular, i.e., if every \(\mathcal{D}\)-class of <var class="Arg">S</var> is regular.</p>

<p><a id="X87532A76854347E0" name="X87532A76854347E0"></a></p>

<h5>51.4-2 IsRegularSemigroupElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRegularSemigroupElement</code>( <var class="Arg">S</var>, <var class="Arg">x</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">x</var> has a general inverse in <var class="Arg">S</var>, i.e., there is an element <span class="SimpleMath">y ∈ <var class="Arg">S</var></span> such that <span class="SimpleMath"><var class="Arg">x</var> y <var class="Arg">x</var> = <var class="Arg">x</var></span> and <span class="SimpleMath">y <var class="Arg">x</var> y = y</span>.</p>

<p><a id="X7AFDE0F17AE516C5" name="X7AFDE0F17AE516C5"></a></p>

<h5>51.4-3 InversesOfSemigroupElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InversesOfSemigroupElement</code>( <var class="Arg">S</var>, <var class="Arg">x</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: The inverses of an element of a semigroup.</p>

<p><code class="code">InversesOfSemigroupElement</code> returns a list of the inverses of the element <var class="Arg">x</var> in the semigroup <var class="Arg">S</var>.</p>

<p>An element <var class="Arg">y</var> in <var class="Arg">S</var> is an <em>inverse</em> of <var class="Arg">x</var> if <code class="code"><var class="Arg">x</var>*y*<var class="Arg">x</var>=<var class="Arg">x</var></code> and <code class="code">y*<var class="Arg">x</var>*y=y</code>. The element <var class="Arg">x</var> has an inverse if and only if <var class="Arg">x</var> is a regular element of <var class="Arg">S</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=Semigroup([ Transformation( [ 3, 1, 4, 2, 5, 2, 1, 6, 1 ] ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> Transformation( [ 5, 7, 8, 8, 7, 5, 9, 1, 9 ] ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> Transformation( [ 7, 6, 2, 8, 4, 7, 5, 8, 3 ] ) ]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=Transformation( [ 3, 1, 4, 2, 5, 2, 1, 6, 1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">InversesOfSemigroupElement(S, x);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRegularSemigroupElement(S, x);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=Transformation( [ 1, 9, 7, 5, 5, 1, 9, 5, 1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set(InversesOfSemigroupElement(S, x));</span>
[ Transformation( [ 1, 2, 3, 5, 5, 1, 3, 5, 2 ] ), 
  Transformation( [ 1, 5, 1, 1, 5, 1, 3, 1, 2 ] ), 
  Transformation( [ 1, 5, 1, 2, 5, 1, 3, 2, 2 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRegularSemigroupElement(S, x);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ReesZeroMatrixSemigroup(Group((1,2,3)), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ [ (), () ], [ (), 0 ], [ (), (1,2,3) ] ]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=ReesZeroMatrixSemigroupElement(S, 2, (1,2,3), 3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">InversesOfSemigroupElement(S, x);</span>
[ (1,(1,2,3),3), (1,(1,3,2),1), (2,(),3), (2,(1,2,3),1) ]</pre></div>

<p><a id="X836F4692839F4874" name="X836F4692839F4874"></a></p>

<h5>51.4-4 IsSimpleSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSimpleSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if and only if the semigroup <var class="Arg">S</var> has no proper ideals.</p>

<p><a id="X8193A60F839C064E" name="X8193A60F839C064E"></a></p>

<h5>51.4-5 IsZeroSimpleSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsZeroSimpleSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if and only if the semigroup has no proper ideals except for 0, where <var class="Arg">S</var> is a semigroup with zero. If the semigroup does not find its zero, then a break-loop is entered.</p>

<p><a id="X85F7E5CD86F0643B" name="X85F7E5CD86F0643B"></a></p>

<h5>51.4-6 IsZeroGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsZeroGroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if and only if the semigroup <var class="Arg">S</var> is a group with zero adjoined.</p>

<p><a id="X7FFEC81F7F2C4EAA" name="X7FFEC81F7F2C4EAA"></a></p>

<h5>51.4-7 IsReesCongruenceSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReesCongruenceSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">S</var> is a Rees Congruence semigroup, that is, if all congruences of <var class="Arg">S</var> are Rees Congruences.</p>

<p><a id="X83F1529479D56665" name="X83F1529479D56665"></a></p>

<h5>51.4-8 IsInverseSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsInverseSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsInverseMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>A semigroup is an <em>inverse semigroup</em> if every element <code class="code">x</code> has a unique semigroup inverse, that is, a unique element <code class="code">y</code> such that <code class="code">x*y*x=x</code> and <code class="code">y*x*y=y</code>.</p>

<p>A monoid that happens to be an inverse semigroup is called an <em>inverse monoid</em>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=Semigroup( Transformation( [ 1, 2, 4, 5, 6, 3, 7, 8 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 3, 4, 5, 6, 2, 7, 8 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 1, 2, 5, 3, 6, 8, 4, 4 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInverseSemigroup(S);</span>
true</pre></div>

<p><a id="X7BB32D508183C0F1" name="X7BB32D508183C0F1"></a></p>

<h4>51.5 <span class="Heading">Ideals of semigroups</span></h4>

<p>Ideals of semigroups are the same as ideals of the semigroup when considered as a magma. For documentation on ideals for magmas, see <code class="func">Magma</code> (<a href="chap35.html#X839147CF813312D6"><span class="RefLink">35.2-1</span></a>).</p>

<p><a id="X7D5CEE4D7D4318ED" name="X7D5CEE4D7D4318ED"></a></p>

<h5>51.5-1 SemigroupIdealByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SemigroupIdealByGenerators</code>( <var class="Arg">S</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><var class="Arg">S</var> is a semigroup, <var class="Arg">gens</var> is a list of elements of <var class="Arg">S</var>. Returns the two-sided ideal of <var class="Arg">S</var> generated by <var class="Arg">gens</var>.</p>

