This file is indexed.

/usr/share/gap/doc/ref/chap24.html is in gap-doc 4r8p6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 24: Matrices</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap24"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap23.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap25.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap24_mj.html">[MathJax on]</a></p>
<p><a id="X812CCAB278643A59" name="X812CCAB278643A59"></a></p>
<div class="ChapSects"><a href="chap24.html#X812CCAB278643A59">24 <span class="Heading">Matrices</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X801E1B5D7EC8DDD3">24.1 <span class="Heading">InfoMatrix (Info Class)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X78EC82D27B4191DA">24.1-1 InfoMatrix</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X866E55A58164FAED">24.2 <span class="Heading">Categories of Matrices</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7E1AE46B862B185F">24.2-1 IsMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7CF42B8A845BC6A9">24.2-2 IsOrdinaryMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X86EC33E17DD12D0E">24.2-3 IsLieMatrix</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X7899335779A39A95">24.3 <span class="Heading">Operators for Matrices</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X7F5AD28E869B66CB">24.4 <span class="Heading">Properties and Attributes of Matrices</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X83A9DC2085D3A972">24.4-1 DimensionsMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X80AE547B8095A5CB">24.4-2 DefaultFieldOfMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X793D5E87870FFBCD">24.4-3 TraceMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X83045F6F82C180E1">24.4-4 DeterminantMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X84277D21848B7B7F">24.4-5 DeterminantMatDestructive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7EEA7E7A7F6BE6F3">24.4-6 DeterminantMatDivFree</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X848B80437CE65FF3">24.4-7 IsMonomialMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7FF01BF686AD0623">24.4-8 IsDiagonalMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7ECFBD9F8664982B">24.4-9 IsUpperTriangularMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X81671CFD7CFE4819">24.4-10 IsLowerTriangularMat</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X823FB2398697B957">24.5 <span class="Heading">Matrix Constructions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7DB902CE848D1524">24.5-1 IdentityMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X86D343A77D9B3D4D">24.5-2 NullMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8508A7EA812BA0CC">24.5-3 EmptyMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X81042E7A7F247ADE">24.5-4 DiagonalMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X806C62A67A7D5379">24.5-5 PermutationMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7C52A38C79C36C35">24.5-6 TransposedMatImmutable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7DBB40847E2B6252">24.5-7 TransposedMatDestructive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8634C79E7DB22934">24.5-8 KroneckerProduct</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X845EC4D18054D140">24.5-9 ReflectionMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7DEBC9967DFDFC18">24.5-10 PrintArray</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X79CC5F568252D341">24.6 <span class="Heading">Random Matrices</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7F957F0280A87961">24.6-1 RandomMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7C939B4A7EDF015D">24.6-2 RandomInvertibleMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X84743732846ACB44">24.6-3 RandomUnimodularMat</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X85485DCE809E323A">24.7 <span class="Heading">Matrices Representing Linear Equations and the Gaussian Algorithm</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7B21AE7987D4FB31">24.7-1 RankMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7BA26C3387AB434E">24.7-2 TriangulizedMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8384CA8E7B3850D3">24.7-3 TriangulizeMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7DA0D5887DB12DC4">24.7-4 NullspaceMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X87684B0F7AB7B7DB">24.7-5 NullspaceMatDestructive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X838A519C7CD2969E">24.7-6 SolutionMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7A7880D27CE7C1FE">24.7-7 SolutionMatDestructive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7AB5AC547809F999">24.7-8 BaseFixedSpace</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X871FCAA97C60B2BA">24.8 <span class="Heading">Eigenvectors and eigenvalues</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7A2462CC7B0C9D66">24.8-1 GeneralisedEigenvalues</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X845CA0457D65876D">24.8-2 GeneralisedEigenspaces</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8413C6FB7CEE9D59">24.8-3 Eigenvalues</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7A6B047281B52FD7">24.8-4 Eigenspaces</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8506584579D4EA18">24.8-5 Eigenvectors</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X7E5405D085661B29">24.9 <span class="Heading">Elementary Divisors</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7AC4D74F81908109">24.9-1 ElementaryDivisorsMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7AA1C9047B102204">24.9-2 ElementaryDivisorsTransformationsMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X85819D3F7A582180">24.9-3 DiagonalizeMat</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X7CA6B51D7AE3172B">24.10 <span class="Heading">Echelonized Matrices</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7D5D6BD07B7E981B">24.10-1 SemiEchelonMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8251F6F57D346385">24.10-2 SemiEchelonMatDestructive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7EFD1DB5861A54F0">24.10-3 SemiEchelonMatTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X827D7971800DB661">24.10-4 SemiEchelonMats</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X808F493B839BC7A6">24.10-5 SemiEchelonMatsDestructive</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X86B0D4A886BC0C6E">24.11 <span class="Heading">Matrices as Basis of a Row Space</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7AD6B5F5794D9E46">24.11-1 BaseMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X78B094597E382A5F">24.11-2 BaseMatDestructive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X78B94EFF87A455BE">24.11-3 BaseOrthogonalSpaceMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7AFF8BCF80C88B45">24.11-4 SumIntersectionMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8245D54F7AC532EB">24.11-5 BaseSteinitzVectors</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X79D5E53685F0FBEE">24.12 <span class="Heading">Triangular Matrices</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X82B6B0298179D895">24.12-1 DiagonalOfMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X84A78C057F9DAE5E">24.12-2 UpperSubdiagonal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X84D74DEA798A9094">24.12-3 DepthOfUpperTriangularMatrix</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X85B403857F2855F7">24.13 <span class="Heading">Matrices as Linear Mappings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X87FA0A727CDB060B">24.13-1 CharacteristicPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X83F55D4E79BA5D1B">24.13-2 JordanDecomposition</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X85923C107A4569D0">24.13-3 BlownUpMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X82AC277D84EC5749">24.13-4 BlownUpVector</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X85A1026D7CB6ABAC">24.13-5 CompanionMat</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X873822B6830CE367">24.14 <span class="Heading">Matrices over Finite Fields</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7DED2522828B6C30">24.14-1 ImmutableMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8587A62F818AA0D6">24.14-2 ConvertToMatrixRep</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X84A76F7A7B4166BC">24.14-3 ProjectiveOrder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X847ADC6779E33A1C">24.14-4 SimultaneousEigenvalues</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X8593A5337D3B2C70">24.15 <span class="Heading">Inverse and Nullspace of an Integer Matrix Modulo an Ideal</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7D8D1E0E83C7F872">24.15-1 InverseMatMod</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X86AE919983B242E2">24.15-2 NullspaceModQ</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X787DF5F07DC7D86E">24.16 <span class="Heading">Special Multiplication Algorithms for Matrices over GF(2)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7C0C26027FAE0C83">24.16-1 PROD_GF2MAT_GF2MAT_SIMPLE</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X81965B7D7F45E088">24.16-2 PROD_GF2MAT_GF2MAT_ADVANCED</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap24.html#X7F8A71F38201A250">24.17 <span class="Heading">Block Matrices</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X7D675B3C79CF8871">24.17-1 AsBlockMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X8633538685551E7A">24.17-2 BlockMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap24.html#X83FAF4158180041F">24.17-3 MatrixByBlockMatrix</a></span>
</div></div>
</div>

<h3>24 <span class="Heading">Matrices</span></h3>

<p>Matrices are represented in <strong class="pkg">GAP</strong> by lists of row vectors (see <a href="chap23.html#X82C7E6CF7BA03391"><span class="RefLink">23</span></a>) (for future changes to this policy see Chapter <a href="chap26.html#X856C23B87E50F118"><span class="RefLink">26</span></a>). The vectors must all have the same length, and their elements must lie in a common ring. However, since checking rectangularness can be expensive functions and methods of operations for matrices often will not give an error message for non-rectangular lists of lists –in such cases the result is undefined.</p>

<p>Because matrices are just a special case of lists, all operations and functions for lists are applicable to matrices also (see chapter <a href="chap21.html#X7B256AE5780F140A"><span class="RefLink">21</span></a>). This especially includes accessing elements of a matrix (see <a href="chap21.html#X7921047F83F5FA28"><span class="RefLink">21.3</span></a>), changing elements of a matrix (see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>), and comparing matrices (see <a href="chap21.html#X8016D50F85147A77"><span class="RefLink">21.10</span></a>).</p>

<p>Note that, since a matrix is a list of lists, the behaviour of <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>) for matrices is just a special case of <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>) for lists (see <a href="chap21.html#X7ED7C0738495556F"><span class="RefLink">21.7</span></a>); called with an immutable matrix <var class="Arg">mat</var>, <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>) returns a mutable matrix whose rows are identical to the rows of <var class="Arg">mat</var>. In particular the rows are still immutable. To get a matrix whose rows are mutable, one can use <code class="code">List( <var class="Arg">mat</var>, ShallowCopy )</code>.</p>

<p><a id="X801E1B5D7EC8DDD3" name="X801E1B5D7EC8DDD3"></a></p>

<h4>24.1 <span class="Heading">InfoMatrix (Info Class)</span></h4>

<p><a id="X78EC82D27B4191DA" name="X78EC82D27B4191DA"></a></p>

<h5>24.1-1 InfoMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InfoMatrix</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>The info class for matrix operations is <code class="func">InfoMatrix</code>.</p>

<p><a id="X866E55A58164FAED" name="X866E55A58164FAED"></a></p>

<h4>24.2 <span class="Heading">Categories of Matrices</span></h4>

<p><a id="X7E1AE46B862B185F" name="X7E1AE46B862B185F"></a></p>

<h5>24.2-1 IsMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsMatrix</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A <em>matrix</em> is a list of lists of equal length whose entries lie in a common ring.</p>

<p>Note that matrices may have different multiplications, besides the usual matrix product there is for example the Lie product. So there are categories such as <code class="func">IsOrdinaryMatrix</code> (<a href="chap24.html#X7CF42B8A845BC6A9"><span class="RefLink">24.2-2</span></a>) and <code class="func">IsLieMatrix</code> (<a href="chap24.html#X86EC33E17DD12D0E"><span class="RefLink">24.2-3</span></a>) that describe the matrix multiplication. One can form the product of two matrices only if they support the same multiplication.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[1,2,3],[4,5,6],[7,8,9]];</span>
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMatrix(mat);</span>
true
</pre></div>

<p>Note also the filter <code class="func">IsTable</code> (<a href="chap21.html#X80872FAF80EB5DF9"><span class="RefLink">21.1-4</span></a>) which may be more appropriate than <code class="func">IsMatrix</code> for some purposes.</p>

<p>Note that the empty list <code class="code">[]</code> and more complex "empty" structures such as <code class="code">[[]]</code> are <em>not</em> matrices, although special methods allow them be used in place of matrices in some situations. See <code class="func">EmptyMatrix</code> (<a href="chap24.html#X8508A7EA812BA0CC"><span class="RefLink">24.5-3</span></a>) below.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[[0]]*[[]];</span>
[ [  ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMatrix([[]]);</span>
false
</pre></div>

<p><a id="X7CF42B8A845BC6A9" name="X7CF42B8A845BC6A9"></a></p>

<h5>24.2-2 IsOrdinaryMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsOrdinaryMatrix</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>An <em>ordinary matrix</em> is a matrix whose multiplication is the ordinary matrix multiplication.</p>

<p>Each matrix in internal representation is in the category <code class="func">IsOrdinaryMatrix</code>, and arithmetic operations with objects in <code class="func">IsOrdinaryMatrix</code> produce again matrices in <code class="func">IsOrdinaryMatrix</code>.</p>

<p>Note that we want that Lie matrices shall be matrices that behave in the same way as ordinary matrices, except that they have a different multiplication. So we must distinguish the different matrix multiplications, in order to be able to describe the applicability of multiplication, and also in order to form a matrix of the appropriate type as the sum, difference etc. of two matrices which have the same multiplication.</p>

