This file is indexed.

/usr/include/fflas-ffpack/fflas/fflas_level2.inl is in fflas-ffpack-common 2.2.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
/*
 * Copyright (C) 2014 the FFLAS-FFPACK group
 *
 * Written by Brice Boyer (briceboyer) <boyer.brice@gmail.com>
 *
 *
 * ========LICENCE========
 * This file is part of the library FFLAS-FFPACK.
 *
 * FFLAS-FFPACK is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 *.
 */

/** @file fflas/fflas_level2.h
 * @brief  Matrix-Vector operations
 * or anything of \f$n^2\f$ complexity
 */

#ifndef __FFLASFFPACK_fflas_fflas_level2_INL
#define __FFLASFFPACK_fflas_fflas_level2_INL

namespace FFLAS {

	//---------------------------------------------------------------------
	// Level 2 routines
	//---------------------------------------------------------------------

	/** \brief fassign : \f$A \gets B \f$.
	 * @param F field
	 * @param m number of rows to copy
	 * @param n number of cols to copy
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * \param B vector in \p F
	 * \param ldb stride of \p B
	 */
	template<class Field>
	void
	fassign (const Field& F, const size_t m, const size_t n,
	       typename Field::ConstElement_ptr B, const size_t ldb ,
	       typename Field::Element_ptr A, const size_t lda );

	/** \brief fzero : \f$A \gets 0 \f$.
	 * @param F field
	 * @param m number of rows to zero
	 * @param n number of cols to zero
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * @warning may be buggy if Element is larger than int
	 */

	template<class Field>
	void
	fzero (const Field& F, const size_t m, const size_t n,
	       typename Field::Element_ptr A, const size_t lda)
	{
		/*  use memset only with Elements that are ok */
		if (n == lda) { // contigous data
			// memset(A,(int) F.zero,m*n); // might be bogus ?
			fzero(F,m*n,A,1);
		}
		else { // not contiguous (strided)
			for (size_t i = 0 ; i < m ; ++i)
				// memset(A+i*lda,(int) F.zero,n) ; // might be bogus ?
				fzero(F,n,A+i*lda,1);
		}
	}
	/** \brief frand : \f$A \gets random \f$.
	 * @param F field
	 * @param G randomiterator
	 * @param m number of rows to randomize
	 * @param n number of cols to randomize
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 */
	template<class Field, class RandIter>
	void
	frand (const Field& F, RandIter& G, const size_t m, const size_t n,
	       typename Field::Element_ptr A, const size_t lda)
	{
		/*  use memset only with Elements that are ok */
		if (n == lda) { // contigous data
			// memset(A,(int) F.zero,m*n); // might be bogus ?
			frand(F,G,m*n,A,1);
		}
		else { // not contiguous (strided)
			for (size_t i = 0 ; i < m ; ++i)
				// memset(A+i*lda,(int) F.zero,n) ; // might be bogus ?
				frand(F,G,n,A+i*lda,1);
		}
	}
        /** \brief fequal : test \f$A = B \f$.
	 * @param F field
	 * @param m row dimension
	 * @param n column dimension
	 * \param A m x n matrix in \p F
	 * \param lda leading dimension of A
	 * \param B m x n matrix in \p F
	 * \param ldb leading dimension of B
	 */
	template<class Field>
	bool
	fequal (const Field& F, const size_t m, const size_t n,
		typename Field::ConstElement_ptr A, const size_t lda,
		typename Field::ConstElement_ptr B, const size_t ldb)
	{
		bool res=true;
		for (size_t i = 0 ; i < m ; ++i)
			res &= fequal (F, n, A + i*lda, 1, B + i*ldb, 1);
		return res;
	}
        /** \brief fiszero : test \f$A = 0 \f$.
	 * @param F field
	 * @param m row dimension
	 * @param n column dimension
	 * \param A m x n matrix in \p F
	 * \param lda leading dimension of A
	 */
	template<class Field>
	bool
	fiszero (const Field& F, const size_t m, const size_t n,
		 typename Field::ConstElement_ptr A, const size_t lda)
	{
		bool res=true;
		for (size_t i = 0 ; i < m ; ++i)
			res &= fiszero (F, n, A + i*lda, 1);
		return res;
	}