<p><a id="X7F01FFB18125DED5" name="X7F01FFB18125DED5"></a></p>

<h5>51.5-2 ReesCongruenceOfSemigroupIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReesCongruenceOfSemigroupIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A two sided ideal <var class="Arg">I</var> of a semigroup <var class="Arg">S</var> defines a congruence on <var class="Arg">S</var> given by <span class="SimpleMath">∆ ∪ I × I</span>.</p>

<p><a id="X7A3FF85984345540" name="X7A3FF85984345540"></a></p>

<h5>51.5-3 IsLeftSemigroupIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLeftSemigroupIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRightSemigroupIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSemigroupIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Categories of semigroup ideals.</p>

<p><a id="X7C0782D57C01E327" name="X7C0782D57C01E327"></a></p>

<h4>51.6 <span class="Heading">Congruences for semigroups</span></h4>

<p>An equivalence or a congruence on a semigroup is the equivalence or congruence on the semigroup considered as a magma. So, to deal with equivalences and congruences on semigroups, magma functions are used. For documentation on equivalences and congruences for magmas, see <code class="func">Magma</code> (<a href="chap35.html#X839147CF813312D6"><span class="RefLink">35.2-1</span></a>).</p>

<p><a id="X78E34B737F0E009F" name="X78E34B737F0E009F"></a></p>

<h5>51.6-1 IsSemigroupCongruence</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSemigroupCongruence</code>( <var class="Arg">c</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>a magma congruence <var class="Arg">c</var> on a semigroup.</p>

<p><a id="X822DB78579BCB7B5" name="X822DB78579BCB7B5"></a></p>

<h5>51.6-2 IsReesCongruence</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReesCongruence</code>( <var class="Arg">c</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if and only if the congruence <var class="Arg">c</var> has at most one nonsingleton congruence class.</p>

<p><a id="X87CE9EAB7EE3A128" name="X87CE9EAB7EE3A128"></a></p>

<h4>51.7 <span class="Heading">Quotients</span></h4>

<p>Given a semigroup and a congruence on the semigroup, one can construct a new semigroup: the quotient semigroup. The following functions deal with quotient semigroups in <strong class="pkg">GAP</strong>. For a semigroup <span class="SimpleMath">S</span>, elements of a quotient semigroup are equivalence classes of elements of the <code class="func">QuotientSemigroupPreimage</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>) value under the congruence given by the value of <code class="func">QuotientSemigroupCongruence</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>).</p>

<p>It is probably most useful for calculating the elements of the equivalence classes by using <code class="func">Elements</code> (<a href="chap30.html#X79B130FC7906FB4C"><span class="RefLink">30.3-11</span></a>) or by looking at the images of elements of <code class="func">QuotientSemigroupPreimage</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>) under the map returned by <code class="func">QuotientSemigroupHomomorphism</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>), which maps the <code class="func">QuotientSemigroupPreimage</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>) value to <var class="Arg">S</var>.</p>

<p>For intensive computations in a quotient semigroup, it is probably worthwhile finding another representation as the equality test could involve enumeration of the elements of the congruence classes being compared.</p>

<p><a id="X80EF3E6F842BE64E" name="X80EF3E6F842BE64E"></a></p>

<h5>51.7-1 IsQuotientSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsQuotientSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of semigroups constructed from another semigroup and a congruence on it.</p>

<p><a id="X7CAD3D1687956F7F" name="X7CAD3D1687956F7F"></a></p>

<h5>51.7-2 HomomorphismQuotientSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomomorphismQuotientSemigroup</code>( <var class="Arg">cong</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>for a congruence <var class="Arg">cong</var> and a semigroup <var class="Arg">S</var>. Returns the homomorphism from <var class="Arg">S</var> to the quotient of <var class="Arg">S</var> by <var class="Arg">cong</var>.</p>

<p><a id="X87120C46808F7289" name="X87120C46808F7289"></a></p>

<h5>51.7-3 QuotientSemigroupPreimage</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuotientSemigroupPreimage</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuotientSemigroupCongruence</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuotientSemigroupHomomorphism</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>for a quotient semigroup <var class="Arg">S</var>.</p>

<p><a id="X80C6C718801855E9" name="X80C6C718801855E9"></a></p>

<h4>51.8 <span class="Heading">Green's Relations</span></h4>

<p>Green's equivalence relations play a very important role in semigroup theory. In this section we describe how they can be used in <strong class="pkg">GAP</strong>.</p>

<p>The five Green's relations are <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span>, <span class="SimpleMath">J</span>, <span class="SimpleMath">H</span>, <span class="SimpleMath">D</span>: two elements <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span> from a semigroup <span class="SimpleMath">S</span> are <span class="SimpleMath">R</span>-related if and only if <span class="SimpleMath">xS^1 = yS^1</span>, <span class="SimpleMath">L</span>-related if and only if <span class="SimpleMath">S^1 x = S^1 y</span> and <span class="SimpleMath">J</span>-related if and only if <span class="SimpleMath">S^1 xS^1 = S^1 yS^1</span>; finally, <span class="SimpleMath">H = R ∧ L</span>, and <span class="SimpleMath">D = R ∘ L</span>.</p>

<p>Recall that relations <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span> and <span class="SimpleMath">J</span> induce a partial order among the elements of the semigroup <span class="SimpleMath">S</span>: for two elements <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span> from <span class="SimpleMath">S</span>, we say that <span class="SimpleMath">x</span> is less than or equal to <span class="SimpleMath">y</span> in the order on <span class="SimpleMath">R</span> if <span class="SimpleMath">xS^1 ⊆ yS^1</span>; similarly, <span class="SimpleMath">x</span> is less than or equal to <span class="SimpleMath">y</span> under <span class="SimpleMath">L</span> if <span class="SimpleMath">S^1x ⊆ S^1y</span>; finally <span class="SimpleMath">x</span> is less than or equal to <span class="SimpleMath">y</span> under <span class="SimpleMath">J</span> if <span class="SimpleMath">S^1 xS^1 ⊆ S^1 tS^1</span>. We extend this preorder to a partial order on equivalence classes in the natural way.</p>