<p><a id="X86EC33E17DD12D0E" name="X86EC33E17DD12D0E"></a></p>

<h5>24.2-3 IsLieMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLieMatrix</code>( <var class="Arg">mat</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A <em>Lie matrix</em> is a matrix whose multiplication is given by the Lie bracket. (Note that a matrix with ordinary matrix multiplication is in the category <code class="func">IsOrdinaryMatrix</code> (<a href="chap24.html#X7CF42B8A845BC6A9"><span class="RefLink">24.2-2</span></a>).)</p>

<p>Each matrix created by <code class="func">LieObject</code> (<a href="chap64.html#X87F121978775AF48"><span class="RefLink">64.1-1</span></a>) is in the category <code class="func">IsLieMatrix</code>, and arithmetic operations with objects in <code class="func">IsLieMatrix</code> produce again matrices in <code class="func">IsLieMatrix</code>.</p>

<p><a id="X7899335779A39A95" name="X7899335779A39A95"></a></p>

<h4>24.3 <span class="Heading">Operators for Matrices</span></h4>

<p>The rules for arithmetic operations involving matrices are in fact special cases of those for the arithmetic of lists, given in Section <a href="chap21.html#X845EEAF083D43CCE"><span class="RefLink">21.11</span></a> and the following sections, here we reiterate that definition, in the language of vectors and matrices.</p>

<p>Note that the additive behaviour sketched below is defined only for lists in the category <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>), and the multiplicative behaviour is defined only for lists in the category <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) (see <a href="chap21.html#X84D642967B8546B7"><span class="RefLink">21.12</span></a>).</p>

<p><code class="code"><var class="Arg">mat1</var> + <var class="Arg">mat2</var></code></p>

<p>returns the sum of the two matrices <var class="Arg">mat1</var> and <var class="Arg">mat2</var>, Probably the most usual situation is that <var class="Arg">mat1</var> and <var class="Arg">mat2</var> have the same dimensions and are defined over a common field; in this case the sum is a new matrix over the same field where each entry is the sum of the corresponding entries of the matrices.</p>

<p>In more general situations, the sum of two matrices need not be a matrix, for example adding an integer matrix <var class="Arg">mat1</var> and a matrix <var class="Arg">mat2</var> over a finite field yields the table of pointwise sums, which will be a mixture of finite field elements and integers if <var class="Arg">mat1</var> has bigger dimensions than <var class="Arg">mat2</var>.</p>

<p><code class="code"><var class="Arg">scalar</var> + <var class="Arg">mat</var></code></p>

<p><code class="code"><var class="Arg">mat</var> + <var class="Arg">scalar</var></code></p>

<p>returns the sum of the scalar <var class="Arg">scalar</var> and the matrix <var class="Arg">mat</var>. Probably the most usual situation is that the entries of <var class="Arg">mat</var> lie in a common field with <var class="Arg">scalar</var>; in this case the sum is a new matrix over the same field where each entry is the sum of the scalar and the corresponding entry of the matrix.</p>

<p>More general situations are for example the sum of an integer scalar and a matrix over a finite field, or the sum of a finite field element and an integer matrix.</p>

<p><code class="code"><var class="Arg">mat1</var> - <var class="Arg">mat2</var></code></p>

<p><code class="code"><var class="Arg">scalar</var> - <var class="Arg">mat</var></code></p>

<p><code class="code"><var class="Arg">mat</var> - <var class="Arg">scalar</var></code></p>

<p>Subtracting a matrix or scalar is defined as adding its additive inverse, so the statements for the addition hold likewise.</p>

<p><code class="code"><var class="Arg">scalar</var> * <var class="Arg">mat</var></code></p>

<p><code class="code"><var class="Arg">mat</var> * <var class="Arg">scalar</var></code></p>

<p>returns the product of the scalar <var class="Arg">scalar</var> and the matrix <var class="Arg">mat</var>. Probably the most usual situation is that the elements of <var class="Arg">mat</var> lie in a common field with <var class="Arg">scalar</var>; in this case the product is a new matrix over the same field where each entry is the product of the scalar and the corresponding entry of the matrix.</p>

<p>More general situations are for example the product of an integer scalar and a matrix over a finite field, or the product of a finite field element and an integer matrix.</p>

<p><code class="code"><var class="Arg">vec</var> * <var class="Arg">mat</var></code></p>

<p>returns the product of the row vector <var class="Arg">vec</var> and the matrix <var class="Arg">mat</var>. Probably the most usual situation is that <var class="Arg">vec</var> and <var class="Arg">mat</var> have the same lengths and are defined over a common field, and that all rows of <var class="Arg">mat</var> have the same length <span class="SimpleMath">m</span>, say; in this case the product is a new row vector of length <span class="SimpleMath">m</span> over the same field which is the sum of the scalar multiples of the rows of <var class="Arg">mat</var> with the corresponding entries of <var class="Arg">vec</var>.</p>

<p>More general situations are for example the product of an integer vector and a matrix over a finite field, or the product of a vector over a finite field and an integer matrix.</p>

<p><code class="code"><var class="Arg">mat</var> * <var class="Arg">vec</var></code></p>

<p>returns the product of the matrix <var class="Arg">mat</var> and the row vector <var class="Arg">vec</var>. (This is the standard product of a matrix with a <em>column</em> vector.) Probably the most usual situation is that the length of <var class="Arg">vec</var> and of all rows of <var class="Arg">mat</var> are equal, and that the elements of <var class="Arg">mat</var> and <var class="Arg">vec</var> lie in a common field; in this case the product is a new row vector of the same length as <var class="Arg">mat</var> and over the same field which is the sum of the scalar multiples of the columns of <var class="Arg">mat</var> with the corresponding entries of <var class="Arg">vec</var>.</p>

<p>More general situations are for example the product of an integer matrix and a vector over a finite field, or the product of a matrix over a finite field and an integer vector.</p>

<p><code class="code"><var class="Arg">mat1</var> * <var class="Arg">mat2</var></code></p>

<p>This form evaluates to the (Cauchy) product of the two matrices <var class="Arg">mat1</var> and <var class="Arg">mat2</var>. Probably the most usual situation is that the number of columns of <var class="Arg">mat1</var> equals the number of rows of <var class="Arg">mat2</var>, and that the elements of <var class="Arg">mat</var> and <var class="Arg">vec</var> lie in a common field; if <var class="Arg">mat1</var> is a matrix with <span class="SimpleMath">m</span> rows and <span class="SimpleMath">n</span> columns, say, and <var class="Arg">mat2</var> is a matrix with <span class="SimpleMath">n</span> rows and <span class="SimpleMath">o</span> columns, the result is a new matrix with <span class="SimpleMath">m</span> rows and <span class="SimpleMath">o</span> columns. The element in row <span class="SimpleMath">i</span> at position <span class="SimpleMath">j</span> of the product is the sum of <span class="SimpleMath"><var class="Arg">mat1</var>[i][l] * <var class="Arg">mat2</var>[l][j]</span>, with <span class="SimpleMath">l</span> running from <span class="SimpleMath">1</span> to <span class="SimpleMath">n</span>.</p>

<p><code class="code">Inverse( <var class="Arg">mat</var> )</code></p>

<p>returns the inverse of the matrix <var class="Arg">mat</var>, which must be an invertible square matrix. If <var class="Arg">mat</var> is not invertible then <code class="keyw">fail</code> is returned.</p>

<p><code class="code"><var class="Arg">mat1</var> / <var class="Arg">mat2</var></code></p>

<p><code class="code"><var class="Arg">scalar</var> / <var class="Arg">mat</var></code></p>

<p><code class="code"><var class="Arg">mat</var> / <var class="Arg">scalar</var></code></p>

<p><code class="code"><var class="Arg">vec</var> / <var class="Arg">mat</var></code></p>

<p>In general, <code class="code"><var class="Arg">left</var> / <var class="Arg">right</var></code> is defined as <code class="code"><var class="Arg">left</var> * <var class="Arg">right</var>^-1</code>. Thus in the above forms the right operand must always be invertible.</p>

<p><code class="code"><var class="Arg">mat</var> ^ <var class="Arg">int</var></code></p>

<p><code class="code"><var class="Arg">mat1</var> ^ <var class="Arg">mat2</var></code></p>

<p><code class="code"><var class="Arg">vec</var> ^ <var class="Arg">mat</var></code></p>

<p>Powering a square matrix <var class="Arg">mat</var> by an integer <var class="Arg">int</var> yields the <var class="Arg">int</var>-th power of <var class="Arg">mat</var>; if <var class="Arg">int</var> is negative then <var class="Arg">mat</var> must be invertible, if <var class="Arg">int</var> is <code class="code">0</code> then the result is the identity matrix <code class="code">One( <var class="Arg">mat</var> )</code>, even if <var class="Arg">mat</var> is not invertible.</p>

<p>Powering a square matrix <var class="Arg">mat1</var> by an invertible square matrix <var class="Arg">mat2</var> of the same dimensions yields the conjugate of <var class="Arg">mat1</var> by <var class="Arg">mat2</var>, i.e., the matrix <code class="code"><var class="Arg">mat2</var>^-1 * <var class="Arg">mat1</var> * <var class="Arg">mat2</var></code>.</p>

<p>Powering a row vector <var class="Arg">vec</var> by a matrix <var class="Arg">mat</var> is in every respect equivalent to <code class="code"><var class="Arg">vec</var> * <var class="Arg">mat</var></code>. This operations reflects the fact that matrices act naturally on row vectors by multiplication from the right, and that the powering operator is <strong class="pkg">GAP</strong>'s standard for group actions.</p>

<p><code class="code">Comm( <var class="Arg">mat1</var>, <var class="Arg">mat2</var> )</code></p>

<p>returns the commutator of the square invertible matrices <var class="Arg">mat1</var> and <var class="Arg">mat2</var> of the same dimensions and over a common field, which is the matrix <code class="code"><var class="Arg">mat1</var>^-1 * <var class="Arg">mat2</var>^-1 * <var class="Arg">mat1</var> * <var class="Arg">mat2</var></code>.</p>

<p>The following cases are still special cases of the general list arithmetic defined in <a href="chap21.html#X845EEAF083D43CCE"><span class="RefLink">21.11</span></a>.</p>

<p><code class="code"><var class="Arg">scalar</var> + <var class="Arg">matlist</var></code></p>

<p><code class="code"><var class="Arg">matlist</var> + <var class="Arg">scalar</var></code></p>

<p><code class="code"><var class="Arg">scalar</var> - <var class="Arg">matlist</var></code></p>

<p><code class="code"><var class="Arg">matlist</var> - <var class="Arg">scalar</var></code></p>

<p><code class="code"><var class="Arg">scalar</var> * <var class="Arg">matlist</var></code></p>

<p><code class="code"><var class="Arg">matlist</var> * <var class="Arg">scalar</var></code></p>

<p><code class="code"><var class="Arg">matlist</var> / <var class="Arg">scalar</var></code></p>

<p>A scalar <var class="Arg">scalar</var> may also be added, subtracted, multiplied with, or divided into a list <var class="Arg">matlist</var> of matrices. The result is a new list of matrices where each matrix is the result of performing the operation with the corresponding matrix in <var class="Arg">matlist</var>.</p>

<p><code class="code"><var class="Arg">mat</var> * <var class="Arg">matlist</var></code></p>

<p><code class="code"><var class="Arg">matlist</var> * <var class="Arg">mat</var></code></p>

<p>A matrix <var class="Arg">mat</var> may also be multiplied with a list <var class="Arg">matlist</var> of matrices. The result is a new list of matrices, where each entry is the product of <var class="Arg">mat</var> and the corresponding entry in <var class="Arg">matlist</var>.</p>

