This file is indexed.

/usr/include/fflas-ffpack/fflas/fflas_freivalds.inl is in fflas-ffpack-common 2.2.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/* fflas/fflas_freivalds.inl
 * Copyright (C) 2014 Jean-Guillaume Dumas
 *
 * Written by Jean-Guillaume Dumas <Jean-Guillaume.Dumas@imag.fr>
 *
 *
 * ========LICENCE========
 * This file is part of the library FFLAS-FFPACK.
 *
 * FFLAS-FFPACK is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 *.
 */
#ifndef __FFLASFFPACK_freivalds_INL
#define __FFLASFFPACK_freivalds_INL

// #include "fflas-ffpack/utils/Matio.h"

namespace FFLAS{ 

	/** @brief  freivalds: <b>F</b>reivalds <b>GE</b>neral <b>M</b>atrix <b>M</b>ultiply <b>R</b>andom <b>C</b>heck.
	 *
	 * Randomly Checks \f$C = \alpha \mathrm{op}(A) \times \mathrm{op}(B)\f$
	 * \param F field.
	 * \param ta if \c ta==FflasTrans then \f$\mathrm{op}(A)=A^t\f$, else \f$\mathrm{op}(A)=A\f$,
	 * \param tb same for matrix \p B
	 * \param m see \p A
	 * \param n see \p B
	 * \param k see \p A
	 * \param alpha scalar
	 * \param A \f$\mathrm{op}(A)\f$ is \f$m \times k\f$
	 * \param B \f$\mathrm{op}(B)\f$ is \f$k \times n\f$
	 * \param C \f$C\f$ is \f$m \times n\f$
	 * \param lda leading dimension of \p A
	 * \param ldb leading dimension of \p B
	 * \param ldc leading dimension of \p C
	 */
    template<class Field> inline  bool
    freivalds (const Field& F,
               const FFLAS_TRANSPOSE ta,
               const FFLAS_TRANSPOSE tb,
               const size_t m, const size_t n, const size_t k,
               const typename Field::Element alpha,
               typename Field::ConstElement_ptr A, const size_t lda,
               typename Field::ConstElement_ptr B, const size_t ldb,
               typename Field::ConstElement_ptr C, const size_t ldc) {
    
        typename Field::Element_ptr v, y, x;

        v = FFLAS::fflas_new(F,n,1);
        y = FFLAS::fflas_new(F,k,1);
        x = FFLAS::fflas_new(F,m,1);

        typename Field::RandIter G(F);
        for(size_t j=0; j<n; ++j)
            G.random(v[j]);
    
// F.write(std::cerr<< "alpha:=", alpha) << ';' << std::endl;
// F.write(std::cerr<< "moinsun:=", F.mOne) << ';' << std::endl;
// std::cerr<< "p:=" << F.characteristic() << ';' << std::endl;
// write_field(F,std::cerr<<"v:=",v,n,1,1,true) << ';' << std::endl;
// write_field(F,std::cerr<<"A:=",A,m,k,lda,true) << ';' << std::endl;
// write_field(F,std::cerr<<"B:=",B,k,n,ldb,true) << ';' << std::endl;
// write_field(F,std::cerr<<"C:=",C,m,n,ldc,true) << ';' << std::endl;

        bool pass=true;

            // y <-- 1.\mathrm{op}(B).v
        size_t Bnrows = (tb == FflasNoTrans)? k : n;
        size_t Bncols = (tb == FflasNoTrans)? n : k;
        size_t Anrows = (ta == FflasNoTrans)? m : k;
        size_t Ancols = (ta == FflasNoTrans)? k : m;

        FFLAS::fgemv(F, tb, Bnrows, Bncols, F.one, B, ldb, v, 1, F.zero, y, 1);
// write_field(F,std::cerr<<"y:=",y,k,1,1,true) << ';' << std::endl;
            // x <-- alpha.\mathrm{op}(A).y
            // x <-- alpha.\mathrm{op}(A).\mathrm{op}(B).v
        FFLAS::fgemv(F, ta, Anrows, Ancols, alpha, A, lda, y, 1, F.zero, x, 1);
// write_field(F,std::cerr<<"x:=",x,m,1,1,true) << ';' << std::endl;

//             // x <-- -C.v+x =?= 0
        FFLAS::fgemv(F, FFLAS::FflasNoTrans,m,n, F.mOne, C, ldc, v, 1, F.one, x, 1);
// write_field(F,std::cerr<<"t:=",x,m,1,1,true) << ';' << std::endl;

        for(size_t j=0; j<m; ++j) 
            pass &= F.isZero (x[j]);
  
//             // z <-- C.v
//         typename Field::Element_ptr z = FFLAS::fflas_new(F,m,1);
//         FFLAS::fgemv(F, FFLAS::FflasNoTrans, m,n , F.one, C, ldc, v, 1, F.zero, z, 1);
// //         write_field(F,std::cerr<<"z:=",z,m,1,1,true) << ';' << std::endl;
    
//         for(size_t j=0; j<m; ++j) 
//             pass &= F.areEqual(z[j],x[j]);
        
        FFLAS::fflas_delete(y);
        FFLAS::fflas_delete(v);
        FFLAS::fflas_delete(x);
//         FFLAS::fflas_delete(z);
        return pass;
    }
 
}

    

#endif //  __FFLASFFPACK_freivalds_INL