<p><a id="X786CEDD4814A9079" name="X786CEDD4814A9079"></a></p>

<h5>51.8-1 GreensRRelation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensRRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensLRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensJRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensDRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensHRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The Green's relations (which are equivalence relations) are attributes of the semigroup <var class="Arg">semigroup</var>.</p>

<p><a id="X8364D69987D49DE1" name="X8364D69987D49DE1"></a></p>

<h5>51.8-2 IsGreensRelation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensRelation</code>( <var class="Arg">bin-relation</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensRRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensLRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensJRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensHRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensDRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<p>Categories for the Green's relations.</p>

<p><a id="X82A11A087AFB3EB0" name="X82A11A087AFB3EB0"></a></p>

<h5>51.8-3 IsGreensClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensRClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensLClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensJClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensHClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensDClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<p>return <code class="keyw">true</code> if the equivalence class <var class="Arg">equiv-class</var> is a Green's class of any type, or of <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span>, <span class="SimpleMath">J</span>, <span class="SimpleMath">H</span>, <span class="SimpleMath">D</span> type, respectively, or <code class="keyw">false</code> otherwise.</p>

<p><a id="X7AA204C8850F9070" name="X7AA204C8850F9070"></a></p>

<h5>51.8-4 IsGreensLessThanOrEqual</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGreensLessThanOrEqual</code>( <var class="Arg">C1</var>, <var class="Arg">C2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the Green's class <var class="Arg">C1</var> is less than or equal to <var class="Arg">C2</var> under the respective ordering (as defined above), and <code class="keyw">false</code> otherwise.</p>

<p>Only defined for <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span> and <span class="SimpleMath">J</span> classes.</p>

<p><a id="X86FE5F5585EBCF13" name="X86FE5F5585EBCF13"></a></p>

<h5>51.8-5 RClassOfHClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RClassOfHClass</code>( <var class="Arg">H</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LClassOfHClass</code>( <var class="Arg">H</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>are attributes reflecting the natural ordering over the various Green's classes. <code class="func">RClassOfHClass</code> and <code class="func">LClassOfHClass</code> return the <span class="SimpleMath">R</span> and <span class="SimpleMath">L</span> classes, respectively, in which an <span class="SimpleMath">H</span> class is contained.</p>

<p><a id="X78C56F4A78E0088A" name="X78C56F4A78E0088A"></a></p>

<h5>51.8-6 EggBoxOfDClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EggBoxOfDClass</code>( <var class="Arg">Dclass</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns for a Green's <span class="SimpleMath">D</span> class <var class="Arg">Dclass</var> a matrix whose rows represent <span class="SimpleMath">R</span> classes and columns represent <span class="SimpleMath">L</span> classes. The entries are the <span class="SimpleMath">H</span> classes.</p>

<p><a id="X803237F17ACD44E3" name="X803237F17ACD44E3"></a></p>

<h5>51.8-7 DisplayEggBoxOfDClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DisplayEggBoxOfDClass</code>( <var class="Arg">Dclass</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>displays a "picture" of the <span class="SimpleMath">D</span> class <var class="Arg">Dclass</var>, as an array of 1s and 0s. A 1 represents a group <span class="SimpleMath">H</span> class.</p>

<p><a id="X87C75A9D86122D93" name="X87C75A9D86122D93"></a></p>

<h5>51.8-8 GreensRClassOfElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensRClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensLClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensDClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensJClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensHClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Creates the <span class="SimpleMath">X</span> class of the element <var class="Arg">a</var> in the semigroup <var class="Arg">S</var> where <span class="SimpleMath">X</span> is one of <span class="SimpleMath">L</span>, <span class="SimpleMath">R</span>, <span class="SimpleMath">D</span>, <span class="SimpleMath">J</span>, or <span class="SimpleMath">H</span>.</p>

<p><a id="X844D20467A644811" name="X844D20467A644811"></a></p>

<h5>51.8-9 GreensRClasses</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensRClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensLClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensJClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensDClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GreensHClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>return the <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span>, <span class="SimpleMath">J</span>, <span class="SimpleMath">H</span>, or <span class="SimpleMath">D</span> Green's classes, respectively for semigroup <var class="Arg">semigroup</var>. <code class="func">EquivalenceClasses</code> (<a href="chap33.html#X879439897EF4D728"><span class="RefLink">33.7-3</span></a>) for a Green's relation lead to one of these functions.</p>

<p><a id="X7CB4A18685B850E2" name="X7CB4A18685B850E2"></a></p>

<h5>51.8-10 GroupHClassOfGreensDClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupHClassOfGreensDClass</code>( <var class="Arg">Dclass</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>for a <span class="SimpleMath">D</span> class <var class="Arg">Dclass</var> of a semigroup, returns a group <span class="SimpleMath">H</span> class of the <span class="SimpleMath">D</span> class, or <code class="keyw">fail</code> if there is no group <span class="SimpleMath">H</span> class.</p>

<p><a id="X79D740EF7F0E53BD" name="X79D740EF7F0E53BD"></a></p>

<h5>51.8-11 IsGroupHClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGroupHClass</code>( <var class="Arg">Hclass</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the Green's <span class="SimpleMath">H</span> class <var class="Arg">Hclass</var> is a group, which in turn is true if and only if <var class="Arg">Hclass</var><span class="SimpleMath">^2</span> intersects <var class="Arg">Hclass</var>.</p>