	//! creates a diagonal matrix
	template<class Field>
	void
	fidentity (const Field& F, const size_t m, const size_t n,
		   typename Field::Element_ptr A, const size_t lda, const typename Field::Element & d) // =F.one...
	{
		fzero(F,m,n,A,lda);
		for (size_t i = 0 ; i < std::min(m,n) ; ++i)
			F.assign(A[i*lda+i],d);
	}

	//! creates a diagonal matrix
	template<class Field>
	void
	fidentity (const Field& F, const size_t m, const size_t n,
		   typename Field::Element_ptr A, const size_t lda)
	{
		fzero(F,m,n,A,lda);
		for (size_t i = 0 ; i < std::min(m,n) ; ++i)
			F.assign(A[i*lda+i],F.one);
	}

	/** freduce
	 * \f$A \gets  A mod F\f$.
	 * @param F field
	 * @param m number of rows
	 * @param n number of cols
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * @internal
	 */
	template<class Field>
	void
	freduce (const Field& F, const size_t m , const size_t n,
		 typename Field::Element_ptr A, const size_t lda);

	/** freduce
	 * \f$A \gets  B mod F\f$.
	 * @param F field
	 * @param m number of rows
	 * @param n number of cols
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * \param B matrix in \p Element
	 * \param ldb stride of \p B
	 * @internal
	 */
	template<class Field>
	void
	freduce (const Field& F, const size_t m , const size_t n,
		 typename Field::ConstElement_ptr B, const size_t ldb,
		 typename Field::Element_ptr A, const size_t lda);

	/** finit
	 * \f$A \gets  B mod F\f$.
	 * @param F field
	 * @param m number of rows
	 * @param n number of cols
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * \param B matrix in \p OtherElement
	 * \param ldb stride of \p B
	 * @internal
	 */
	template<class Field, class OtherElement_ptr>
	void
	finit (const Field& F, const size_t m , const size_t n,
	       const OtherElement_ptr B, const size_t ldb,
	       typename Field::Element_ptr A, const size_t lda);

	/** fconvert
	 * \f$A \gets  B mod F\f$.
	 * @param F field
	 * @param m number of rows
	 * @param n number of cols
	 * \param A matrix in \p OtherElement
	 * \param lda stride of \p A
	 * \param B matrix in \p F
	 * \param ldb stride of \p B
	 * @internal
	 */
	template<class Field, class OtherElement_ptr>
	void
	fconvert (const Field& F, const size_t m , const size_t n,
		  OtherElement_ptr A, const size_t lda,
		  typename Field::ConstElement_ptr B, const size_t ldb)
	{
		//!@todo check if n == lda
		for (size_t i = 0 ; i < m ; ++i)
			fconvert(F,n,A+i*lda,1,B+i*ldb,1);
		return;
	}

	/** fnegin
	 * \f$A \gets - A\f$.
	 * @param F field
	 * @param m number of rows
	 * @param n number of cols
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * @internal
	 */
	template<class Field>
	void
	fnegin (const Field& F, const size_t m , const size_t n,
		typename Field::Element_ptr A, const size_t lda)
	{
		//!@todo check if n == lda
		for (size_t i = 0 ; i < m ; ++i)
			fnegin(F,n,A+i*lda,1);
		return;
	}

	/** fneg
	 * \f$A \gets  - B\f$.
	 * @param F field
	 * @param m number of rows
	 * @param n number of cols
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * @internal
	 */
	template<class Field>
	void
	fneg (const Field& F, const size_t m , const size_t n,
	      typename Field::ConstElement_ptr B, const size_t ldb,
	      typename Field::Element_ptr A, const size_t lda)
	{
		//!@todo check if n == lda
		for (size_t i = 0 ; i < m ; ++i)
			fneg(F,n,B+i*ldb,1,A+i*lda,1);
		return;
	}

	/** fscalin
	 * \f$A \gets a \cdot A\f$.
	 * @param F field
	 * @param m number of rows
	 * @param n number of cols
	 * @param alpha homotecie scalar
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * @internal
	 */
	template<class Field>
	void
	fscalin (const Field& F, const size_t m , const size_t n,
		 const typename Field::Element alpha,
		 typename Field::Element_ptr A, const size_t lda);