<p><code class="code"><var class="Arg">matlist</var> / <var class="Arg">mat</var></code></p>

<p>Dividing a list <var class="Arg">matlist</var> of matrices by an invertible matrix <var class="Arg">mat</var> evaluates to <code class="code"><var class="Arg">matlist</var> * <var class="Arg">mat</var>^-1</code>.</p>

<p><code class="code"><var class="Arg">vec</var> * <var class="Arg">matlist</var></code></p>

<p>returns the product of the vector <var class="Arg">vec</var> and the list of matrices <var class="Arg">mat</var>. The lengths <var class="Arg">l</var> of <var class="Arg">vec</var> and <var class="Arg">matlist</var> must be equal. All matrices in <var class="Arg">matlist</var> must have the same dimensions. The elements of <var class="Arg">vec</var> and the elements of the matrices in <var class="Arg">matlist</var> must lie in a common ring. The product is the sum over <code class="code"><var class="Arg">vec</var>[<var class="Arg">i</var>] * <var class="Arg">matlist</var>[<var class="Arg">i</var>]</code> with <var class="Arg">i</var> running from 1 to <var class="Arg">l</var>.</p>

<p>For the mutability of results of arithmetic operations, see <a href="chap12.html#X7F0C119682196D65"><span class="RefLink">12.6</span></a>.</p>

<p><a id="X7F5AD28E869B66CB" name="X7F5AD28E869B66CB"></a></p>

<h4>24.4 <span class="Heading">Properties and Attributes of Matrices</span></h4>

<p><a id="X83A9DC2085D3A972" name="X83A9DC2085D3A972"></a></p>

<h5>24.4-1 DimensionsMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DimensionsMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list of length 2, the first being the number of rows, the second being the number of columns of the matrix <var class="Arg">mat</var>. If <var class="Arg">mat</var> is malformed, that is, it is not a <code class="func">IsRectangularTable</code> (<a href="chap21.html#X79581E0387F7F7A9"><span class="RefLink">21.1-5</span></a>), returns <code class="keyw">fail</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DimensionsMat([[1,2,3],[4,5,6]]);</span>
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DimensionsMat([[1,2,3],[4,5]]);</span>
fail
</pre></div>

<p><a id="X80AE547B8095A5CB" name="X80AE547B8095A5CB"></a></p>

<h5>24.4-2 DefaultFieldOfMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DefaultFieldOfMatrix</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a matrix <var class="Arg">mat</var>, <code class="func">DefaultFieldOfMatrix</code> returns either a field (not necessarily the smallest one) containing all entries of <var class="Arg">mat</var>, or <code class="keyw">fail</code>.</p>

<p>If <var class="Arg">mat</var> is a matrix of finite field elements or a matrix of cyclotomics, <code class="func">DefaultFieldOfMatrix</code> returns the default field generated by the matrix entries (see <a href="chap59.html#X81B54A8378734C33"><span class="RefLink">59.3</span></a> and <a href="chap18.html#X79E25C3085AA568F"><span class="RefLink">18.1</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DefaultFieldOfMatrix([[Z(4),Z(8)]]);</span>
GF(2^6)
</pre></div>

<p><a id="X793D5E87870FFBCD" name="X793D5E87870FFBCD"></a></p>

<h5>24.4-3 TraceMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TraceMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Trace</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The trace of a square matrix is the sum of its diagonal entries.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TraceMat([[1,2,3],[4,5,6],[7,8,9]]);</span>
15
</pre></div>

<p><a id="X83045F6F82C180E1" name="X83045F6F82C180E1"></a></p>

<h5>24.4-4 DeterminantMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DeterminantMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Determinant</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the determinant of the square matrix <var class="Arg">mat</var>.</p>

<p>These methods assume implicitly that <var class="Arg">mat</var> is defined over an integral domain whose quotient field is implemented in <strong class="pkg">GAP</strong>. For matrices defined over an arbitrary commutative ring with one see <code class="func">DeterminantMatDivFree</code> (<a href="chap24.html#X7EEA7E7A7F6BE6F3"><span class="RefLink">24.4-6</span></a>).</p>

<p><a id="X84277D21848B7B7F" name="X84277D21848B7B7F"></a></p>

<h5>24.4-5 DeterminantMatDestructive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DeterminantMatDestructive</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Does the same as <code class="func">DeterminantMat</code> (<a href="chap24.html#X83045F6F82C180E1"><span class="RefLink">24.4-4</span></a>), with the difference that it may destroy its argument. The matrix <var class="Arg">mat</var> must be mutable.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DeterminantMat([[1,2],[2,1]]);</span>
-3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm:= [[1,2],[2,1]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DeterminantMatDestructive( mm );</span>
-3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm;</span>
[ [ 1, 2 ], [ 0, -3 ] ]
</pre></div>

<p><a id="X7EEA7E7A7F6BE6F3" name="X7EEA7E7A7F6BE6F3"></a></p>

<h5>24.4-6 DeterminantMatDivFree</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DeterminantMatDivFree</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the determinant of a square matrix <var class="Arg">mat</var> over an arbitrary commutative ring with one using the division free method of Mahajan and Vinay <a href="chapBib.html#biBMV97">[MV97]</a>.</p>

<p><a id="X848B80437CE65FF3" name="X848B80437CE65FF3"></a></p>

<h5>24.4-7 IsMonomialMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsMonomialMatrix</code>( <var class="Arg">mat</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A matrix is monomial if and only if it has exactly one nonzero entry in every row and every column.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonomialMatrix([[0,1],[1,0]]);</span>
true
</pre></div>

<p><a id="X7FF01BF686AD0623" name="X7FF01BF686AD0623"></a></p>

<h5>24.4-8 IsDiagonalMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsDiagonalMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns true if mat has only zero entries off the main diagonal, false otherwise.</p>

<p><a id="X7ECFBD9F8664982B" name="X7ECFBD9F8664982B"></a></p>

<h5>24.4-9 IsUpperTriangularMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsUpperTriangularMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns true if mat has only zero entries below the main diagonal, false otherwise.</p>

<p><a id="X81671CFD7CFE4819" name="X81671CFD7CFE4819"></a></p>

<h5>24.4-10 IsLowerTriangularMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLowerTriangularMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns true if mat has only zero entries below the main diagonal, false otherwise.</p>

<p><a id="X823FB2398697B957" name="X823FB2398697B957"></a></p>

<h4>24.5 <span class="Heading">Matrix Constructions</span></h4>

<p><a id="X7DB902CE848D1524" name="X7DB902CE848D1524"></a></p>

<h5>24.5-1 IdentityMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdentityMat</code>( <var class="Arg">m</var>[, <var class="Arg">R</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a (mutable) <var class="Arg">m</var><span class="SimpleMath">×</span><var class="Arg">m</var> identity matrix over the ring given by <var class="Arg">R</var>. Here, <var class="Arg">R</var> can be either a ring, or an element of a ring. By default, an integer matrix is created.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdentityMat(3);</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdentityMat(2,Integers mod 15);</span>
[ [ ZmodnZObj( 1, 15 ), ZmodnZObj( 0, 15 ) ], 
  [ ZmodnZObj( 0, 15 ), ZmodnZObj( 1, 15 ) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdentityMat(2,Z(3));</span>
[ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
</pre></div>

<p><a id="X86D343A77D9B3D4D" name="X86D343A77D9B3D4D"></a></p>

<h5>24.5-2 NullMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NullMat</code>( <var class="Arg">m</var>, <var class="Arg">n</var>[, <var class="Arg">R</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a (mutable) <var class="Arg">m</var><span class="SimpleMath">×</span><var class="Arg">n</var> null matrix over the ring given by by <var class="Arg">R</var>. Here, <var class="Arg">R</var> can be either a ring, or an element of a ring. By default, an integer matrix is created.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NullMat(3,2);</span>
[ [ 0, 0 ], [ 0, 0 ], [ 0, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NullMat(2,2,Integers mod 15);</span>
[ [ ZmodnZObj( 0, 15 ), ZmodnZObj( 0, 15 ) ], 
  [ ZmodnZObj( 0, 15 ), ZmodnZObj( 0, 15 ) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NullMat(3,2,Z(3));</span>
[ [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ]
</pre></div>

<p><a id="X8508A7EA812BA0CC" name="X8508A7EA812BA0CC"></a></p>

<h5>24.5-3 EmptyMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EmptyMatrix</code>( <var class="Arg">char</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is an empty (ordinary) matrix in characteristic <var class="Arg">char</var> that can be added to or multiplied with empty lists (representing zero-dimensional row vectors). It also acts (via the operation <code class="func">\^</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>)) on empty lists.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">EmptyMatrix(5);</span>
EmptyMatrix( 5 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsList(last);</span>
[  ]
</pre></div>

<p><a id="X81042E7A7F247ADE" name="X81042E7A7F247ADE"></a></p>

<h5>24.5-4 DiagonalMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DiagonalMat</code>( <var class="Arg">vector</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a diagonal matrix <var class="Arg">mat</var> with the diagonal entries given by <var class="Arg">vector</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DiagonalMat([1,2,3]);</span>
[ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]
</pre></div>

<p><a id="X806C62A67A7D5379" name="X806C62A67A7D5379"></a></p>

<h5>24.5-5 PermutationMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermutationMat</code>( <var class="Arg">perm</var>, <var class="Arg">dim</var>[, <var class="Arg">F</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a matrix in dimension <var class="Arg">dim</var> over the field given by <var class="Arg">F</var> (i.e. the smallest field containing the element <var class="Arg">F</var> or <var class="Arg">F</var> itself if it is a field) that represents the permutation <var class="Arg">perm</var> acting by permuting the basis vectors as it permutes points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationMat((1,2,3),4,1);</span>
[ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, 1 ] ]
</pre></div>

<p><a id="X7C52A38C79C36C35" name="X7C52A38C79C36C35"></a></p>

<h5>24.5-6 TransposedMatImmutable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransposedMatImmutable</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransposedMatAttr</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransposedMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransposedMatMutable</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransposedMatOp</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>These functions all return the transposed of the matrix <var class="Arg">mat</var>, i.e., a matrix <var class="Arg">trans</var> such that <code class="code"><var class="Arg">trans</var>[<var class="Arg">i</var>][<var class="Arg">k</var>] = <var class="Arg">mat</var>[<var class="Arg">k</var>][<var class="Arg">i</var>]</code> holds.</p>

<p>They differ only w.r.t. the mutability of the result.</p>

<p><code class="func">TransposedMat</code> is an attribute and hence returns an immutable result. <code class="func">TransposedMatMutable</code> is guaranteed to return a new <em>mutable</em> matrix.</p>

<p><code class="func">TransposedMatImmutable</code> and <code class="func">TransposedMatAttr</code> are synonyms of <code class="func">TransposedMat</code>, and <code class="func">TransposedMatOp</code> is a synonym of <code class="func">TransposedMatMutable</code>, in analogy to operations such as <code class="func">Zero</code> (<a href="chap31.html#X8040AC7A79FFC442"><span class="RefLink">31.10-3</span></a>).</p>

<p><a id="X7DBB40847E2B6252" name="X7DBB40847E2B6252"></a></p>

<h5>24.5-7 TransposedMatDestructive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransposedMatDestructive</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>If <var class="Arg">mat</var> is a mutable matrix, then the transposed is computed by swapping the entries in <var class="Arg">mat</var>. In this way <var class="Arg">mat</var> gets changed. In all other cases the transposed is computed by <code class="func">TransposedMat</code> (<a href="chap24.html#X7C52A38C79C36C35"><span class="RefLink">24.5-6</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransposedMat([[1,2,3],[4,5,6],[7,8,9]]);</span>
[ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm:= [[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransposedMatDestructive( mm );</span>
[ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm;</span>
[ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
</pre></div>