<p><a id="X7F5860927CAD920F" name="X7F5860927CAD920F"></a></p>

<h5>51.8-12 IsRegularDClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRegularDClass</code>( <var class="Arg">Dclass</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the Greens <span class="SimpleMath">D</span> class <var class="Arg">Dclass</var> is regular. A <span class="SimpleMath">D</span> class is regular if and only if each of its elements is regular, which in turn is true if and only if any one element of <var class="Arg">Dclass</var> is regular. Idempotents are regular since <span class="SimpleMath">eee = e</span> so it follows that a Green's <span class="SimpleMath">D</span> class containing an idempotent is regular. Conversely, it is true that a regular <span class="SimpleMath">D</span> class must contain at least one idempotent. (See <a href="chapBib.html#biBHowie76">[How76, Prop. 3.2]</a>.)</p>

<p><a id="X8225A9EC87A255E6" name="X8225A9EC87A255E6"></a></p>

<h4>51.9 <span class="Heading">Rees Matrix Semigroups</span></h4>

<p>In this section, we describe the functions in <strong class="pkg">GAP</strong> for Rees matrix and 0-matrix semigroups and their subsemigroups. The importance of these semigroups lies in the fact that Rees matrix semigroups over groups are exactly the completely simple semigroups, and Rees 0-matrix semigroups over groups are the completely 0-simple semigroups.</p>

<p>Let <span class="SimpleMath">I</span> and <span class="SimpleMath">J</span> be sets, let <span class="SimpleMath">S</span> be a semigroup, and let <span class="SimpleMath">P=(p_ji)_j∈ J, i∈ I</span> be a <span class="SimpleMath">|J|× |I|</span> matrix with entries in <span class="SimpleMath">S</span>. Then the <em>Rees matrix semigroup</em> with underlying semigroup <span class="SimpleMath">S</span> and matrix <span class="SimpleMath">P</span> is just the direct product <span class="SimpleMath">I× S × J</span> with multiplication defined by</p>

<p class="pcenter">(i, s, j)(k, t, l)=(i,s\cdot p_{j,k}\cdot t, l).</p>

<p>Rees 0-matrix semigroups are defined as follows. If <span class="SimpleMath">I</span>, <span class="SimpleMath">J</span>, <span class="SimpleMath">S</span>, and <span class="SimpleMath">P</span> are as above and <span class="SimpleMath">0</span> denotes a new element, then the <em>Rees 0-matrix semigroup</em> with underlying semigroup <span class="SimpleMath">S</span> and matrix <span class="SimpleMath">P</span> is <span class="SimpleMath">(I× S× J)∪ {0}</span> with multiplication defined by</p>

<p class="pcenter">(i, s, j)(k, t, l)=(i, s\cdot p_{j,k}\cdot t, l)</p>

<p>when <span class="SimpleMath">p_j,k</span> is not <span class="SimpleMath">0</span> and <span class="SimpleMath">0</span> if <span class="SimpleMath">p_j,k</span> is 0.</p>

<p>If <span class="SimpleMath">R</span> is a Rees matrix or 0-matrix semigroup, then the <em>rows</em> of <span class="SimpleMath">R</span> is the index set <span class="SimpleMath">I</span>, the <em>columns</em> of <span class="SimpleMath">R</span> is the index set <span class="SimpleMath">J</span>, the semigroup <span class="SimpleMath">S</span> is the <em>underlying semigroup</em> of <span class="SimpleMath">R</span>, and the <em>matrix</em> <span class="SimpleMath">P</span> is the matrix of <span class="SimpleMath">S</span>.</p>

<p>Thoroughout this section, wherever the distinction is unimportant, we will refer to Rees matrix or 0-matrix semigroups collectively as Rees matrix semigroups.</p>

<p>Multiplication of elements of a Rees matrix semigroup obviously depends on the matrix used to create the semigroup. Hence elements of a Rees matrix semigroup can only be created with reference to the semigroup to which they belong. More specifically, every collection or semigroup of Rees matrix semigroup elements is created from a specific Rees matrix semigroup, which contains the whole family of its elements. So, it is not possible to multiply or compare elements belonging to distinct Rees matrix semigroups, since they belong to different families. This situation is similar to, say, free groups, and different to, say, permutations, which belong to a single family, and where arbitrary permutations can be compared and multiplied without reference to any group containing them.</p>

<p>A subsemigroup of a Rees matrix semigroup is not necessarily a Rees matrix semigroup. Every semigroup consisting of elements of a Rees matrix semigroup satisfies the property <code class="func">IsReesMatrixSubsemigroup</code> (<a href="chap51.html#X7F03BE707AC7F8A0"><span class="RefLink">51.9-6</span></a>) and every semigroup of Rees 0-matrix semigroup elements satisfies <code class="func">IsReesZeroMatrixSubsemigroup</code> (<a href="chap51.html#X7F03BE707AC7F8A0"><span class="RefLink">51.9-6</span></a>).</p>

<p>Rees matrix and 0-matrix semigroups can be created using the operations <code class="func">ReesMatrixSemigroup</code> (<a href="chap51.html#X8526AA557CDF6C49"><span class="RefLink">51.9-1</span></a>) and <code class="func">ReesZeroMatrixSemigroup</code> (<a href="chap51.html#X8526AA557CDF6C49"><span class="RefLink">51.9-1</span></a>), respectively, from an underlying semigroup and a matrix. Rees matrix semigroups created in this way contain the whole family of their elements. Every element of a Rees matrix semigroup belongs to a unique semigroup created in this way; every subsemigroup of a Rees matrix semigroup is a subsemigroup of a unique semigroup created in this way.</p>

<p>Subsemigroups of Rees matrix semigroups can also be created by specifying generators. A subsemigroup of a Rees matrix semigroup <span class="SimpleMath">I× U× J</span> satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) if and only if it is equal to <span class="SimpleMath">I'× U'× J'</span> where <span class="SimpleMath">I'⊆ I</span>, <span class="SimpleMath">J'⊆ J</span>, and <span class="SimpleMath">U'</span> is a subsemigroup of <span class="SimpleMath">U</span>. The analogous statements holds for Rees 0-matrix semigroups.</p>

