This file is indexed.

/usr/include/fflas-ffpack/fflas/fflas_level3.inl is in fflas-ffpack-common 2.2.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
/*
 * Copyright (C) 2014 the FFLAS-FFPACK group
 *
 * Written by Clement Pernet <Clement.Pernet@imag.fr>
 *            Brice Boyer (briceboyer) <boyer.brice@gmail.com>
 *
 *
 * ========LICENCE========
 * This file is part of the library FFLAS-FFPACK.
 *
 * FFLAS-FFPACK is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 *.
 */

/** @file fflas/fflas_level3.h
 * @brief  Matrix-Matrix operations
 * or anything of \f$>n^2\f$ complexity.
 */

#ifndef __FFLASFFPACK_fflas_fflas_level3_INL
#define __FFLASFFPACK_fflas_fflas_level3_INL

//#include <givaro/zring.h>

#include "fflas_bounds.inl"
#include "fflas_helpers.inl"

namespace FFLAS { namespace Protected {
	//-----------------------------------------------------------------------------
	// Some conversion functions
	//-----------------------------------------------------------------------------


	//---------------------------------------------------------------------
	// Finite Field matrix => double matrix
	// Special design for upper-triangular matrices
	//---------------------------------------------------------------------
	template<class Field>
	void MatF2MatD_Triangular (const Field& F,
				   Givaro::DoubleDomain::Element_ptr S, const size_t lds,
				   typename Field::ConstElement_ptr const E,
				   const size_t lde,
				   const size_t m, const size_t n)
	{

		typename Field::ConstElement_ptr Ei = E;
		Givaro::DoubleDomain::Element_ptr Si = S;
		size_t i=0, j;
		for ( ; i<m;++i, Ei+=lde, Si+=lds)
			for ( j=i; j<n;++j)
				F.convert(*(Si+j),*(Ei+j));
	}

	//---------------------------------------------------------------------
	// Finite Field matrix => float matrix
	// Special design for upper-triangular matrices
	//---------------------------------------------------------------------
	//! @todo do finit(...,FFLAS_TRANS,FFLAS_DIAG)
	//! @todo do fconvert(...,FFLAS_TRANS,FFLAS_DIAG)
	template<class Field>
	void MatF2MatFl_Triangular (const Field& F,
				    Givaro::FloatDomain::Element_ptr S, const size_t lds,
				    typename Field::ConstElement_ptr const E,
				    const size_t lde,
				    const size_t m, const size_t n)
	{

		typename Field::ConstElement_ptr Ei = E;
		Givaro::FloatDomain::Element_ptr Si = S;
		size_t i=0, j;
		for ( ; i<m;++i, Ei+=lde, Si+=lds)
			for ( j=i; j<n;++j)
				F.convert(*(Si+j),*(Ei+j));
	}

	/**
	 * Computes the maximal size for delaying the modular reduction
	 *         in a triangular system resolution.
	 *
	 *  Compute the maximal dimension k, such that a unit diagonal triangular
	 *  system of dimension k can be solved over Z without overflow of the
	 *  underlying floating point representation.
	 *
	 *  @bib
	 *  - Dumas, Giorgi, Pernet 06, arXiv:cs/0601133.
	 *
	 * \param F Finite Field/Ring of the computation
	 *
	 */
	// Specialized routines for ftrsm
	template <class Element> class ftrsmLeftUpperNoTransNonUnit;
	template <class Element> class ftrsmLeftUpperNoTransUnit;
	template <class Element> class ftrsmLeftUpperTransNonUnit;
	template <class Element> class ftrsmLeftUpperTransUnit;
	template <class Element> class ftrsmLeftLowerNoTransNonUnit;
	template <class Element> class ftrsmLeftLowerNoTransUnit;
	template <class Element> class ftrsmLeftLowerTransNonUnit;
	template <class Element> class ftrsmLeftLowerTransUnit;
	template <class Element> class ftrsmRightUpperNoTransNonUnit;
	template <class Element> class ftrsmRightUpperNoTransUnit;
	template <class Element> class ftrsmRightUpperTransNonUnit;
	template <class Element> class ftrsmRightUpperTransUnit;
	template <class Element> class ftrsmRightLowerNoTransNonUnit;
	template <class Element> class ftrsmRightLowerNoTransUnit;
	template <class Element> class ftrsmRightLowerTransNonUnit;
	template <class Element> class ftrsmRightLowerTransUnit;

