/usr/include/fflas-ffpack/fflas/fflas_level3.inl is in fflas-ffpack-common 2.2.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
/*
* Copyright (C) 2014 the FFLAS-FFPACK group
*
* Written by Clement Pernet <Clement.Pernet@imag.fr>
* Brice Boyer (briceboyer) <boyer.brice@gmail.com>
*
*
* ========LICENCE========
* This file is part of the library FFLAS-FFPACK.
*
* FFLAS-FFPACK is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*.
*/
/** @file fflas/fflas_level3.h
* @brief Matrix-Matrix operations
* or anything of \f$>n^2\f$ complexity.
*/
#ifndef __FFLASFFPACK_fflas_fflas_level3_INL
#define __FFLASFFPACK_fflas_fflas_level3_INL
//#include <givaro/zring.h>
#include "fflas_bounds.inl"
#include "fflas_helpers.inl"
namespace FFLAS { namespace Protected {
//-----------------------------------------------------------------------------
// Some conversion functions
//-----------------------------------------------------------------------------
//---------------------------------------------------------------------
// Finite Field matrix => double matrix
// Special design for upper-triangular matrices
//---------------------------------------------------------------------
template<class Field>
void MatF2MatD_Triangular (const Field& F,
Givaro::DoubleDomain::Element_ptr S, const size_t lds,
typename Field::ConstElement_ptr const E,
const size_t lde,
const size_t m, const size_t n)
{
typename Field::ConstElement_ptr Ei = E;
Givaro::DoubleDomain::Element_ptr Si = S;
size_t i=0, j;
for ( ; i<m;++i, Ei+=lde, Si+=lds)
for ( j=i; j<n;++j)
F.convert(*(Si+j),*(Ei+j));
}
//---------------------------------------------------------------------
// Finite Field matrix => float matrix
// Special design for upper-triangular matrices
//---------------------------------------------------------------------
//! @todo do finit(...,FFLAS_TRANS,FFLAS_DIAG)
//! @todo do fconvert(...,FFLAS_TRANS,FFLAS_DIAG)
template<class Field>
void MatF2MatFl_Triangular (const Field& F,
Givaro::FloatDomain::Element_ptr S, const size_t lds,
typename Field::ConstElement_ptr const E,
const size_t lde,
const size_t m, const size_t n)
{
typename Field::ConstElement_ptr Ei = E;
Givaro::FloatDomain::Element_ptr Si = S;
size_t i=0, j;
for ( ; i<m;++i, Ei+=lde, Si+=lds)
for ( j=i; j<n;++j)
F.convert(*(Si+j),*(Ei+j));
}
/**
* Computes the maximal size for delaying the modular reduction
* in a triangular system resolution.
*
* Compute the maximal dimension k, such that a unit diagonal triangular
* system of dimension k can be solved over Z without overflow of the
* underlying floating point representation.
*
* @bib
* - Dumas, Giorgi, Pernet 06, arXiv:cs/0601133.
*
* \param F Finite Field/Ring of the computation
*
*/
// Specialized routines for ftrsm
template <class Element> class ftrsmLeftUpperNoTransNonUnit;
template <class Element> class ftrsmLeftUpperNoTransUnit;
template <class Element> class ftrsmLeftUpperTransNonUnit;
template <class Element> class ftrsmLeftUpperTransUnit;
template <class Element> class ftrsmLeftLowerNoTransNonUnit;
template <class Element> class ftrsmLeftLowerNoTransUnit;
template <class Element> class ftrsmLeftLowerTransNonUnit;
template <class Element> class ftrsmLeftLowerTransUnit;
template <class Element> class ftrsmRightUpperNoTransNonUnit;
template <class Element> class ftrsmRightUpperNoTransUnit;
template <class Element> class ftrsmRightUpperTransNonUnit;
template <class Element> class ftrsmRightUpperTransUnit;
template <class Element> class ftrsmRightLowerNoTransNonUnit;
template <class Element> class ftrsmRightLowerNoTransUnit;
template <class Element> class ftrsmRightLowerTransNonUnit;
template <class Element> class ftrsmRightLowerTransUnit;
// Specialized routines for ftrmm
template <class Element> class ftrmmLeftUpperNoTransNonUnit;
template <class Element> class ftrmmLeftUpperNoTransUnit;
template <class Element> class ftrmmLeftUpperTransNonUnit;
template <class Element> class ftrmmLeftUpperTransUnit;
template <class Element> class ftrmmLeftLowerNoTransNonUnit;
template <class Element> class ftrmmLeftLowerNoTransUnit;
template <class Element> class ftrmmLeftLowerTransNonUnit;
template <class Element> class ftrmmLeftLowerTransUnit;
template <class Element> class ftrmmRightUpperNoTransNonUnit;
template <class Element> class ftrmmRightUpperNoTransUnit;
template <class Element> class ftrmmRightUpperTransNonUnit;
template <class Element> class ftrmmRightUpperTransUnit;
template <class Element> class ftrmmRightLowerNoTransNonUnit;
template <class Element> class ftrmmRightLowerNoTransUnit;
template <class Element> class ftrmmRightLowerTransNonUnit;
template <class Element> class ftrmmRightLowerTransUnit;
} // protected
} // FFLAS
namespace FFLAS {
//---------------------------------------------------------------------
// Level 3 routines
//---------------------------------------------------------------------
// set by default for ftrsm to be thread safe
// undef it at your own risk, and only if you run it in sequential
#define __FFLAS__TRSM_READONLY
/** @brief ftrsm: <b>TR</b>iangular <b>S</b>ystem solve with <b>M</b>atrix.