<p>It is not necessarily the case that a simple subsemigroups of Rees matrix semigroups satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>). A Rees matrix semigroup is simple if and only if its underlying semigroup is simple. A finite semigroup is simple if and only if it is isomorphic to a Rees matrix semigroup over a group; this isomorphism can be obtained explicitly using <code class="func">IsomorphismReesMatrixSemigroup</code> (<a href="chap51.html#X7964B5C97FB9C07D"><span class="RefLink">51.9-3</span></a>).</p>

<p>Similarly, 0-simple subsemigroups of Rees 0-matrix semigroups do not have to satisfy <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>). A Rees 0-matrix semigroup with more than 2 elements is 0-simple if and only if every row and every column of its matrix contains a non-zero entry, and its underlying semigroup is simple. A finite semigroup is 0-simple if and only if it is isomorphic to a Rees 0-matrix semigroup over a group; again this isomorphism can be found by using <code class="func">IsomorphismReesZeroMatrixSemigroup</code> (<a href="chap51.html#X7964B5C97FB9C07D"><span class="RefLink">51.9-3</span></a>).</p>

<p>Elements of a Rees matrix or 0-matrix semigroup belong to the categories <code class="func">IsReesMatrixSemigroupElement</code> (<a href="chap51.html#X7F6B852B81488C86"><span class="RefLink">51.9-4</span></a>) and <code class="func">IsReesZeroMatrixSemigroupElement</code> (<a href="chap51.html#X7F6B852B81488C86"><span class="RefLink">51.9-4</span></a>), respectively. Such elements can be created directly using the functions <code class="func">ReesMatrixSemigroupElement</code> (<a href="chap51.html#X7A0DE1F28470295E"><span class="RefLink">51.9-5</span></a>) and <code class="func">ReesZeroMatrixSemigroupElement</code> (<a href="chap51.html#X7A0DE1F28470295E"><span class="RefLink">51.9-5</span></a>).</p>

<p>A semigroup in <strong class="pkg">GAP</strong> can either satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) or <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) but not both.</p>

<p><a id="X8526AA557CDF6C49" name="X8526AA557CDF6C49"></a></p>

<h5>51.9-1 ReesMatrixSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReesMatrixSemigroup</code>( <var class="Arg">S</var>, <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReesZeroMatrixSemigroup</code>( <var class="Arg">S</var>, <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A Rees matrix or 0-matrix semigroup.</p>

<p>When <var class="Arg">S</var> is a semigroup and <var class="Arg">mat</var> is an <code class="code">m</code> by <code class="code">n</code> matrix with entries in <var class="Arg">S</var>, the function <code class="code">ReesMatrixSemigroup</code> returns the <code class="code">n</code> by <code class="code">m</code> Rees matrix semigroup over <var class="Arg">S</var> with multiplication defined by <var class="Arg">mat</var>.</p>

<p>The arguments of <code class="code">ReesZeroMatrixSemigroup</code> should be a semigroup <var class="Arg">S</var> and an <code class="code">m</code> by <code class="code">n</code> matrix <var class="Arg">mat</var> with entries in <var class="Arg">S</var> or equal to the integer <code class="code">0</code>. <code class="code">ReesZeroMatrixSemigroup</code> returns the <code class="code">n</code> by <code class="code">m</code> Rees 0-matrix semigroup over <var class="Arg">S</var> with multiplication defined by <var class="Arg">mat</var>. In <strong class="pkg">GAP</strong> a Rees 0-matrix semigroup always contains a multiplicative zero element, regardless of whether there are any entries in <var class="Arg">mat</var> which are equal to <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Random(AllGroups(Size, 32));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=List([1..5], x-&gt; List([1..3], y-&gt; Random(G)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ReesMatrixSemigroup(G, mat);</span>
&lt;Rees matrix semigroup 3x5 over &lt;pc group of size 32 with 
 5 generators&gt;&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[(), 0, (), ()], [0, 0, 0, 0]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ReesZeroMatrixSemigroup(DihedralGroup(IsPermGroup, 8), mat);</span>
&lt;Rees 0-matrix semigroup 4x2 over Group([ (1,2,3,4), (2,4) ])&gt;
</pre></div>

<p><a id="X78D2A48C87FC8E38" name="X78D2A48C87FC8E38"></a></p>

<h5>51.9-2 ReesMatrixSubsemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReesMatrixSubsemigroup</code>( <var class="Arg">R</var>, <var class="Arg">I</var>, <var class="Arg">U</var>, <var class="Arg">J</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReesZeroMatrixSubsemigroup</code>( <var class="Arg">R</var>, <var class="Arg">I</var>, <var class="Arg">U</var>, <var class="Arg">J</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A Rees matrix or 0-matrix subsemigroup.</p>

<p>The arguments of <code class="code">ReesMatrixSubsemigroup</code> should be a Rees matrix semigroup <var class="Arg">R</var>, subsets <var class="Arg">I</var> and <var class="Arg">J</var> of the rows and columns of <var class="Arg">R</var>, respectively, and a subsemigroup <var class="Arg">S</var> of the underlying semigroup of <var class="Arg">R</var>. <code class="code">ReesMatrixSubsemigroup</code> returns the subsemigroup of <var class="Arg">R</var> generated by the direct product of <var class="Arg">I</var>, <var class="Arg">U</var>, and <var class="Arg">J</var>.</p>

<p>The usage and returned value of <code class="code">ReesZeroMatrixSubsemigroup</code> is analogous when <var class="Arg">R</var> is a Rees 0-matrix semigroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=CyclicGroup(IsPermGroup, 1007);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[(), 0, 0], [0, (), 0], [0, 0, ()], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[(), (), ()], [0, 0, ()]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(G, mat);</span>
&lt;Rees 0-matrix semigroup 3x5 over 
  &lt;permutation group of size 1007 with 1 generators&gt;&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ReesZeroMatrixSubsemigroup(R, [1,3], G, [1..5]);</span>
&lt;Rees 0-matrix semigroup 2x5 over 
  &lt;permutation group of size 1007 with 1 generators&gt;&gt;
</pre></div>