<p><a id="X8634C79E7DB22934" name="X8634C79E7DB22934"></a></p>

<h5>24.5-8 KroneckerProduct</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KroneckerProduct</code>( <var class="Arg">mat1</var>, <var class="Arg">mat2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The Kronecker product of two matrices is the matrix obtained when replacing each entry <var class="Arg">a</var> of <var class="Arg">mat1</var> by the product <code class="code"><var class="Arg">a</var>*<var class="Arg">mat2</var></code> in one matrix.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KroneckerProduct([[1,2]],[[5,7],[9,2]]);</span>
[ [ 5, 7, 10, 14 ], [ 9, 2, 18, 4 ] ]
</pre></div>

<p><a id="X845EC4D18054D140" name="X845EC4D18054D140"></a></p>

<h5>24.5-9 ReflectionMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReflectionMat</code>( <var class="Arg">coeffs</var>[, <var class="Arg">conj</var>][, <var class="Arg">root</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">coeffs</var> be a row vector. <code class="func">ReflectionMat</code> returns the matrix of the reflection in this vector.</p>

<p>More precisely, if <var class="Arg">coeffs</var> is the coefficients list of a vector <span class="SimpleMath">v</span> w.r.t. a basis <span class="SimpleMath">B</span> (see <code class="func">Basis</code> (<a href="chap61.html#X837BE54C80DE368E"><span class="RefLink">61.5-2</span></a>)), say, then the returned matrix describes the reflection in <span class="SimpleMath">v</span> w.r.t. <span class="SimpleMath">B</span> as a map on a row space, with action from the right.</p>

<p>The optional argument <var class="Arg">root</var> is a root of unity that determines the order of the reflection. The default is a reflection of order 2. For triflections one should choose a third root of unity etc. (see <code class="func">E</code> (<a href="chap18.html#X8631458886314588"><span class="RefLink">18.1-1</span></a>)).</p>

<p><var class="Arg">conj</var> is a function of one argument that conjugates a ring element. The default is <code class="func">ComplexConjugate</code> (<a href="chap18.html#X7BE001A0811CD599"><span class="RefLink">18.5-2</span></a>).</p>

<p>The matrix of the reflection in <span class="SimpleMath">v</span> is defined as</p>

<p class="pcenter">M = I_n + overline{v^tr} ⋅ (w-1) / ( v overline{v^tr} ) ⋅ v</p>

<p>where <span class="SimpleMath">w</span> equals <var class="Arg">root</var>, <span class="SimpleMath">n</span> is the length of the coefficient list, and <span class="SimpleMath">overline{vphantomx}</span> denotes the conjugation.</p>

<p>So <span class="SimpleMath">v</span> is mapped to <span class="SimpleMath">w v</span>, with default <span class="SimpleMath">-v</span>, and any vector <span class="SimpleMath">x</span> with the property <span class="SimpleMath">x overline{v^tr} = 0</span> is fixed by the reflection.</p>

<p><a id="X7DEBC9967DFDFC18" name="X7DEBC9967DFDFC18"></a></p>

<h5>24.5-10 PrintArray</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrintArray</code>( <var class="Arg">array</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>pretty-prints the array <var class="Arg">array</var>.</p>

<p><a id="X79CC5F568252D341" name="X79CC5F568252D341"></a></p>

<h4>24.6 <span class="Heading">Random Matrices</span></h4>

<p><a id="X7F957F0280A87961" name="X7F957F0280A87961"></a></p>

<h5>24.6-1 RandomMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomMat</code>( <var class="Arg">m</var>, <var class="Arg">n</var>[, <var class="Arg">R</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">RandomMat</code> returns a new mutable random matrix with <var class="Arg">m</var> rows and <var class="Arg">n</var> columns with elements taken from the ring <var class="Arg">R</var>, which defaults to <code class="func">Integers</code> (<a href="chap14.html#X853DF11B80068ED5"><span class="RefLink">14</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomMat(2,3,GF(3));</span>
[ [ Z(3), Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, Z(3) ] ]
</pre></div>

<p><a id="X7C939B4A7EDF015D" name="X7C939B4A7EDF015D"></a></p>

<h5>24.6-2 RandomInvertibleMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomInvertibleMat</code>( <var class="Arg">m</var>[, <var class="Arg">R</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">RandomInvertibleMat</code> returns a new mutable invertible random matrix with <var class="Arg">m</var> rows and columns with elements taken from the ring <var class="Arg">R</var>, which defaults to <code class="func">Integers</code> (<a href="chap14.html#X853DF11B80068ED5"><span class="RefLink">14</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := RandomInvertibleMat(4);</span>
[ [ -4, 1, 0, -1 ], [ -1, -1, 1, -1 ], [ 1, -2, -1, -2 ], 
  [ 0, -1, 2, -2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m^-1;</span>
[ [ -1/8, -11/24, 1/24, 1/4 ], [ 1/4, -13/12, -1/12, 1/2 ], 
  [ -1/8, 5/24, -7/24, 1/4 ], [ -1/4, 3/4, -1/4, -1/2 ] ]
</pre></div>

<p><a id="X84743732846ACB44" name="X84743732846ACB44"></a></p>

<h5>24.6-3 RandomUnimodularMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomUnimodularMat</code>( <var class="Arg">m</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a new random mutable <var class="Arg">m</var><span class="SimpleMath">×</span><var class="Arg">m</var> matrix with integer entries that is invertible over the integers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := RandomUnimodularMat(3);</span>
[ [ -5, 1, 0 ], [ 12, -2, -1 ], [ -14, 3, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m^-1;</span>
[ [ -3, 0, 1 ], [ -14, 0, 5 ], [ -8, -1, 2 ] ]
</pre></div>

<p><a id="X85485DCE809E323A" name="X85485DCE809E323A"></a></p>

<h4>24.7 <span class="Heading">Matrices Representing Linear Equations and the Gaussian Algorithm</span></h4>

<p><a id="X7B21AE7987D4FB31" name="X7B21AE7987D4FB31"></a></p>

<h5>24.7-1 RankMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">mat</var> is a matrix whose rows span a free module over the ring generated by the matrix entries and their inverses then <code class="func">RankMat</code> returns the dimension of this free module. Otherwise <code class="keyw">fail</code> is returned.</p>

<p>Note that <code class="func">RankMat</code> may perform a Gaussian elimination. For large rational matrices this may take very long, because the entries may become very large.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankMat(mat);</span>
2
</pre></div>

<p><a id="X7BA26C3387AB434E" name="X7BA26C3387AB434E"></a></p>

<h5>24.7-2 TriangulizedMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TriangulizedMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RREF</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Computes an upper triangular form of the matrix <var class="Arg">mat</var> via the Gaussian Algorithm. It returns a immutable matrix in upper triangular form. This is sometimes also called "Hermite normal form" or "Reduced Row Echelon Form". <code class="code">RREF</code> is a synonym for <code class="code">TriangulizedMat</code>.</p>

<p><a id="X8384CA8E7B3850D3" name="X8384CA8E7B3850D3"></a></p>

<h5>24.7-3 TriangulizeMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TriangulizeMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Applies the Gaussian Algorithm to the mutable matrix <var class="Arg">mat</var> and changes <var class="Arg">mat</var> such that it is in upper triangular normal form (sometimes called "Hermite normal form" or "Reduced Row Echelon Form").</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:=TransposedMatMutable(mat);</span>
[ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TriangulizeMat(m);m;</span>
[ [ 1, 0, -1 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:=TransposedMatMutable(mat);</span>
[ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TriangulizedMat(m);m;</span>
[ [ 1, 0, -1 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
[ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
</pre></div>

<p><a id="X7DA0D5887DB12DC4" name="X7DA0D5887DB12DC4"></a></p>

<h5>24.7-4 NullspaceMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NullspaceMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TriangulizedNullspaceMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of row vectors that form a basis of the vector space of solutions to the equation <code class="code"><var class="Arg">vec</var>*<var class="Arg">mat</var>=0</code>. The result is an immutable matrix. This basis is not guaranteed to be in any specific form.</p>

<p>The variant <code class="func">TriangulizedNullspaceMat</code> returns a basis of the nullspace in triangulized form as is often needed for algorithms.</p>

<p><a id="X87684B0F7AB7B7DB" name="X87684B0F7AB7B7DB"></a></p>

<h5>24.7-5 NullspaceMatDestructive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NullspaceMatDestructive</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TriangulizedNullspaceMatDestructive</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This function does the same as <code class="func">NullspaceMat</code> (<a href="chap24.html#X7DA0D5887DB12DC4"><span class="RefLink">24.7-4</span></a>). However, the latter function makes a copy of <var class="Arg">mat</var> to avoid having to change it. This function does not do that; it returns the nullspace and may destroy <var class="Arg">mat</var>; this saves a lot of memory in case <var class="Arg">mat</var> is big. The matrix <var class="Arg">mat</var> must be mutable.</p>

<p>The variant <code class="func">TriangulizedNullspaceMatDestructive</code> returns a basis of the nullspace in triangulized form. It may destroy the matrix <var class="Arg">mat</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NullspaceMat(mat);</span>
[ [ 1, -2, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm:=[[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NullspaceMatDestructive( mm );</span>
[ [ 1, -2, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm;</span>
[ [ 1, 2, 3 ], [ 0, -3, -6 ], [ 0, 0, 0 ] ]
</pre></div>

<p><a id="X838A519C7CD2969E" name="X838A519C7CD2969E"></a></p>

<h5>24.7-6 SolutionMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SolutionMat</code>( <var class="Arg">mat</var>, <var class="Arg">vec</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a row vector <var class="Arg">x</var> that is a solution of the equation <code class="code"><var class="Arg">x</var> * <var class="Arg">mat</var> = <var class="Arg">vec</var></code>. It returns <code class="keyw">fail</code> if no such vector exists.</p>

<p><a id="X7A7880D27CE7C1FE" name="X7A7880D27CE7C1FE"></a></p>

<h5>24.7-7 SolutionMatDestructive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SolutionMatDestructive</code>( <var class="Arg">mat</var>, <var class="Arg">vec</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Does the same as <code class="code">SolutionMat( <var class="Arg">mat</var>, <var class="Arg">vec</var> )</code> except that it may destroy the matrix <var class="Arg">mat</var> and the vector <var class="Arg">vec</var>. The matrix <var class="Arg">mat</var> must be mutable.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SolutionMat(mat,[3,5,7]);</span>
[ 5/3, 1/3, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm:= [[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:= [3,5,7];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SolutionMatDestructive( mm, v );</span>
[ 5/3, 1/3, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm;</span>
[ [ 1, 2, 3 ], [ 0, -3, -6 ], [ 0, 0, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v;</span>
[ 0, 0, 0 ]
</pre></div>

<p><a id="X7AB5AC547809F999" name="X7AB5AC547809F999"></a></p>

<h5>24.7-8 BaseFixedSpace</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BaseFixedSpace</code>( <var class="Arg">mats</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">BaseFixedSpace</code> returns a list of row vectors that form a base of the vector space <span class="SimpleMath">V</span> such that <span class="SimpleMath">v M = v</span> for all <span class="SimpleMath">v</span> in <span class="SimpleMath">V</span> and all matrices <span class="SimpleMath">M</span> in the list <var class="Arg">mats</var>. (This is the common eigenspace of all matrices in <var class="Arg">mats</var> for the eigenvalue 1.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BaseFixedSpace([[[1,2],[0,1]]]);</span>
[ [ 0, 1 ] ]
</pre></div>