* Computes \f$ B \gets \alpha \mathrm{op}(A^{-1}) B\f$ or \f$B \gets \alpha B \mathrm{op}(A^{-1})\f$.
* \param F field
* \param Side if \c Side==FflasLeft then \f$ B \gets \alpha \mathrm{op}(A^{-1}) B\f$ is computed.
* \param Uplo if \c Uplo==FflasUpper then \p A is upper triangular
* \param TransA if \c TransA==FflasTrans then \f$\mathrm{op}(A)=A^t\f$.
* \param Diag if \c Diag==FflasUnit then \p A is unit.
* \param M rows of \p B
* \param N cols of \p B
* @param alpha scalar
* \param A triangular invertible matrix. If \c Side==FflasLeft then \p A is \f$N\times N\f$, otherwise \p A is \f$M\times M\f$
* @param lda leading dim of \p A
* @param B matrix of size \p MxN
* @param ldb leading dim of \p B
* @bug \f$\alpha\f$ must be non zero.
*/
template<class Field>
void
ftrsm (const Field& F, const FFLAS_SIDE Side,
const FFLAS_UPLO Uplo,
const FFLAS_TRANSPOSE TransA,
const FFLAS_DIAG Diag,
const size_t M, const size_t N,
const typename Field::Element alpha,
#ifdef __FFLAS__TRSM_READONLY
typename Field::ConstElement_ptr A,
#else
typename Field::Element_ptr A,
#endif
const size_t lda,
typename Field::Element_ptr B, const size_t ldb);
/** @brief ftrmm: <b>TR</b>iangular <b>M</b>atrix <b>M</b>ultiply.
* Computes \f$ B \gets \alpha \mathrm{op}(A) B\f$ or \f$B \gets \alpha B \mathrm{op}(A)\f$.
* @param F field
* \param Side if \c Side==FflasLeft then \f$ B \gets \alpha \mathrm{op}(A) B\f$ is computed.
* \param Uplo if \c Uplo==FflasUpper then \p A is upper triangular
* \param TransA if \c TransA==FflasTrans then \f$\mathrm{op}(A)=A^t\f$.
* \param Diag if \c Diag==FflasUnit then \p A is implicitly unit.
* \param M rows of \p B
* \param N cols of \p B
* @param alpha scalar
* \param A triangular matrix. If \c Side==FflasLeft then \p A is \f$N\times N\f$, otherwise \p A is \f$M\times M\f$
* @param lda leading dim of \p A
* @param B matrix of size \p MxN
* @param ldb leading dim of \p B
*/
template<class Field>
void
ftrmm (const Field& F, const FFLAS_SIDE Side,
const FFLAS_UPLO Uplo,
const FFLAS_TRANSPOSE TransA,
const FFLAS_DIAG Diag,
const size_t M, const size_t N,
const typename Field::Element alpha,
typename Field::ConstElement_ptr A, const size_t lda,
typename Field::Element_ptr B, const size_t ldb);
/** @brief fgemm: <b>F</b>ield <b>GE</b>neral <b>M</b>atrix <b>M</b>ultiply.
*
* Computes \f$C = \alpha \mathrm{op}(A) \times \mathrm{op}(B) + \beta C\f$
* Automatically set Winograd recursion level
* \param F field.
* \param ta if \c ta==FflasTrans then \f$\mathrm{op}(A)=A^t\f$, else \f$\mathrm{op}(A)=A\f$,
* \param tb same for matrix \p B
* \param m see \p A
* \param n see \p B
* \param k see \p A
* \param alpha scalar
* \param beta scalar
* \param A \f$\mathrm{op}(A)\f$ is \f$m \times k\f$
* \param B \f$\mathrm{op}(B)\f$ is \f$k \times n\f$
* \param C \f$C\f$ is \f$m \times n\f$
* \param lda leading dimension of \p A
* \param ldb leading dimension of \p B
* \param ldc leading dimension of \p C
* \param w recursive levels of Winograd's algorithm are used. No argument (or -1) does auto computation of \p w.