<p><a id="X7964B5C97FB9C07D" name="X7964B5C97FB9C07D"></a></p>

<h5>51.9-3 IsomorphismReesMatrixSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismReesMatrixSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismReesZeroMatrixSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: An isomorphism.</p>

<p>Every finite simple semigroup is isomorphic to a Rees matrix semigroup over a group, and every finite 0-simple semigroup is isomorphic to a Rees 0-matrix semigroup over a group.</p>

<p>If the argument <var class="Arg">S</var> is a simple semigroup, then <code class="code">IsomorphismReesMatrixSemigroup</code> returns an isomorphism to a Rees matrix semigroup over a group. If <var class="Arg">S</var> is not simple, then <code class="code">IsomorphismReesMatrixSemigroup</code> returns an error.</p>

<p>If the argument <var class="Arg">S</var> is a 0-simple semigroup, then <code class="code">IsomorphismReesZeroMatrixSemigroup</code> returns an isomorphism to a Rees 0-matrix semigroup over a group. If <var class="Arg">S</var> is not 0-simple, then <code class="code">IsomorphismReesMatrixSemigroup</code> returns an error.</p>

<p>See <code class="func">IsSimpleSemigroup</code> (<a href="chap51.html#X836F4692839F4874"><span class="RefLink">51.4-4</span></a>) and <code class="func">IsZeroSimpleSemigroup</code> (<a href="chap51.html#X8193A60F839C064E"><span class="RefLink">51.4-5</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(Transformation([2, 1, 1, 2, 1]), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  Transformation([3, 4, 3, 4, 4]), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  Transformation([3, 4, 3, 4, 3]),  </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  Transformation([4, 3, 3, 4, 4]));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSimpleSemigroup(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Range(IsomorphismReesMatrixSemigroup(S));</span>
&lt;Rees matrix semigroup 4x2 over Group([ (1,2) ])&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat := [[(), 0, 0], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           [0, (), 0], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           [0, 0, ()]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R := ReesZeroMatrixSemigroup(Group((1,2,4,5,6)), mat);</span>
&lt;Rees 0-matrix semigroup 3x3 over Group([ (1,2,4,5,6) ])&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">U := ReesZeroMatrixSubsemigroup(R, [1, 2], Group(()), [2, 3]);</span>
&lt;subsemigroup of 3x3 Rees 0-matrix semigroup with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsZeroSimpleSemigroup(U);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">U := ReesZeroMatrixSubsemigroup(R, [2, 3], Group(()), [2, 3]);</span>
&lt;subsemigroup of 3x3 Rees 0-matrix semigroup with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsZeroSimpleSemigroup(U);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Rows(U); Columns(U);</span>
[ 2, 3 ]
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">V := Range(IsomorphismReesZeroMatrixSemigroup(U));</span>
&lt;Rees 0-matrix semigroup 2x2 over Group(())&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Rows(V); Columns(V); </span>
[ 1, 2 ]
[ 1, 2 ]</pre></div>

<p><a id="X7F6B852B81488C86" name="X7F6B852B81488C86"></a></p>

<h5>51.9-4 IsReesMatrixSemigroupElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReesMatrixSemigroupElement</code>( <var class="Arg">elt</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReesZeroMatrixSemigroupElement</code>( <var class="Arg">elt</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>Every element of a Rees matrix semigroup belongs to the category <code class="code">IsReesMatrixSemigroupElement</code>, and every element of a Rees 0-matrix semigroup belongs to the category <code class="code">IsReesZeroMatrixSemigroupElement</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Group((1,2,3));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[ [ (), (1,3,2) ], [ (1,3,2), () ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesMatrixSemigroup(G, mat);</span>
&lt;Rees matrix semigroup 2x2 over Group([ (1,2,3) ])&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfSemigroup(R);</span>
[ (1,(1,2,3),1), (2,(),2) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesMatrixSemigroupElement(last[1]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesZeroMatrixSemigroupElement(last2[1]);</span>
false</pre></div>

<p><a id="X7A0DE1F28470295E" name="X7A0DE1F28470295E"></a></p>

<h5>51.9-5 ReesMatrixSemigroupElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReesMatrixSemigroupElement</code>( <var class="Arg">R</var>, <var class="Arg">i</var>, <var class="Arg">x</var>, <var class="Arg">j</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReesZeroMatrixSemigroupElement</code>( <var class="Arg">R</var>, <var class="Arg">i</var>, <var class="Arg">x</var>, <var class="Arg">j</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: An element of a Rees matrix or <code class="code">0</code>-matrix semigroup.</p>

<p>The arguments of <var class="Arg">ReesMatrixSemigroupElement</var> should be a Rees matrix subsemigroup <var class="Arg">R</var>, elements <var class="Arg">i</var> and <var class="Arg">j</var> of the the rows and columns of <var class="Arg">R</var>, respectively, and an element <var class="Arg">x</var> of the underlying semigroup of <var class="Arg">R</var>. <code class="code">ReesMatrixSemigroupElement</code> returns the element of <var class="Arg">R</var> with row index <var class="Arg">i</var>, underlying element <var class="Arg">x</var> in the underlying semigroup of <var class="Arg">R</var>, and column index <var class="Arg">j</var>, if such an element exist, if such an element exists.</p>

<p>The usage of <code class="code">ReesZeroMatrixSemigroupElement</code> is analogous to that of <code class="code">ReesMatrixSemigroupElement</code>, when <var class="Arg">R</var> is a Rees 0-matrix semigroup.</p>