<p><a id="X871FCAA97C60B2BA" name="X871FCAA97C60B2BA"></a></p>

<h4>24.8 <span class="Heading">Eigenvectors and eigenvalues</span></h4>

<p><a id="X7A2462CC7B0C9D66" name="X7A2462CC7B0C9D66"></a></p>

<h5>24.8-1 GeneralisedEigenvalues</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneralisedEigenvalues</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneralizedEigenvalues</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The generalised eigenvalues of the matrix <var class="Arg">A</var> over the field <var class="Arg">F</var>.</p>

<p><a id="X845CA0457D65876D" name="X845CA0457D65876D"></a></p>

<h5>24.8-2 GeneralisedEigenspaces</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneralisedEigenspaces</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneralizedEigenspaces</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The generalised eigenspaces of the matrix <var class="Arg">A</var> over the field <var class="Arg">F</var>.</p>

<p><a id="X8413C6FB7CEE9D59" name="X8413C6FB7CEE9D59"></a></p>

<h5>24.8-3 Eigenvalues</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Eigenvalues</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The eigenvalues of the matrix <var class="Arg">A</var> over the field <var class="Arg">F</var>.</p>

<p><a id="X7A6B047281B52FD7" name="X7A6B047281B52FD7"></a></p>

<h5>24.8-4 Eigenspaces</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Eigenspaces</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The eigenspaces of the matrix <var class="Arg">A</var> over the field <var class="Arg">F</var>.</p>

<p><a id="X8506584579D4EA18" name="X8506584579D4EA18"></a></p>

<h5>24.8-5 Eigenvectors</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Eigenvectors</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The eigenvectors of the matrix <var class="Arg">A</var> over the field <var class="Arg">F</var>.</p>

<p><a id="X7E5405D085661B29" name="X7E5405D085661B29"></a></p>

<h4>24.9 <span class="Heading">Elementary Divisors</span></h4>

<p>See also chapter <a href="chap25.html#X8414F20D8412DDA4"><span class="RefLink">25</span></a>.</p>

<p><a id="X7AC4D74F81908109" name="X7AC4D74F81908109"></a></p>

<h5>24.9-1 ElementaryDivisorsMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ElementaryDivisorsMat</code>( [<var class="Arg">ring</var>, ]<var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ElementaryDivisorsMatDestructive</code>( <var class="Arg">ring</var>, <var class="Arg">mat</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a list of the elementary divisors, i.e., the unique <span class="SimpleMath">d</span> with <span class="SimpleMath">d[i]</span> divides <span class="SimpleMath">d[i+1]</span> and <var class="Arg">mat</var> is equivalent to a diagonal matrix with the elements <span class="SimpleMath">d[i]</span> on the diagonal. The operations are performed over the euclidean ring <var class="Arg">ring</var>, which must contain all matrix entries. For compatibility reasons it can be omitted and defaults to the <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>) of the matrix entries.</p>

<p>The function <code class="func">ElementaryDivisorsMatDestructive</code> produces the same result but in the process may destroy the contents of <var class="Arg">mat</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ElementaryDivisorsMat(mat);</span>
[ 1, 3, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=Indeterminate(Rationals,"x");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=mat*One(x)-x*mat^0;       </span>
[ [ -x+1, 2, 3 ], [ 4, -x+5, 6 ], [ 7, 8, -x+9 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);</span>
[ 1, 1, x^3-15*x^2-18*x ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=KroneckerProduct(CompanionMat((x-1)^2),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                         CompanionMat((x^3-1)*(x-1)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=mat*One(x)-x*mat^0;</span>
[ [ -x, 0, 0, 0, 0, 0, 0, 1 ], [ 0, -x, 0, 0, -1, 0, 0, -1 ], 
  [ 0, 0, -x, 0, 0, -1, 0, 0 ], [ 0, 0, 0, -x, 0, 0, -1, -1 ], 
  [ 0, 0, 0, -1, -x, 0, 0, -2 ], [ 1, 0, 0, 1, 2, -x, 0, 2 ], 
  [ 0, 1, 0, 0, 0, 2, -x, 0 ], [ 0, 0, 1, 1, 0, 0, 2, -x+2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);</span>
[ 1, 1, 1, 1, 1, 1, x-1, x^7-x^6-2*x^4+2*x^3+x-1 ]
</pre></div>

<p><a id="X7AA1C9047B102204" name="X7AA1C9047B102204"></a></p>

<h5>24.9-2 ElementaryDivisorsTransformationsMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ElementaryDivisorsTransformationsMat</code>( [<var class="Arg">ring</var>, ]<var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ElementaryDivisorsTransformationsMatDestructive</code>( <var class="Arg">ring</var>, <var class="Arg">mat</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">ElementaryDivisorsTransformations</code>, in addition to the tasks done by <code class="code">ElementaryDivisorsMat</code>, also calculates transforming matrices. It returns a record with components <code class="code">normal</code> (a matrix <span class="SimpleMath">S</span>), <code class="code">rowtrans</code> (a matrix <span class="SimpleMath">P</span>), and <code class="code">coltrans</code> (a matrix <span class="SimpleMath">Q</span>) such that <span class="SimpleMath">P A Q = S</span>. The operations are performed over the euclidean ring <var class="Arg">ring</var>, which must contain all matrix entries. For compatibility reasons it can be omitted and defaults to the <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>) of the matrix entries.</p>

<p>The function <code class="func">ElementaryDivisorsTransformationsMatDestructive</code> produces the same result but in the process destroys the contents of <var class="Arg">mat</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=KroneckerProduct(CompanionMat((x-1)^2),CompanionMat((x^3-1)*(x-1)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=mat*One(x)-x*mat^0;</span>
[ [ -x, 0, 0, 0, 0, 0, 0, 1 ], [ 0, -x, 0, 0, -1, 0, 0, -1 ], 
  [ 0, 0, -x, 0, 0, -1, 0, 0 ], [ 0, 0, 0, -x, 0, 0, -1, -1 ], 
  [ 0, 0, 0, -1, -x, 0, 0, -2 ], [ 1, 0, 0, 1, 2, -x, 0, 2 ], 
  [ 0, 1, 0, 0, 0, 2, -x, 0 ], [ 0, 0, 1, 1, 0, 0, 2, -x+2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:=ElementaryDivisorsTransformationsMat(PolynomialRing(Rationals,1),mat);</span>
rec( coltrans := [ [ 0, 0, 0, 0, 0, 0, 1/6*x^2-7/9*x-1/18, -3*x^3-x^2-x-1 ], 
      [ 0, 0, 0, 0, 0, 0, -1/6*x^2+x-1, 3*x^3-3*x^2 ], 
      [ 0, 0, 0, 0, 0, 1, -1/18*x^4+1/3*x^3-1/3*x^2-1/9*x, x^5-x^4+2*x^2-2*x 
         ], [ 0, 0, 0, 0, -1, 0, -1/9*x^3+1/2*x^2+1/9*x, 2*x^4+x^3+x^2+2*x ],
      [ 0, -1, 0, 0, 0, 0, -2/9*x^2+19/18*x, 4*x^3+x^2+x ], 
      [ 0, 0, -1, 0, 0, -x, 1/18*x^5-1/3*x^4+1/3*x^3+1/9*x^2, 
          -x^6+x^5-2*x^3+2*x^2 ], 
      [ 0, 0, 0, -1, x, 0, 1/9*x^4-2/3*x^3+2/3*x^2+1/18*x, 
          -2*x^5+2*x^4-x^2+x ], 
      [ 1, 0, 0, 0, 0, 0, 1/6*x^3-7/9*x^2-1/18*x, -3*x^4-x^3-x^2-x ] ], 
  normal := [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0 ], 
      [ 0, 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0 ], 
      [ 0, 0, 0, 0, 0, 0, x-1, 0 ], 
      [ 0, 0, 0, 0, 0, 0, 0, x^7-x^6-2*x^4+2*x^3+x-1 ] ], 
  rowtrans := [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0 ], 
      [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 1, 0, 0, 0, 0 ], 
      [ -x+2, -x, 0, 0, 1, 0, 0, 0 ], 
      [ 2*x^2-4*x+2, 2*x^2-x, 0, 2, -2*x+1, 0, 0, 1 ], 
      [ 3*x^3-6*x^2+3*x, 3*x^3-2*x^2, 2, 3*x, -3*x^2+2*x, 0, 1, 2*x ], 
      [ 1/6*x^8-7/6*x^7+2*x^6-4/3*x^5+7/3*x^4-4*x^3+13/6*x^2-7/6*x+2, 
          1/6*x^8-17/18*x^7+13/18*x^6-5/18*x^5+35/18*x^4-31/18*x^3+1/9*x^2-x+\
2, 1/9*x^5-5/9*x^4+1/9*x^3-1/9*x^2+14/9*x-1/9, 
          1/6*x^6-5/6*x^5+1/6*x^4-1/6*x^3+11/6*x^2-1/6*x, 
          -1/6*x^7+17/18*x^6-13/18*x^5+5/18*x^4-35/18*x^3+31/18*x^2-1/9*x+1, 
          1, 1/18*x^5-5/18*x^4+1/18*x^3-1/18*x^2+23/18*x-1/18, 
          1/9*x^6-5/9*x^5+1/9*x^4-1/9*x^3+14/9*x^2-1/9*x ] ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t.rowtrans*mat*t.coltrans;</span>
[ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0 ], 
  [ 0, 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0 ], 
  [ 0, 0, 0, 0, 0, 0, x-1, 0 ], 
  [ 0, 0, 0, 0, 0, 0, 0, x^7-x^6-2*x^4+2*x^3+x-1 ] ]
</pre></div>

<p><a id="X85819D3F7A582180" name="X85819D3F7A582180"></a></p>

<h5>24.9-3 DiagonalizeMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DiagonalizeMat</code>( <var class="Arg">ring</var>, <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>brings the mutable matrix <var class="Arg">mat</var>, considered as a matrix over <var class="Arg">ring</var>, into diagonal form by elementary row and column operations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:=[[1,2],[2,1]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DiagonalizeMat(Integers,m);m;</span>
[ [ 1, 0 ], [ 0, 3 ] ]
</pre></div>

<p><a id="X7CA6B51D7AE3172B" name="X7CA6B51D7AE3172B"></a></p>

<h4>24.10 <span class="Heading">Echelonized Matrices</span></h4>

<p><a id="X7D5D6BD07B7E981B" name="X7D5D6BD07B7E981B"></a></p>

<h5>24.10-1 SemiEchelonMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SemiEchelonMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A matrix over a field <span class="SimpleMath">F</span> is in semi-echelon form if the first nonzero element in each row is the identity of <span class="SimpleMath">F</span>, and all values exactly below these pivots are the zero of <span class="SimpleMath">F</span>.</p>

<p><code class="func">SemiEchelonMat</code> returns a record that contains information about a semi-echelonized form of the matrix <var class="Arg">mat</var>.</p>

<p>The components of this record are</p>


<dl>
<dt><strong class="Mark"><code class="code">vectors</code></strong></dt>
<dd><p>list of row vectors, each with pivot element the identity of <span class="SimpleMath">F</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">heads</code></strong></dt>
<dd><p>list that contains at position <var class="Arg">i</var>, if nonzero, the number of the row for that the pivot element is in column <var class="Arg">i</var>.</p>

</dd>
</dl>
<p><a id="X8251F6F57D346385" name="X8251F6F57D346385"></a></p>

<h5>24.10-2 SemiEchelonMatDestructive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SemiEchelonMatDestructive</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This does the same as <code class="code">SemiEchelonMat( <var class="Arg">mat</var> )</code>, except that it may (and probably will) destroy the matrix <var class="Arg">mat</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm:=[[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SemiEchelonMatDestructive( mm );</span>
rec( heads := [ 1, 2, 0 ], vectors := [ [ 1, 2, 3 ], [ 0, 1, 2 ] ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm;</span>
[ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
</pre></div>