* @warning \f$\alpha\f$ \e must be invertible
*/
template<class Field>
typename Field::Element_ptr
fgemm( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
typename Field::ConstElement_ptr A, const size_t lda,
typename Field::ConstElement_ptr B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element_ptr C, const size_t ldc);
template<typename Field>
typename Field::Element_ptr
fgemm( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
typename Field::ConstElement_ptr A, const size_t lda,
typename Field::ConstElement_ptr B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element_ptr C, const size_t ldc,
const ParSeqHelper::Sequential seq);
template<typename Field, class Cut, class Param>
typename Field::Element_ptr
fgemm( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
typename Field::ConstElement_ptr A, const size_t lda,
typename Field::ConstElement_ptr B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element_ptr C, const size_t ldc,
const ParSeqHelper::Parallel<Cut,Param> par);
template<class Field>
typename Field::Element*
pfgemm_1D_rec( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
const typename Field::Element_ptr A, const size_t lda,
const typename Field::Element_ptr B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element * C, const size_t ldc, size_t seuil);
template<class Field>
typename Field::Element*
pfgemm_2D_rec( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
const typename Field::Element_ptr A, const size_t lda,
const typename Field::Element_ptr B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element * C, const size_t ldc, size_t seuil);
template<class Field>
typename Field::Element*
pfgemm_3D_rec( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
const typename Field::Element_ptr A, const size_t lda,
const typename Field::Element_ptr B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element_ptr C, const size_t ldc, size_t seuil, size_t * x);
template<class Field>
typename Field::Element_ptr
pfgemm_3D_rec2( const Field& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m,
const size_t n,
const size_t k,
const typename Field::Element alpha,
const typename Field::Element_ptr A, const size_t lda,
const typename Field::Element_ptr B, const size_t ldb,
const typename Field::Element beta,
typename Field::Element_ptr C, const size_t ldc, size_t seuil, size_t *x);
/** @brief fgemm: <b>F</b>ield <b>GE</b>neral <b>M</b>atrix <b>M</b>ultiply.
*
* Computes \f$C = \alpha \mathrm{op}(A) \times \mathrm{op}(B) + \beta C\f$
* Version with Helper. Input and Output are not supposed to be reduced.
* \param F field.
* \param ta if \c ta==FflasTrans then \f$\mathrm{op}(A)=A^t\f$, else \f$\mathrm{op}(A)=A\f$,
* \param tb same for matrix \p B
* \param m see \p A
* \param n see \p B
* \param k see \p A
* \param alpha scalar
* \param beta scalar
* \param A \f$\mathrm{op}(A)\f$ is \f$m \times k\f$
* \param B \f$\mathrm{op}(B)\f$ is \f$k \times n\f$
* \param C \f$C\f$ is \f$m \times n\f$
* \param lda leading dimension of \p A
* \param ldb leading dimension of \p B
* \param ldc leading dimension of \p C
* \param H helper, driving the computation (algorithm, delayed modular reduction, switch of base type, etc)
* @warning \f$\alpha\f$ \e must be invertible
*/
// template<class Field, class AlgoT, class FieldTrait, class ParSeqTrait>
// inline typename Field::Element_ptr
// fgemm (const Field& F,
// const FFLAS_TRANSPOSE ta,
// const FFLAS_TRANSPOSE tb,
// const size_t m, const size_t n, const size_t k,
// const typename Field::Element alpha,
// typename Field::Element_ptr A, const size_t lda,
// typename Field::Element_ptr B, const size_t ldb,
// const typename Field::Element beta,
// typename Field::Element_ptr C, const size_t ldc,
// MMHelper<Field, AlgoT, FieldTrait, ParSeqTrait> & H);
} // FFLAS
#include "fflas-ffpack/paladin/parallel.h"
namespace FFLAS {
/** @brief fsquare: Squares a matrix.
* compute \f$ C \gets \alpha \mathrm{op}(A) \mathrm{op}(A) + \beta C\f$ over a Field \p F
* Avoid the conversion of B
* @param ta if \c ta==FflasTrans, \f$\mathrm{op}(A)=A^T\f$.
* @param F field
* @param n size of \p A
* @param alpha scalar
* @param beta scalar
* @param A dense matrix of size \c nxn
* @param lda leading dimension of \p A
* @param C dense matrix of size \c nxn
* @param ldc leading dimension of \p C
*/
template<class Field>
typename Field::Element_ptr fsquare (const Field& F,
const FFLAS_TRANSPOSE ta,
const size_t n,
const typename Field::Element alpha,
typename Field::ConstElement_ptr A,
const size_t lda,
const typename Field::Element beta,
typename Field::Element_ptr C,
const size_t ldc);
} // FFLAS
#endif // __FFLASFFPACK_fflas_fflas_level3_INL
|