<p>The row <var class="Arg">i</var>, underlying element <var class="Arg">x</var>, and column <var class="Arg">j</var> of an element <code class="code">y</code> of a Rees matrix (or 0-matrix) semigroup can be recovered from <code class="code">y</code> using <code class="code">y[1]</code>, <code class="code">y[2]</code>, and <code class="code">y[3]</code>, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Group((1,2,3));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[ [ 0, () ], [ (1,3,2), (1,3,2) ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(G, mat);</span>
&lt;Rees 0-matrix semigroup 2x2 over Group([ (1,2,3) ])&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ReesZeroMatrixSemigroupElement(R, 1, (1,2,3), 2);</span>
(1,(1,2,3),2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MultiplicativeZero(R);</span>
0</pre></div>

<p><a id="X7F03BE707AC7F8A0" name="X7F03BE707AC7F8A0"></a></p>

<h5>51.9-6 IsReesMatrixSubsemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReesMatrixSubsemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( synonym )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReesZeroMatrixSubsemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( synonym )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>Every semigroup consisting of elements of a Rees matrix semigroup satisfies the property <code class="func">IsReesMatrixSubsemigroup</code> and every semigroup of Rees 0-matrix semigroup elements satisfies <code class="func">IsReesZeroMatrixSubsemigroup</code>.</p>

<p>Note that a subsemigroup of a Rees matrix semigroup is not necessarily a Rees matrix semigroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=DihedralGroup(32);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=List([1..2], x-&gt; List([1..10], x-&gt; Random(G)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesMatrixSemigroup(G, mat);</span>
&lt;Rees matrix semigroup 10x2 over &lt;pc group of size 32 with 
 5 generators&gt;&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=Semigroup(GeneratorsOfSemigroup(R));      </span>
&lt;subsemigroup of 10x2 Rees matrix semigroup with 14 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesMatrixSubsemigroup(S); </span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=Semigroup(GeneratorsOfSemigroup(R)[1]);</span>
&lt;subsemigroup of 10x2 Rees matrix semigroup with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesMatrixSubsemigroup(S);</span>
true</pre></div>

<p><a id="X780BB78A79275244" name="X780BB78A79275244"></a></p>

<h5>51.9-7 IsReesMatrixSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReesMatrixSemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsReesZeroMatrixSemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>A subsemigroup of a Rees matrix semigroup <span class="SimpleMath">I× U× J</span> satisfies <code class="func">IsReesMatrixSemigroup</code> if and only if it is equal to <span class="SimpleMath">I'× U'× J'</span> where <span class="SimpleMath">I'⊆ I</span>, <span class="SimpleMath">J'⊆ J</span>, and <span class="SimpleMath">U'</span> is a subsemigroup of <span class="SimpleMath">U</span>. It can be costly to check that a subsemigroup defined by generators satisfies <code class="code">IsReesMatrixSemigroup</code>. The analogous statements holds for Rees 0-matrix semigroups.</p>

<p>It is not necessarily the case that a simple subsemigroups of Rees matrix semigroups satisfies <code class="func">IsReesMatrixSemigroup</code>. A Rees matrix semigroup is simple if and only if its underlying semigroup is simple. A finite semigroup is simple if and only if it is isomorphic to a Rees matrix semigroup over a group; this isomorphism can be obtained explicitly using <code class="func">IsomorphismReesMatrixSemigroup</code> (<a href="chap51.html#X7964B5C97FB9C07D"><span class="RefLink">51.9-3</span></a>).</p>

<p>Similarly, 0-simple subsemigroups of Rees 0-matrix semigroups do not have to satisfy <code class="func">IsReesZeroMatrixSemigroup</code>. A Rees 0-matrix semigroup with more than 2 elements is 0-simple if and only if every row and every column of its matrix contains a non-zero entry, and its underlying semigroup is simple. A finite semigroup is 0-simple if and only if it is isomorphic to a Rees 0-matrix semigroup over a group; again this isomorphism can be found by using <code class="func">IsomorphismReesMatrixSemigroup</code> (<a href="chap51.html#X7964B5C97FB9C07D"><span class="RefLink">51.9-3</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=PSL(2,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[ [ 0, (), 0, (2,6,3,5,4) ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ (), 0, (), 0 ], [ 0, 0, 0, () ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(G, mat);</span>
&lt;Rees 0-matrix semigroup 4x3 over Group([ (3,5)(4,6), (1,2,5)
(3,4,6) ])&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesZeroMatrixSemigroup(R);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">U:=ReesZeroMatrixSubsemigroup(R, [1..3], Group(()), [1..2]);</span>
&lt;subsemigroup of 4x3 Rees 0-matrix semigroup with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesZeroMatrixSemigroup(U);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">V:=Semigroup(GeneratorsOfSemigroup(U));</span>
&lt;subsemigroup of 4x3 Rees 0-matrix semigroup with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesZeroMatrixSemigroup(V);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=Semigroup(Transformation([1,1]), Transformation([1,2]));</span>
&lt;commutative transformation monoid of degree 2 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSimpleSemigroup(S);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[0, One(S), 0, One(S)], [One(S), 0, One(S), 0], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[0, 0, 0, One(S)]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(S, mat);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">U:=ReesZeroMatrixSubsemigroup(R, [1..3], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Semigroup(Transformation([1,1])), [1..2]);</span>
&lt;subsemigroup of 4x3 Rees 0-matrix semigroup with 6 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">V:=Semigroup(GeneratorsOfSemigroup(U));</span>
&lt;subsemigroup of 4x3 Rees 0-matrix semigroup with 6 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesZeroMatrixSemigroup(V);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=Semigroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">ReesZeroMatrixSemigroupElement(R, 3, Transformation( [ 1, 1 ] ), 3), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">ReesZeroMatrixSemigroupElement(R, 2, Transformation( [ 1, 1 ] ), 2));</span>
&lt;subsemigroup of 4x3 Rees 0-matrix semigroup with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsReesZeroMatrixSemigroup(T);</span>
false</pre></div>

<p><a id="X879384D479EB1D82" name="X879384D479EB1D82"></a></p>

<h5>51.9-8 Matrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Matrix</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A matrix.</p>