	// Specialized routines for ftrmm
	template <class Element> class ftrmmLeftUpperNoTransNonUnit;
	template <class Element> class ftrmmLeftUpperNoTransUnit;
	template <class Element> class ftrmmLeftUpperTransNonUnit;
	template <class Element> class ftrmmLeftUpperTransUnit;
	template <class Element> class ftrmmLeftLowerNoTransNonUnit;
	template <class Element> class ftrmmLeftLowerNoTransUnit;
	template <class Element> class ftrmmLeftLowerTransNonUnit;
	template <class Element> class ftrmmLeftLowerTransUnit;
	template <class Element> class ftrmmRightUpperNoTransNonUnit;
	template <class Element> class ftrmmRightUpperNoTransUnit;
	template <class Element> class ftrmmRightUpperTransNonUnit;
	template <class Element> class ftrmmRightUpperTransUnit;
	template <class Element> class ftrmmRightLowerNoTransNonUnit;
	template <class Element> class ftrmmRightLowerNoTransUnit;
	template <class Element> class ftrmmRightLowerTransNonUnit;
	template <class Element> class ftrmmRightLowerTransUnit;

} // protected
} // FFLAS

namespace FFLAS {

	//---------------------------------------------------------------------
	// Level 3 routines
	//---------------------------------------------------------------------
	// set by default for ftrsm to be thread safe
	// undef it at your own risk, and only if you run it in sequential
	#define __FFLAS__TRSM_READONLY

	/** @brief ftrsm: <b>TR</b>iangular <b>S</b>ystem solve with <b>M</b>atrix.
	 * Computes  \f$ B \gets \alpha \mathrm{op}(A^{-1}) B\f$ or  \f$B \gets \alpha B \mathrm{op}(A^{-1})\f$.
	 * \param F field
	 * \param Side if \c Side==FflasLeft then  \f$ B \gets \alpha \mathrm{op}(A^{-1}) B\f$ is computed.
	 * \param Uplo if \c Uplo==FflasUpper then \p A is upper triangular
	 * \param TransA if \c TransA==FflasTrans then \f$\mathrm{op}(A)=A^t\f$.
	 * \param Diag if \c Diag==FflasUnit then \p A is unit.
	 * \param M rows of \p B
	 * \param N cols of \p B
	 * @param alpha scalar
	 * \param A triangular invertible matrix. If \c Side==FflasLeft then \p A is \f$N\times N\f$, otherwise \p A is \f$M\times M\f$
	 * @param lda leading dim of \p A
	 * @param B matrix of size \p MxN
	 * @param ldb leading dim of \p B
	 * @bug \f$\alpha\f$ must be non zero.
	 */
	template<class Field>
	void
	ftrsm (const Field& F, const FFLAS_SIDE Side,
	       const FFLAS_UPLO Uplo,
	       const FFLAS_TRANSPOSE TransA,
	       const FFLAS_DIAG Diag,
	       const size_t M, const size_t N,
	       const typename Field::Element alpha,
#ifdef __FFLAS__TRSM_READONLY
	       typename Field::ConstElement_ptr A,
#else
	       typename Field::Element_ptr A,
#endif
	       const size_t lda,
	       typename Field::Element_ptr B, const size_t ldb);

	/** @brief ftrmm: <b>TR</b>iangular <b>M</b>atrix <b>M</b>ultiply.
	 * Computes  \f$ B \gets \alpha \mathrm{op}(A) B\f$ or  \f$B \gets \alpha B \mathrm{op}(A)\f$.
	 * @param F field
	 * \param Side if \c Side==FflasLeft then  \f$ B \gets \alpha \mathrm{op}(A) B\f$ is computed.
	 * \param Uplo if \c Uplo==FflasUpper then \p A is upper triangular
	 * \param TransA if \c TransA==FflasTrans then \f$\mathrm{op}(A)=A^t\f$.
	 * \param Diag if \c Diag==FflasUnit then \p A is implicitly unit.
	 * \param M rows of \p B
	 * \param N cols of \p B
	 * @param alpha scalar
	 * \param A triangular matrix. If \c Side==FflasLeft then \p A is \f$N\times N\f$, otherwise \p A is \f$M\times M\f$
	 * @param lda leading dim of \p A
	 * @param B matrix of size \p MxN
	 * @param ldb leading dim of \p B
	 */
	template<class Field>
	void
	ftrmm (const Field& F, const FFLAS_SIDE Side,
	       const FFLAS_UPLO Uplo,
	       const FFLAS_TRANSPOSE TransA,
	       const FFLAS_DIAG Diag,
	       const size_t M, const size_t N,
	       const typename Field::Element alpha,
	       typename Field::ConstElement_ptr A, const size_t lda,
	       typename Field::Element_ptr B, const size_t ldb);