<p><a id="X7EFD1DB5861A54F0" name="X7EFD1DB5861A54F0"></a></p>

<h5>24.10-3 SemiEchelonMatTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SemiEchelonMatTransformation</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>does the same as <code class="func">SemiEchelonMat</code> (<a href="chap24.html#X7D5D6BD07B7E981B"><span class="RefLink">24.10-1</span></a>) but additionally stores the linear transformation <span class="SimpleMath">T</span> performed on the matrix. The additional components of the result are</p>


<dl>
<dt><strong class="Mark"><code class="code">coeffs</code></strong></dt>
<dd><p>a list of coefficients vectors of the <code class="code">vectors</code> component, with respect to the rows of <var class="Arg">mat</var>, that is, <code class="code">coeffs * mat</code> is the <code class="code">vectors</code> component.</p>

</dd>
<dt><strong class="Mark"><code class="code">relations</code></strong></dt>
<dd><p>a list of basis vectors for the (left) null space of <var class="Arg">mat</var>.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SemiEchelonMatTransformation([[1,2,3],[0,0,1]]);</span>
rec( coeffs := [ [ 1, 0 ], [ 0, 1 ] ], heads := [ 1, 0, 2 ], 
  relations := [  ], vectors := [ [ 1, 2, 3 ], [ 0, 0, 1 ] ] )
</pre></div>

<p><a id="X827D7971800DB661" name="X827D7971800DB661"></a></p>

<h5>24.10-4 SemiEchelonMats</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SemiEchelonMats</code>( <var class="Arg">mats</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>A list of matrices over a field <span class="SimpleMath">F</span> is in semi-echelon form if the list of row vectors obtained on concatenating the rows of each matrix is a semi-echelonized matrix (see <code class="func">SemiEchelonMat</code> (<a href="chap24.html#X7D5D6BD07B7E981B"><span class="RefLink">24.10-1</span></a>)).</p>

<p><code class="func">SemiEchelonMats</code> returns a record that contains information about a semi-echelonized form of the list <var class="Arg">mats</var> of matrices.</p>

<p>The components of this record are</p>


<dl>
<dt><strong class="Mark"><code class="code">vectors</code></strong></dt>
<dd><p>list of matrices, each with pivot element the identity of <span class="SimpleMath">F</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">heads</code></strong></dt>
<dd><p>matrix that contains at position [<var class="Arg">i</var>,<var class="Arg">j</var>], if nonzero, the number of the matrix that has the pivot element in this position</p>

</dd>
</dl>
<p><a id="X808F493B839BC7A6" name="X808F493B839BC7A6"></a></p>

<h5>24.10-5 SemiEchelonMatsDestructive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SemiEchelonMatsDestructive</code>( <var class="Arg">mats</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Does the same as <code class="code">SemiEchelonmats</code>, except that it may destroy its argument. Therefore the argument must be a list of matrices that re mutable.</p>

<p><a id="X86B0D4A886BC0C6E" name="X86B0D4A886BC0C6E"></a></p>

<h4>24.11 <span class="Heading">Matrices as Basis of a Row Space</span></h4>

<p>See also chapter <a href="chap25.html#X8414F20D8412DDA4"><span class="RefLink">25</span></a></p>

<p><a id="X7AD6B5F5794D9E46" name="X7AD6B5F5794D9E46"></a></p>

<h5>24.11-1 BaseMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BaseMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a basis for the row space generated by the rows of <var class="Arg">mat</var> in the form of an immutable matrix.</p>

<p><a id="X78B094597E382A5F" name="X78B094597E382A5F"></a></p>

<h5>24.11-2 BaseMatDestructive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BaseMatDestructive</code>( <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Does the same as <code class="func">BaseMat</code> (<a href="chap24.html#X7AD6B5F5794D9E46"><span class="RefLink">24.11-1</span></a>), with the difference that it may destroy the matrix <var class="Arg">mat</var>. The matrix <var class="Arg">mat</var> must be mutable.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BaseMat(mat);</span>
[ [ 1, 2, 3 ], [ 0, 1, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm:= [[1,2,3],[4,5,6],[5,7,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BaseMatDestructive( mm );</span>
[ [ 1, 2, 3 ], [ 0, 1, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mm;</span>
[ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
</pre></div>

<p><a id="X78B94EFF87A455BE" name="X78B94EFF87A455BE"></a></p>

<h5>24.11-3 BaseOrthogonalSpaceMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BaseOrthogonalSpaceMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Let <span class="SimpleMath">V</span> be the row space generated by the rows of <var class="Arg">mat</var> (over any field that contains all entries of <var class="Arg">mat</var>). <code class="code">BaseOrthogonalSpaceMat( <var class="Arg">mat</var> )</code> computes a base of the orthogonal space of <span class="SimpleMath">V</span>.</p>

<p>The rows of <var class="Arg">mat</var> need not be linearly independent.</p>

<p><a id="X7AFF8BCF80C88B45" name="X7AFF8BCF80C88B45"></a></p>

<h5>24.11-4 SumIntersectionMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SumIntersectionMat</code>( <var class="Arg">M1</var>, <var class="Arg">M2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>performs Zassenhaus' algorithm to compute bases for the sum and the intersection of spaces generated by the rows of the matrices <var class="Arg">M1</var>, <var class="Arg">M2</var>.</p>

<p>returns a list of length 2, at first position a base of the sum, at second position a base of the intersection. Both bases are in semi-echelon form (see <a href="chap24.html#X7CA6B51D7AE3172B"><span class="RefLink">24.10</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SumIntersectionMat(mat,[[2,7,6],[5,9,4]]);</span>
[ [ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 1 ] ], [ [ 1, -3/4, -5/2 ] ] ]
</pre></div>

<p><a id="X8245D54F7AC532EB" name="X8245D54F7AC532EB"></a></p>

<h5>24.11-5 BaseSteinitzVectors</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BaseSteinitzVectors</code>( <var class="Arg">bas</var>, <var class="Arg">mat</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>find vectors extending mat to a basis spanning the span of <var class="Arg">bas</var>. Both <var class="Arg">bas</var> and <var class="Arg">mat</var> must be matrices of full (row) rank. It returns a record with the following components:</p>


<dl>
<dt><strong class="Mark"><code class="code">subspace</code></strong></dt>
<dd><p>s a basis of the space spanned by <var class="Arg">mat</var> in upper triangular form with leading ones at all echelon steps and zeroes above these ones.</p>

</dd>
<dt><strong class="Mark"><code class="code">factorspace</code></strong></dt>
<dd><p>is a list of extending vectors in upper triangular form.</p>

</dd>
<dt><strong class="Mark"><code class="code">factorzero</code></strong></dt>
<dd><p>is a zero vector.</p>

</dd>
<dt><strong class="Mark"><code class="code">heads</code></strong></dt>
<dd><p>is a list of integers which can be used to decompose vectors in the basis vectors. The <var class="Arg">i</var>th entry indicating the vector that gives an echelon step at position <var class="Arg">i</var>. A negative number indicates an echelon step in the subspace, a positive number an echelon step in the complement, the absolute value gives the position of the vector in the lists <code class="code">subspace</code> and <code class="code">factorspace</code>.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BaseSteinitzVectors(IdentityMat(3,1),[[11,13,15]]);</span>
rec( factorspace := [ [ 0, 1, 15/13 ], [ 0, 0, 1 ] ], 
  factorzero := [ 0, 0, 0 ], heads := [ -1, 1, 2 ], 
  subspace := [ [ 1, 13/11, 15/11 ] ] )
</pre></div>

<p><a id="X79D5E53685F0FBEE" name="X79D5E53685F0FBEE"></a></p>

<h4>24.12 <span class="Heading">Triangular Matrices</span></h4>

<p><a id="X82B6B0298179D895" name="X82B6B0298179D895"></a></p>

<h5>24.12-1 DiagonalOfMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DiagonalOfMat</code>( <var class="Arg">mat</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the diagonal of the matrix <var class="Arg">mat</var>. If <var class="Arg">mat</var> is not a square matrix, then the result has the same length as the rows of <var class="Arg">mat</var>, and is padded with zeros if <var class="Arg">mat</var> has fewer rows than columns.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DiagonalOfMat([[1,2,3],[4,5,6]]);</span>
[ 1, 5, 0 ]
</pre></div>

<p><a id="X84A78C057F9DAE5E" name="X84A78C057F9DAE5E"></a></p>

<h5>24.12-2 UpperSubdiagonal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperSubdiagonal</code>( <var class="Arg">mat</var>, <var class="Arg">pos</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a mutable list containing the entries of the <var class="Arg">pos</var>th upper subdiagonal of <var class="Arg">mat</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperSubdiagonal(mat,1);</span>
[ 2, 6 ]
</pre></div>

<p><a id="X84D74DEA798A9094" name="X84D74DEA798A9094"></a></p>

<h5>24.12-3 DepthOfUpperTriangularMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DepthOfUpperTriangularMatrix</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">mat</var> is an upper triangular matrix this attribute returns the index of the first nonzero diagonal.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DepthOfUpperTriangularMatrix([[0,1,2],[0,0,1],[0,0,0]]);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DepthOfUpperTriangularMatrix([[0,0,2],[0,0,0],[0,0,0]]);</span>
2
</pre></div>

<p><a id="X85B403857F2855F7" name="X85B403857F2855F7"></a></p>

<h4>24.13 <span class="Heading">Matrices as Linear Mappings</span></h4>

<p><a id="X87FA0A727CDB060B" name="X87FA0A727CDB060B"></a></p>

<h5>24.13-1 CharacteristicPolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CharacteristicPolynomial</code>( [<var class="Arg">F</var>, <var class="Arg">E</var>, ]<var class="Arg">mat</var>[, <var class="Arg">ind</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a square matrix <var class="Arg">mat</var>, <code class="func">CharacteristicPolynomial</code> returns the <em>characteristic polynomial</em> of <var class="Arg">mat</var>, that is, the <code class="func">StandardAssociate</code> (<a href="chap56.html#X7B1A9A4C7C59FB36"><span class="RefLink">56.5-5</span></a>) of the determinant of the matrix <span class="SimpleMath"><var class="Arg">mat</var> - X ⋅ I</span>, where <span class="SimpleMath">X</span> is an indeterminate and <span class="SimpleMath">I</span> is the appropriate identity matrix.</p>

<p>If fields <var class="Arg">F</var> and <var class="Arg">E</var> are given, then <var class="Arg">F</var> must be a subfield of <var class="Arg">E</var>, and <var class="Arg">mat</var> must have entries in <var class="Arg">E</var>. Then <code class="func">CharacteristicPolynomial</code> returns the characteristic polynomial of the <var class="Arg">F</var>-linear mapping induced by <var class="Arg">mat</var> on the underlying <var class="Arg">E</var>-vector space of <var class="Arg">mat</var>. In this case, the characteristic polynomial is computed using <code class="func">BlownUpMat</code> (<a href="chap24.html#X85923C107A4569D0"><span class="RefLink">24.13-3</span></a>) for the field extension of <span class="SimpleMath">E/F</span> generated by the default field. Thus, if <span class="SimpleMath">F = E</span>, the result is the same as for the one argument version.</p>

<p>The returned polynomials are expressed in the indeterminate number <var class="Arg">ind</var>. If <var class="Arg">ind</var> is not given, it defaults to <span class="SimpleMath">1</span>.</p>

<p><code class="code">CharacteristicPolynomial(<var class="Arg">F</var>, <var class="Arg">E</var>, <var class="Arg">mat</var>)</code> is a multiple of the minimal polynomial <code class="code">MinimalPolynomial(<var class="Arg">F</var>, <var class="Arg">mat</var>)</code> (see <code class="func">MinimalPolynomial</code> (<a href="chap66.html#X8643915A8424DAF8"><span class="RefLink">66.8-1</span></a>)).</p>