	/** fscal
	 * \f$B \gets a \cdot A\f$.
	 * @param F field
	 * @param m number of rows
	 * @param n number of cols
	 * @param alpha homotecie scalar
	 * \param[in] A matrix in \p F
	 * \param lda stride of \p A
	 * \param[out] B matrix in \p F
	 * \param ldb stride of \p B
	 * @internal
	 */
	template<class Field>
	void
	fscal (const Field& F, const size_t m , const size_t n,
	       const typename Field::Element alpha,
	       typename Field::ConstElement_ptr A, const size_t lda,
	       typename Field::Element_ptr B, const size_t ldb);

	/** \brief faxpy : \f$y \gets \alpha \cdot x + y\f$.
	 * @param F field
	 * @param m row dimension
	 * @param n column dimension
	 * @param alpha scalar
	 * \param[in] X vector in \p F
	 * \param ldx leading dimension of \p X
	 * \param[in,out] Y vector in \p F
	 * \param ldy leading dimension of \p Y
	 */
	template<class Field>
	void
	faxpy (const Field& F, const size_t m, const size_t n
	       , const typename Field::Element alpha,
	       typename Field::ConstElement_ptr X, const size_t ldx,
	       typename Field::Element_ptr Y, const size_t ldy );

	/** \brief faxpby : \f$y \gets \alpha \cdot x + \beta \cdot y\f$.
	 * @param F field
	 * @param m row dimension
	 * @param n column dimension
	 * @param alpha scalar
	 * \param[in] X vector in \p F
	 * \param ldx leading dimension of \p X
	 * \param beta scalar
	 * \param[in,out] Y vector in \p F
	 * \param ldy leading dimension of \p Y
	 * \note this is a catlas function
	 */
	template<class Field>
	void
	faxpby (const Field& F, const size_t m, const size_t n,
		const typename Field::Element alpha,
		typename Field::ConstElement_ptr X, const size_t ldx,
		const typename Field::Element beta,
		typename Field::Element_ptr Y, const size_t ldy );

	/** \brief fmove : \f$A \gets B \f$ and \f$ B \gets 0\f$.
	 * @param F field
	 * @param m number of rows to copy
	 * @param n number of cols to copy
	 * \param A matrix in \p F
	 * \param lda stride of \p A
	 * \param B vector in \p F
	 * \param ldb stride of \p B
	 */
	template<class Field>
	void
	fmove (const Field& F, const size_t m, const size_t n,
	       typename Field::Element_ptr A, const size_t lda,
	       typename Field::Element_ptr B, const size_t ldb )
	{
		fassign(F,m,n,A,lda,B,ldb);
		fzero(F,m,n,B,ldb);
	}

	/** fadd : matrix addition.
	 * Computes \p C = \p A + \p B.
	 * @param F field
	 * @param M rows
	 * @param N cols
	 * @param A dense matrix of size \c MxN
	 * @param lda leading dimension of \p A
	 * @param B dense matrix of size \c MxN
	 * @param ldb leading dimension of \p B
	 * @param C dense matrix of size \c MxN
	 * @param ldc leading dimension of \p C
	 */
	template <class Field>
	void
	fadd (const Field& F, const size_t M, const size_t N,
	      typename Field::ConstElement_ptr A, const size_t lda,
	      typename Field::ConstElement_ptr B, const size_t ldb,
	      typename Field::Element_ptr C, const size_t ldc);



	/** fsub : matrix subtraction.
	 * Computes \p C = \p A - \p B.
	 * @param F field
	 * @param M rows
	 * @param N cols
	 * @param A dense matrix of size \c MxN
	 * @param lda leading dimension of \p A
	 * @param B dense matrix of size \c MxN
	 * @param ldb leading dimension of \p B
	 * @param C dense matrix of size \c MxN
	 * @param ldc leading dimension of \p C
	 */
	template <class Field>
	void
	fsub (const Field& F, const size_t M, const size_t N,
	      typename Field::ConstElement_ptr A, const size_t lda,
	      typename Field::ConstElement_ptr B, const size_t ldb,
	      typename Field::Element_ptr C, const size_t ldc);

	//! fsubin
	//! C = C - B
	template <class Field>
	void
	fsubin (const Field& F, const size_t M, const size_t N,
		typename Field::ConstElement_ptr B, const size_t ldb,
		typename Field::Element_ptr C, const size_t ldc);