<p>If <var class="Arg">R</var> is a Rees matrix or 0-matrix semigroup, then <code class="code">Matrix</code> returns the matrix used to define multiplication in <var class="Arg">R</var>.</p>

<p>More specifically, if <var class="Arg">R</var> is a Rees matrix or 0-matrix semigroup, which is a proper subsemigroup of another such semigroup, then <code class="code">Matrix</code> returns the matrix used to define the Rees matrix (or 0-matrix) semigroup consisting of the whole family to which the elements of <var class="Arg">R</var> belong. Thus, for example, a <code class="code">1</code> by <code class="code">1</code> Rees matrix semigroup can have a <code class="code">65</code> by <code class="code">15</code> matrix.</p>

<p>Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have a matrix. Such a subsemigroup <var class="Arg">R</var> has a matrix if and only if it satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) or <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=AlternatingGroup(5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[(), (), ()], [(), (), ()]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesMatrixSemigroup(G, mat);</span>
&lt;Rees matrix semigroup 3x2 over Alt( [ 1 .. 5 ] )&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Matrix(R); </span>
[ [ (), (), () ], [ (), (), () ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesMatrixSubsemigroup(R, [1,2], Group(()), [2]);</span>
&lt;subsemigroup of 3x2 Rees matrix semigroup with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Matrix(R);</span>
[ [ (), (), () ], [ (), (), () ] ]
</pre></div>

<p><a id="X82FC5D6980C66AC4" name="X82FC5D6980C66AC4"></a></p>

<h5>51.9-9 <span class="Heading">Rows and columns</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Rows</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Columns</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The rows or columns of <var class="Arg">R</var>.</p>

<p><code class="code">Rows</code> returns the rows of the Rees matrix or 0-matrix semigroup <var class="Arg">R</var>. Note that the rows of the semigroup correspond to the columns of the matrix used to define multiplication in <var class="Arg">R</var>.</p>

<p><code class="code">Columns</code> returns the columns of the Rees matrix or 0-matrix semigroup <var class="Arg">R</var>. Note that the columns of the semigroup correspond to the rows of the matrix used to define multiplication in <var class="Arg">R</var>.</p>

<p>Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have rows or columns. Such a subsemigroup <var class="Arg">R</var> has rows and columns if and only if it satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) or <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Group((1,2,3));;                      </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=List([1..100], x-&gt; List([1..200], x-&gt;Random(G)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(G, mat); </span>
&lt;Rees 0-matrix semigroup 200x100 over Group([ (1,2,3) ])&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Rows(R);</span>
[ 1 .. 200 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Columns(R);</span>
[ 1 .. 100 ]
</pre></div>

<p><a id="X7D9719F887AFCF8F" name="X7D9719F887AFCF8F"></a></p>

<h5>51.9-10 UnderlyingSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UnderlyingSemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UnderlyingSemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A semigroup.</p>

<p><code class="code">UnderlyingSemigroup</code> returns the underlying semigroup of the Rees matrix or 0-matrix semigroup <var class="Arg">R</var>.</p>

<p>Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have an underlying semigroup. Such a subsemigroup <var class="Arg">R</var> has an underlying semigroup if and only if it satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) or <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=Semigroup(Transformation( [ 2, 1, 1, 2, 1 ] ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 4, 3, 4, 4 ] ), Transformation([ 3, 4, 3, 4, 3 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation([ 4, 3, 3, 4, 4 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=Range(IsomorphismReesMatrixSemigroup(S));    </span>
&lt;Rees matrix semigroup 4x2 over Group([ (1,2) ])&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UnderlyingSemigroup(R);</span>
Group([ (1,2) ])
</pre></div>

<p><a id="X7D1D9A0382064B8F" name="X7D1D9A0382064B8F"></a></p>

<h5>51.9-11 AssociatedReesMatrixSemigroupOfDClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AssociatedReesMatrixSemigroupOfDClass</code>( <var class="Arg">D</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A Rees matrix or 0-matrix semigroup.</p>

<p>If <var class="Arg">D</var> is a regular \(\mathcal{D}\)-class of a finite semigroup <code class="code">S</code>, then there is a standard way of associating a Rees matrix semigroup to <var class="Arg">D</var>. If <var class="Arg">D</var> is a subsemigroup of <code class="code">S</code>, then <var class="Arg">D</var> is simple and hence is isomorphic to a Rees matrix semigroup. In this case, the associated Rees matrix semigroup of <var class="Arg">D</var> is just the Rees matrix semigroup isomorphic to <var class="Arg">D</var>.</p>

<p>If <var class="Arg">D</var> is not a subsemigroup of <code class="code">S</code>, then we define a semigroup with elements <var class="Arg">D</var> and a new element <code class="code">0</code> with multiplication of <span class="SimpleMath">x,y∈ D</span> defined by:</p>

<p class="pcenter">
          xy=\left\{\begin{array}{ll}
          x*y\ (\textrm{in }S)&amp;\textrm{if }x*y\in D\\
          0&amp;\textrm{if }xy\not\in D.
          \end{array}\right.
        </p>

<p>The semigroup thus defined is 0-simple and hence is isomorphic to a Rees 0-matrix semigroup. This semigroup can also be described as the Rees quotient of the ideal generated by <var class="Arg">D</var> by it maximal subideal. The associated Rees matrix semigroup of <var class="Arg">D</var> is just the Rees 0-matrix semigroup isomorphic to the semigroup defined above.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=FullTransformationSemigroup(5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=GreensDClasses(S)[3];</span>
{Transformation( [ 1, 1, 1, 2, 3 ] )}
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AssociatedReesMatrixSemigroupOfDClass(D);</span>
&lt;Rees 0-matrix semigroup 25x10 over Group([ (1,2)(3,5)(4,6), (1,3)
(2,4)(5,6) ])&gt;
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap50.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap52.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>