<p>Note that, up to <strong class="pkg">GAP</strong> version 4.4.6, <code class="func">CharacteristicPolynomial</code> only allowed to specify one field (corresponding to <var class="Arg">F</var>) as an argument. That usage has been disabled because its definition turned out to be ambiguous and may have lead to unexpected results. (To ensure backward compatibility, it is still possible to use the old form if <var class="Arg">F</var> contains the default field of the matrix, see <code class="func">DefaultFieldOfMatrix</code> (<a href="chap24.html#X80AE547B8095A5CB"><span class="RefLink">24.4-2</span></a>), but this feature will disappear in future versions of <strong class="pkg">GAP</strong>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacteristicPolynomial( [ [ 1, 1 ], [ 0, 1 ] ] );</span>
x^2-2*x+1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat := [[0,1],[E(4)-1,E(4)]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacteristicPolynomial( mat );</span>
x^2+(-E(4))*x+(1-E(4))
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacteristicPolynomial( Rationals, CF(4), mat );</span>
x^4+3*x^2+2*x+2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:= [ [ E(4), 1 ], [ 0, -E(4) ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacteristicPolynomial( mat );</span>
x^2+1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacteristicPolynomial( Rationals, CF(4), mat );</span>
x^4+2*x^2+1
</pre></div>

<p><a id="X83F55D4E79BA5D1B" name="X83F55D4E79BA5D1B"></a></p>

<h5>24.13-2 JordanDecomposition</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; JordanDecomposition</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="code">JordanDecomposition( <var class="Arg">mat </var> )</code> returns a list <code class="code">[S,N]</code> such that <code class="code">S</code> is a semisimple matrix and <code class="code">N</code> is nilpotent. Furthermore, <code class="code">S</code> and <code class="code">N</code> commute and <code class="code"><var class="Arg">mat</var>=S+N</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:=[[1,2,3],[4,5,6],[7,8,9]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JordanDecomposition(mat);</span>
[ [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ], 
  [ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]
</pre></div>

<p><a id="X85923C107A4569D0" name="X85923C107A4569D0"></a></p>

<h5>24.13-3 BlownUpMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BlownUpMat</code>( <var class="Arg">B</var>, <var class="Arg">mat</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">B</var> be a basis of a field extension <span class="SimpleMath">F / K</span>, and <var class="Arg">mat</var> a matrix whose entries are all in <span class="SimpleMath">F</span>. (This is not checked.) <code class="func">BlownUpMat</code> returns a matrix over <span class="SimpleMath">K</span> that is obtained by replacing each entry of <var class="Arg">mat</var> by its regular representation w.r.t. <var class="Arg">B</var>.</p>

<p>More precisely, regard <var class="Arg">mat</var> as the matrix of a linear transformation on the row space <span class="SimpleMath">F^n</span> w.r.t. the <span class="SimpleMath">F</span>-basis with vectors <span class="SimpleMath">(v_1, ldots, v_n)</span>, say, and suppose that the basis <var class="Arg">B</var> consists of the vectors <span class="SimpleMath">(b_1, ..., b_m)</span>; then the returned matrix is the matrix of the linear transformation on the row space <span class="SimpleMath">K^mn</span> w.r.t. the <span class="SimpleMath">K</span>-basis whose vectors are <span class="SimpleMath">(b_1 v_1, ... b_m v_1, ..., b_m v_n)</span>.</p>

<p>Note that the linear transformations act on <em>row</em> vectors, i.e., each row of the matrix is a concatenation of vectors of <var class="Arg">B</var>-coefficients.</p>

<p><a id="X82AC277D84EC5749" name="X82AC277D84EC5749"></a></p>

<h5>24.13-4 BlownUpVector</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BlownUpVector</code>( <var class="Arg">B</var>, <var class="Arg">vector</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">B</var> be a basis of a field extension <span class="SimpleMath">F / K</span>, and <var class="Arg">vector</var> a row vector whose entries are all in <span class="SimpleMath">F</span>. <code class="func">BlownUpVector</code> returns a row vector over <span class="SimpleMath">K</span> that is obtained by replacing each entry of <var class="Arg">vector</var> by its coefficients w.r.t. <var class="Arg">B</var>.</p>

<p>So <code class="func">BlownUpVector</code> and <code class="func">BlownUpMat</code> (<a href="chap24.html#X85923C107A4569D0"><span class="RefLink">24.13-3</span></a>) are compatible in the sense that for a matrix <var class="Arg">mat</var> over <span class="SimpleMath">F</span>, <code class="code">BlownUpVector( <var class="Arg">B</var>, <var class="Arg">mat</var> * <var class="Arg">vector</var> )</code> is equal to <code class="code">BlownUpMat( <var class="Arg">B</var>, <var class="Arg">mat</var> ) * BlownUpVector( <var class="Arg">B</var>, <var class="Arg">vector</var> )</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B:= Basis( CF(4), [ 1, E(4) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:= [ [ 1, E(4) ], [ 0, 1 ] ];;  vec:= [ 1, E(4) ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bmat:= BlownUpMat( B, mat );;  bvec:= BlownUpVector( B, vec );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( bmat );  bvec;</span>
[ [   1,   0,   0,   1 ],
  [   0,   1,  -1,   0 ],
  [   0,   0,   1,   0 ],
  [   0,   0,   0,   1 ] ]
[ 1, 0, 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bvec * bmat = BlownUpVector( B, vec * mat );</span>
true
</pre></div>

<p><a id="X85A1026D7CB6ABAC" name="X85A1026D7CB6ABAC"></a></p>

<h5>24.13-5 CompanionMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CompanionMat</code>( <var class="Arg">poly</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>computes a companion matrix of the polynomial <var class="Arg">poly</var>. This matrix has <var class="Arg">poly</var> as its minimal polynomial.</p>

<p><a id="X873822B6830CE367" name="X873822B6830CE367"></a></p>

<h4>24.14 <span class="Heading">Matrices over Finite Fields</span></h4>

<p>Just as for row vectors, (see section <a href="chap23.html#X8679F7DD7DFCBD9C"><span class="RefLink">23.3</span></a>), <strong class="pkg">GAP</strong> has a special representation for matrices over small finite fields.</p>

<p>To be eligible to be represented in this way, each row of a matrix must be able to be represented as a compact row vector of the same length over <em>the same</em> finite field.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v := Z(2)*[1,0,0,1,1];</span>
[ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConvertToVectorRep(v,2);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v;</span>
&lt;a GF2 vector of length 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := [v];; ConvertToMatrixRep(m,GF(2));; m;</span>
&lt;a 1x5 matrix over GF2&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := [v,v];; ConvertToMatrixRep(m,GF(2));; m;</span>
&lt;a 2x5 matrix over GF2&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := [v,v,v];; ConvertToMatrixRep(m,GF(2));; m;</span>
&lt;a 3x5 matrix over GF2&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v := Z(3)*[1..8];</span>
[ Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConvertToVectorRep(v);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := [v];; ConvertToMatrixRep(m,GF(3));; m;</span>
[ [ Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RepresentationsOfObject(m);</span>
[ "IsPositionalObjectRep", "Is8BitMatrixRep" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := [v,v,v,v];; ConvertToMatrixRep(m,GF(3));; m;</span>
&lt; mutable compressed matrix 4x8 over GF(3) &gt;
</pre></div>

<p>All compressed matrices over GF(2) are viewed as <code class="code">&lt;a <var class="Arg">n</var>x<var class="Arg">m</var> matrix over GF2&gt;</code>, while over fields GF(q) for q between 3 and 256, matrices with 25 or more entries are viewed in this way, and smaller ones as lists of lists.</p>

<p>Matrices can be converted to this special representation via the following functions.</p>

<p>Note that the main advantage of this special representation of matrices is in low dimensions, where various overheads can be reduced. In higher dimensions, a list of compressed vectors will be almost as fast. Note also that list access and assignment will be somewhat slower for compressed matrices than for plain lists.</p>

<p>In order to form a row of a compressed matrix a vector must accept certain restrictions. Specifically, it cannot change its length or change the field over which it is compressed. The main consequences of this are: that only elements of the appropriate field can be assigned to entries of the vector, and only to positions between 1 and the original length; that the vector cannot be shared between two matrices compressed over different fields.</p>

<p>This is enforced by the filter <code class="code">IsLockedRepresentationVector</code>. When a vector becomes part of a compressed matrix, this filter is set for it. Assignment, <code class="func">Unbind</code> (<a href="chap21.html#X78B72FDF7BD63C0B"><span class="RefLink">21.5-2</span></a>), <code class="func">ConvertToVectorRep</code> (<a href="chap23.html#X810E46927F9E8F75"><span class="RefLink">23.3-1</span></a>) and <code class="func">ConvertToMatrixRep</code> (<a href="chap24.html#X8587A62F818AA0D6"><span class="RefLink">24.14-2</span></a>) are all prevented from altering a vector with this filter.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v := [Z(2),Z(2)];; ConvertToVectorRep(v,GF(2));; v;</span>
&lt;a GF2 vector of length 2&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := [v,v]; </span>
[ &lt;a GF2 vector of length 2&gt;, &lt;a GF2 vector of length 2&gt; ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConvertToMatrixRep(m,GF(2)); </span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m2 := [m[1], [Z(4),Z(4)]]; # now try and mix in some GF(4)</span>
[ &lt;a GF2 vector of length 2&gt;, [ Z(2^2), Z(2^2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConvertToMatrixRep(m2); # but m2[1] is locked</span>
#I  ConvertToVectorRep: locked vector not converted to different field
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m2 := [ShallowCopy(m[1]), [Z(4),Z(4)]]; # a fresh copy of row 1</span>
[ &lt;a GF2 vector of length 2&gt;, [ Z(2^2), Z(2^2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConvertToMatrixRep(m2); # now it works</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m2;</span>
[ [ Z(2)^0, Z(2)^0 ], [ Z(2^2), Z(2^2) ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RepresentationsOfObject(m2);</span>
[ "IsPositionalObjectRep", "Is8BitMatrixRep" ]
</pre></div>

<p>Arithmetic operations (see <a href="chap21.html#X845EEAF083D43CCE"><span class="RefLink">21.11</span></a> and the following sections) preserve the compression status of matrices in the sense that if all arguments are compressed matrices written over the same field and the result is a matrix then also the result is a compressed matrix written over this field.</p>

<p>There are also two operations that are only available for matrices written over finite fields.</p>

<p><a id="X7DED2522828B6C30" name="X7DED2522828B6C30"></a></p>

<h5>24.14-1 ImmutableMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImmutableMatrix</code>( <var class="Arg">field</var>, <var class="Arg">matrix</var>[, <var class="Arg">change</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns an immutable matrix equal to <var class="Arg">matrix</var> which is in the optimal (concerning space and runtime) representation for matrices defined over <var class="Arg">field</var>. This means that matrices obtained by several calls of <code class="func">ImmutableMatrix</code> for the same <var class="Arg">field</var> are compatible for fast arithmetic without need for field conversion.</p>

<p>The input matrix <var class="Arg">matrix</var> or its rows might change the representation, however the result of <code class="func">ImmutableMatrix</code> is not necessarily <em>identical</em> to <var class="Arg">matrix</var> if a conversion is not possible.</p>

<p>If <var class="Arg">change</var> is <code class="keyw">true</code>, the rows of <var class="Arg">matrix</var> (or <var class="Arg">matrix</var> itself) may be changed to become immutable; otherwise they are copied first).</p>