	/** @brief  fgemm: <b>F</b>ield <b>GE</b>neral <b>M</b>atrix <b>M</b>ultiply.
	 *
	 * Computes \f$C = \alpha \mathrm{op}(A) \times \mathrm{op}(B) + \beta C\f$
	 * Automatically set Winograd recursion level
	 * \param F field.
	 * \param ta if \c ta==FflasTrans then \f$\mathrm{op}(A)=A^t\f$, else \f$\mathrm{op}(A)=A\f$,
	 * \param tb same for matrix \p B
	 * \param m see \p A
	 * \param n see \p B
	 * \param k see \p A
	 * \param alpha scalar
	 * \param beta scalar
	 * \param A \f$\mathrm{op}(A)\f$ is \f$m \times k\f$
	 * \param B \f$\mathrm{op}(B)\f$ is \f$k \times n\f$
	 * \param C \f$C\f$ is \f$m \times n\f$
	 * \param lda leading dimension of \p A
	 * \param ldb leading dimension of \p B
	 * \param ldc leading dimension of \p C
	 * \param w recursive levels of Winograd's algorithm are used. No argument (or -1) does auto computation of \p w.
	 * @warning \f$\alpha\f$ \e must be invertible
	 */
	template<class Field>
	typename Field::Element_ptr
	fgemm( const Field& F,
	       const FFLAS_TRANSPOSE ta,
	       const FFLAS_TRANSPOSE tb,
	       const size_t m,
	       const size_t n,
	       const size_t k,
	       const typename Field::Element alpha,
	       typename Field::ConstElement_ptr A, const size_t lda,
	       typename Field::ConstElement_ptr B, const size_t ldb,
	       const typename Field::Element beta,
	       typename Field::Element_ptr C, const size_t ldc);

	template<typename Field>
	typename Field::Element_ptr
	fgemm( const Field& F,
	       const FFLAS_TRANSPOSE ta,
	       const FFLAS_TRANSPOSE tb,
	       const size_t m,
	       const size_t n,
	       const size_t k,
	       const typename Field::Element alpha,
	       typename Field::ConstElement_ptr A, const size_t lda,
	       typename Field::ConstElement_ptr B, const size_t ldb,
	       const typename Field::Element beta,
	       typename Field::Element_ptr C, const size_t ldc,
	       const ParSeqHelper::Sequential seq);

	template<typename Field, class Cut, class Param>
	typename Field::Element_ptr
	fgemm( const Field& F,
	       const FFLAS_TRANSPOSE ta,
	       const FFLAS_TRANSPOSE tb,
	       const size_t m,
	       const size_t n,
	       const size_t k,
	       const typename Field::Element alpha,
	       typename Field::ConstElement_ptr A, const size_t lda,
	       typename Field::ConstElement_ptr B, const size_t ldb,
	       const typename Field::Element beta,
	       typename Field::Element_ptr C, const size_t ldc,
	       const ParSeqHelper::Parallel<Cut,Param> par);

	template<class Field>
        typename Field::Element*
        pfgemm_1D_rec( const Field& F,
                       const FFLAS_TRANSPOSE ta,
                       const FFLAS_TRANSPOSE tb,
                       const size_t m,
                       const size_t n,
                       const size_t k,
                       const typename Field::Element alpha,
                       const typename Field::Element_ptr A, const size_t lda,
                       const typename Field::Element_ptr B, const size_t ldb,
                       const typename Field::Element beta,
                       typename Field::Element * C, const size_t ldc, size_t seuil);

	template<class Field>
	typename Field::Element*
	pfgemm_2D_rec( const Field& F,
		       const FFLAS_TRANSPOSE ta,
		       const FFLAS_TRANSPOSE tb,
		       const size_t m,
		       const size_t n,
		       const size_t k,
		       const typename Field::Element alpha,
		       const typename Field::Element_ptr A, const size_t lda,
		       const typename Field::Element_ptr B, const size_t ldb,
		       const typename Field::Element beta,
		       typename Field::Element * C, const size_t ldc, size_t seuil);