	/** fadd : matrix addition with scaling.
	 * Computes \p C = \p A + alpha \p B.
	 * @param F field
	 * @param M rows
	 * @param N cols
	 * @param A dense matrix of size \c MxN
	 * @param lda leading dimension of \p A
	 * @param alpha some scalar
	 * @param B dense matrix of size \c MxN
	 * @param ldb leading dimension of \p B
	 * @param C dense matrix of size \c MxN
	 * @param ldc leading dimension of \p C
	 */
	template <class Field>
	void
	fadd (const Field& F, const size_t M, const size_t N,
	      typename Field::ConstElement_ptr A, const size_t lda,
	      const typename Field::Element alpha,
	      typename Field::ConstElement_ptr B, const size_t ldb,
	      typename Field::Element_ptr C, const size_t ldc);

	//! faddin
	template <class Field>
	void
	faddin (const Field& F, const size_t M, const size_t N,
		typename Field::ConstElement_ptr B, const size_t ldb,
		typename Field::Element_ptr C, const size_t ldc);


	/**  @brief finite prime Field GEneral Matrix Vector multiplication.
	 *
	 *  Computes  \f$Y \gets \alpha \mathrm{op}(A) X + \beta Y \f$.
	 * @param F field
	 * \param TransA if \c TransA==FflasTrans then \f$\mathrm{op}(A)=A^t\f$.
	 * @param M rows
	 * @param N cols
	 * @param alpha scalar
	 * @param A dense matrix of size \c MxN
	 * @param lda leading dimension of \p A
	 * @param X dense vector of size \c N
	 * @param incX stride of \p X
	 * @param beta scalar
	 * @param[out] Y dense vector of size \c M
	 * @param incY stride of \p Y
	 */
	template<class Field>
	typename Field::Element_ptr
	fgemv (const Field& F, const FFLAS_TRANSPOSE TransA,
	       const size_t M, const size_t N,
	       const typename Field::Element alpha,
	       typename Field::ConstElement_ptr A, const size_t lda,
	       typename Field::ConstElement_ptr X, const size_t incX,
	       const  typename Field::Element beta,
	       typename Field::Element_ptr Y, const size_t incY);

	/**  @brief fger: rank one update of a general matrix
	 *
	 *  Computes  \f$A \gets \alpha x . y^T + A\f$
	 * @param F field
	 * @param M rows
	 * @param N cols
	 * @param alpha scalar
	 * @param[in,out] A dense matrix of size \c MxN and leading dimension \p lda
	 * @param lda leading dimension of \p A
	 * @param x dense vector of size \c M
	 * @param incx stride of \p X
	 * @param y dense vector of size \c N
	 * @param incy stride of \p Y
	 */
	template<class Field>
	void
	fger (const Field& F, const size_t M, const size_t N,
	      const typename Field::Element alpha,
	      typename Field::ConstElement_ptr x, const size_t incx,
	      typename Field::ConstElement_ptr y, const size_t incy,
	      typename Field::Element_ptr A, const size_t lda);

	/** @brief ftrsv: TRiangular System solve with Vector
	 *  Computes  \f$ X \gets \mathrm{op}(A^{-1}) X\f$
	 *  @param F field
	 * @param X vector of size \p N on a field \p F
	 * @param incX stride of \p  X
	 * @param A a matrix of leading dimension \p lda and size \p N
	 * @param lda leading dimension of \p A
	 * @param N number of rows or columns of \p A according to \p TransA
	 * \param TransA if \c TransA==FflasTrans then \f$\mathrm{op}(A)=A^t\f$.
	 * \param Diag if \c Diag==FflasUnit then \p A is unit.
	 * \param Uplo if \c Uplo==FflasUpper then \p A is upper triangular
	 */
	template<class Field>
	void
	ftrsv (const Field& F, const FFLAS_UPLO Uplo,
	       const FFLAS_TRANSPOSE TransA, const FFLAS_DIAG Diag,
	       const size_t N,typename Field::ConstElement_ptr A, const size_t lda,
	       typename Field::Element_ptr X, int incX);

} // FFLAS

#endif // __FFLASFFPACK_fflas_fflas_level2_INL