<p><a id="X8587A62F818AA0D6" name="X8587A62F818AA0D6"></a></p>

<h5>24.14-2 ConvertToMatrixRep</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConvertToMatrixRep</code>( <var class="Arg">list</var>[, <var class="Arg">field</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConvertToMatrixRep</code>( <var class="Arg">list</var>[, <var class="Arg">fieldsize</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConvertToMatrixRepNC</code>( <var class="Arg">list</var>[, <var class="Arg">field</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConvertToMatrixRepNC</code>( <var class="Arg">list</var>[, <var class="Arg">fieldsize</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function is more technical version of <code class="func">ImmutableMatrix</code> (<a href="chap24.html#X7DED2522828B6C30"><span class="RefLink">24.14-1</span></a>), which will never copy a matrix (or any rows of it) but may fail if it encounters rows locked in the wrong representation, or various other more technical problems. Most users should use <code class="func">ImmutableMatrix</code> (<a href="chap24.html#X7DED2522828B6C30"><span class="RefLink">24.14-1</span></a>) instead. The NC versions of the function do less checking of the argument and may cause unpredictable results or crashes if given unsuitable arguments. Called with one argument <var class="Arg">list</var>, <code class="func">ConvertToMatrixRep</code> converts <var class="Arg">list</var> to an internal matrix representation if possible.</p>

<p>Called with a list <var class="Arg">list</var> and a finite field <var class="Arg">field</var>, <code class="func">ConvertToMatrixRep</code> converts <var class="Arg">list</var> to an internal matrix representation appropriate for a matrix over <var class="Arg">field</var>.</p>

<p>Instead of a <var class="Arg">field</var> also its size <var class="Arg">fieldsize</var> may be given.</p>

<p>It is forbidden to call this function unless all elements of <var class="Arg">list</var> are row vectors with entries in the field <var class="Arg">field</var>. Violation of this condition can lead to unpredictable behaviour or a system crash. (Setting the assertion level to at least 2 might catch some violations before a crash, see <code class="func">SetAssertionLevel</code> (<a href="chap7.html#X7C7596418423660B"><span class="RefLink">7.5-1</span></a>).)</p>

<p><var class="Arg">list</var> may already be a compressed matrix. In this case, if no <var class="Arg">field</var> or <var class="Arg">fieldsize</var> is given, then nothing happens.</p>

<p>The return value is the size of the field over which the matrix ends up written, if it is written in a compressed representation.</p>

<p><a id="X84A76F7A7B4166BC" name="X84A76F7A7B4166BC"></a></p>

<h5>24.14-3 ProjectiveOrder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ProjectiveOrder</code>( <var class="Arg">mat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns an integer n and a finite field element e such that <var class="Arg">A</var>^n = eI. <var class="Arg">mat</var> must be a matrix defined over a finite field.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ProjectiveOrder([[1,4],[5,2]]*Z(11)^0);</span>
[ 5, Z(11)^5 ]
</pre></div>

<p><a id="X847ADC6779E33A1C" name="X847ADC6779E33A1C"></a></p>

<h5>24.14-4 SimultaneousEigenvalues</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimultaneousEigenvalues</code>( <var class="Arg">matlist</var>, <var class="Arg">expo</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The matrices in <var class="Arg">matlist</var> must be matrices over GF(<var class="Arg">q</var>) for some prime <var class="Arg">q</var>. Together, they must generate an abelian p-group of exponent <var class="Arg">expo</var>. Then the eigenvalues of <var class="Arg">mat</var> in the splitting field <code class="code">GF(<var class="Arg">q</var>^<var class="Arg">r</var>)</code> for some <var class="Arg">r</var> are powers of an element <span class="SimpleMath">ξ</span> in the splitting field, which is of order <var class="Arg">expo</var>. <code class="func">SimultaneousEigenvalues</code> returns a matrix of integers mod <var class="Arg">expo</var>, say <span class="SimpleMath">(a_{i,j})</span>, such that the power <span class="SimpleMath">ξ^{a_{i,j}}</span> is an eigenvalue of the <var class="Arg">i</var>-th matrix in <var class="Arg">matlist</var> and the eigenspaces of the different matrices to the eigenvalues <span class="SimpleMath">ξ^{a_{i,j}}</span> for fixed <var class="Arg">j</var> are equal.</p>

<p><a id="X8593A5337D3B2C70" name="X8593A5337D3B2C70"></a></p>

<h4>24.15 <span class="Heading">Inverse and Nullspace of an Integer Matrix Modulo an Ideal</span></h4>

<p>The following two operations deal with matrices over a ring, but only care about the residues of their entries modulo some ring element. In the case of the integers and a prime number <span class="SimpleMath">p</span>, say, this is effectively computation in a matrix over the prime field in characteristic <span class="SimpleMath">p</span>.</p>

<p><a id="X7D8D1E0E83C7F872" name="X7D8D1E0E83C7F872"></a></p>

<h5>24.15-1 InverseMatMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InverseMatMod</code>( <var class="Arg">mat</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a square matrix <var class="Arg">mat</var>, <code class="func">InverseMatMod</code> returns a matrix <var class="Arg">inv</var> such that <code class="code"><var class="Arg">inv</var> * <var class="Arg">mat</var></code> is congruent to the identity matrix modulo <var class="Arg">obj</var>, if such a matrix exists, and <code class="keyw">fail</code> otherwise.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:= [ [ 1, 2 ], [ 3, 4 ] ];;  inv:= InverseMatMod( mat, 5 );</span>
[ [ 3, 1 ], [ 4, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat * inv;</span>
[ [ 11, 5 ], [ 25, 11 ] ]
</pre></div>

<p><a id="X86AE919983B242E2" name="X86AE919983B242E2"></a></p>

<h5>24.15-2 NullspaceModQ</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NullspaceModQ</code>( <var class="Arg">E</var>, <var class="Arg">q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><var class="Arg">E</var> must be a matrix of integers and <var class="Arg">q</var> a prime power. Then <code class="func">NullspaceModQ</code> returns the set of all vectors of integers modulo <var class="Arg">q</var>, which solve the homogeneous equation system given by <var class="Arg">E</var> modulo <var class="Arg">q</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:= [ [ 1, 3 ], [ 1, 2 ], [ 1, 1 ] ];;  NullspaceModQ( mat, 5 );</span>
[ [ 0, 0, 0 ], [ 1, 3, 1 ], [ 2, 1, 2 ], [ 4, 2, 4 ], [ 3, 4, 3 ] ]
</pre></div>

<p><a id="X787DF5F07DC7D86E" name="X787DF5F07DC7D86E"></a></p>

<h4>24.16 <span class="Heading">Special Multiplication Algorithms for Matrices over GF(2)</span></h4>

<p>When multiplying two compressed matrices <span class="SimpleMath">M</span> and <span class="SimpleMath">N</span> over GF(2) of dimensions <span class="SimpleMath">a × b</span> and <span class="SimpleMath">b × c</span>, say, where <span class="SimpleMath">a</span>, <span class="SimpleMath">b</span> and <span class="SimpleMath">c</span> are all greater than or equal to 128, <strong class="pkg">GAP</strong> by default uses a more sophisticated matrix multiplication algorithm, in which linear combinations of groups of 8 rows of <span class="SimpleMath">M</span> are remembered and re-used in constructing various rows of the product. This is called level 8 grease. To optimise memory access patterns, these combinations are stored for <span class="SimpleMath">(b+255)/256</span> sets of 8 rows at once. This number is called the blocking level.</p>

<p>These levels of grease and blocking are found experimentally to give good performance across a range of processors and matrix sizes, but other levels may do even better in some cases. You can control the levels exactly using the functions below.</p>

<p>We plan to include greased blocked matrix multiplication for other finite fields, and greased blocked algorithms for inversion and other matrix operations in a future release.</p>

<p><a id="X7C0C26027FAE0C83" name="X7C0C26027FAE0C83"></a></p>

<h5>24.16-1 PROD_GF2MAT_GF2MAT_SIMPLE</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PROD_GF2MAT_GF2MAT_SIMPLE</code>( <var class="Arg">m1</var>, <var class="Arg">m2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function performs the standard unblocked and ungreased matrix multiplication for matrices of any size.</p>

<p><a id="X81965B7D7F45E088" name="X81965B7D7F45E088"></a></p>

<h5>24.16-2 PROD_GF2MAT_GF2MAT_ADVANCED</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PROD_GF2MAT_GF2MAT_ADVANCED</code>( <var class="Arg">m1</var>, <var class="Arg">m2</var>, <var class="Arg">g</var>, <var class="Arg">b</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function computes the product of <var class="Arg">m1</var> and <var class="Arg">m2</var>, which must be compressed matrices over GF(2) of compatible dimensions, using level <var class="Arg">g</var> grease and level <var class="Arg">b</var> blocking.</p>

<p><a id="X7F8A71F38201A250" name="X7F8A71F38201A250"></a></p>

<h4>24.17 <span class="Heading">Block Matrices</span></h4>

<p>Block matrices are a special representation of matrices which can save a lot of memory if large matrices have a block structure with lots of zero blocks. <strong class="pkg">GAP</strong> uses the representation <code class="code">IsBlockMatrixRep</code> to store block matrices.</p>

<p><a id="X7D675B3C79CF8871" name="X7D675B3C79CF8871"></a></p>

<h5>24.17-1 AsBlockMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsBlockMatrix</code>( <var class="Arg">m</var>, <var class="Arg">nrb</var>, <var class="Arg">ncb</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a block matrix with <var class="Arg">nrb</var> row blocks and <var class="Arg">ncb</var> column blocks which is equal to the ordinary matrix <var class="Arg">m</var>.</p>

<p><a id="X8633538685551E7A" name="X8633538685551E7A"></a></p>

<h5>24.17-2 BlockMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BlockMatrix</code>( <var class="Arg">blocks</var>, <var class="Arg">nrb</var>, <var class="Arg">ncb</var>[, <var class="Arg">rpb</var>, <var class="Arg">cpb</var>, <var class="Arg">zero</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">BlockMatrix</code> returns an immutable matrix in the sparse representation <code class="code">IsBlockMatrixRep</code>. The nonzero blocks are described by the list <var class="Arg">blocks</var> of triples <span class="SimpleMath">[ <var class="Arg">i</var>, <var class="Arg">j</var>, M(i,j) ]</span> each consisting of a matrix <span class="SimpleMath">M(i,j)</span> and its block coordinates in the block matrix to be constructed. All matrices <span class="SimpleMath">M(i,j)</span> must have the same dimensions. As usual the first coordinate specifies the row and the second one the column. The resulting matrix has <var class="Arg">nrb</var> row blocks and <var class="Arg">ncb</var> column blocks.</p>

<p>If <var class="Arg">blocks</var> is empty (i.e., if the matrix is a zero matrix) then the dimensions of the blocks must be entered as <var class="Arg">rpb</var> and <var class="Arg">cpb</var>, and the zero element as <var class="Arg">zero</var>.</p>

<p>Note that all blocks must be ordinary matrices (see <code class="func">IsOrdinaryMatrix</code> (<a href="chap24.html#X7CF42B8A845BC6A9"><span class="RefLink">24.2-2</span></a>)), and also the block matrix is an ordinary matrix.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := BlockMatrix([[1,1,[[1, 2],[ 3, 4]]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     [1,2,[[9,10],[11,12]]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     [2,2,[[5, 6],[ 7, 8]]]],2,2);</span>
&lt;block matrix of dimensions (2*2)x(2*2)&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(M);</span>
[ [   1,   2,   9,  10 ],
  [   3,   4,  11,  12 ],
  [   0,   0,   5,   6 ],
  [   0,   0,   7,   8 ] ]
</pre></div>

<p><a id="X83FAF4158180041F" name="X83FAF4158180041F"></a></p>

<h5>24.17-3 MatrixByBlockMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MatrixByBlockMatrix</code>( <var class="Arg">blockmat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a plain ordinary matrix that is equal to the block matrix <var class="Arg">blockmat</var>.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap23.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap25.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>