	template<class Field>
	typename Field::Element*
	pfgemm_3D_rec( const Field& F,
		       const FFLAS_TRANSPOSE ta,
		       const FFLAS_TRANSPOSE tb,
		       const size_t m,
		       const size_t n,
		       const size_t k,
		       const typename Field::Element alpha,
		       const typename Field::Element_ptr A, const size_t lda,
		       const typename Field::Element_ptr B, const size_t ldb,
		       const typename Field::Element beta,
		       typename Field::Element_ptr C, const size_t ldc, size_t seuil, size_t * x);

	template<class Field>
	typename Field::Element_ptr
	pfgemm_3D_rec2( const Field& F,
			const FFLAS_TRANSPOSE ta,
			const FFLAS_TRANSPOSE tb,
			const size_t m,
			const size_t n,
			const size_t k,
			const typename Field::Element alpha,
			const typename Field::Element_ptr A, const size_t lda,
			const typename Field::Element_ptr B, const size_t ldb,
			const typename Field::Element beta,
			typename Field::Element_ptr C, const size_t ldc, size_t seuil, size_t *x);

	/** @brief  fgemm: <b>F</b>ield <b>GE</b>neral <b>M</b>atrix <b>M</b>ultiply.
	 *
	 * Computes \f$C = \alpha \mathrm{op}(A) \times \mathrm{op}(B) + \beta C\f$
	 * Version with Helper. Input and Output are not supposed to be reduced.
	 * \param F field.
	 * \param ta if \c ta==FflasTrans then \f$\mathrm{op}(A)=A^t\f$, else \f$\mathrm{op}(A)=A\f$,
	 * \param tb same for matrix \p B
	 * \param m see \p A
	 * \param n see \p B
	 * \param k see \p A
	 * \param alpha scalar
	 * \param beta scalar
	 * \param A \f$\mathrm{op}(A)\f$ is \f$m \times k\f$
	 * \param B \f$\mathrm{op}(B)\f$ is \f$k \times n\f$
	 * \param C \f$C\f$ is \f$m \times n\f$
	 * \param lda leading dimension of \p A
	 * \param ldb leading dimension of \p B
	 * \param ldc leading dimension of \p C
	 * \param H helper, driving the computation (algorithm, delayed modular reduction, switch of base type, etc)
	 * @warning \f$\alpha\f$ \e must be invertible
	 */
	// template<class Field, class AlgoT, class FieldTrait, class ParSeqTrait>
	// inline  typename Field::Element_ptr
	// fgemm (const Field& F,
	//        const FFLAS_TRANSPOSE ta,
	//        const FFLAS_TRANSPOSE tb,
	//        const size_t m, const size_t n, const size_t k,
	//        const typename Field::Element alpha,
	//        typename Field::Element_ptr A, const size_t lda,
	//        typename Field::Element_ptr B, const size_t ldb,
	//        const typename Field::Element beta,
	//        typename Field::Element_ptr C, const size_t ldc,
	//        MMHelper<Field, AlgoT, FieldTrait, ParSeqTrait> & H);

} // FFLAS

#include "fflas-ffpack/paladin/parallel.h"

namespace FFLAS {

	/** @brief fsquare: Squares a matrix.
	 * compute \f$ C \gets \alpha \mathrm{op}(A) \mathrm{op}(A) + \beta C\f$ over a Field \p F
	 * Avoid the conversion of B
	 * @param ta  if \c ta==FflasTrans, \f$\mathrm{op}(A)=A^T\f$.
	 * @param F field
	 * @param n size of \p A
	 * @param alpha scalar
	 * @param beta scalar
	 * @param A dense matrix of size \c nxn
	 * @param lda leading dimension of \p A
	 * @param C dense matrix of size \c nxn
	 * @param ldc leading dimension of \p C
	 */
	template<class Field>
	typename Field::Element_ptr fsquare (const Field& F,
					  const FFLAS_TRANSPOSE ta,
					  const size_t n,
					  const typename Field::Element alpha,
					  typename Field::ConstElement_ptr A,
					  const size_t lda,
					  const typename Field::Element beta,
					  typename Field::Element_ptr C,
					  const size_t ldc);


} // FFLAS

#endif // __FFLASFFPACK_fflas_fflas_level3_INL