This file is indexed.

/usr/share/dicompyler/dicompyler/dvhcalc.py is in dicompyler 0.4.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python
# -*- coding: ISO-8859-1 -*-
# dvhcalc.py
"""Calculate dose volume histogram (DVH) from DICOM RT Structure / Dose data."""
# Copyright (c) 2011-2012 Aditya Panchal
# Copyright (c) 2010 Roy Keyes
# This file is part of dicompyler, released under a BSD license.
#    See the file license.txt included with this distribution, also
#    available at http://code.google.com/p/dicompyler/

import logging
logger = logging.getLogger('dicompyler.dvhcalc')
import numpy as np
import numpy.ma as ma
import matplotlib
if matplotlib.__version__ > '1.2':
    from matplotlib.path import Path as mpl_Path
else:
    from matplotlib import nxutils as nx

def get_dvh(structure, dose, limit=None, callback=None):
    """Get a calculated cumulative DVH along with the associated parameters."""

    # Get the differential DVH
    hist = calculate_dvh(structure, dose, limit, callback)
    # Convert the differential DVH into a cumulative DVH
    dvh = get_cdvh(hist)

    dvhdata = {}
    dvhdata['data'] = dvh
    dvhdata['bins'] = len(dvh)
    dvhdata['type'] = 'CUMULATIVE'
    dvhdata['doseunits'] = 'GY'
    dvhdata['volumeunits'] = 'CM3'
    dvhdata['scaling'] = 1
    # save the min dose as -1 so we can calculate it later
    dvhdata['min'] = -1
    # save the max dose as -1 so we can calculate it later
    dvhdata['max'] = -1
    # save the mean dose as -1 so we can calculate it later
    dvhdata['mean'] = -1
    return dvhdata

def calculate_dvh(structure, dose, limit=None, callback=None):
    """Calculate the differential DVH for the given structure and dose grid."""

    sPlanes = structure['planes']
    logger.debug("Calculating DVH of %s %s", structure['id'], structure['name'])

    # Get the dose to pixel LUT
    doselut = dose.GetPatientToPixelLUT()

    # Generate a 2d mesh grid to create a polygon mask in dose coordinates
    # Code taken from Stack Overflow Answer from Joe Kington:
    # http://stackoverflow.com/questions/3654289/scipy-create-2d-polygon-mask/3655582
    # Create vertex coordinates for each grid cell
    x, y = np.meshgrid(np.array(doselut[0]), np.array(doselut[1]))
    x, y = x.flatten(), y.flatten()
    dosegridpoints = np.vstack((x,y)).T

    # Create an empty array of bins to store the histogram in cGy
    # only if the structure has contour data or the dose grid exists
    if ((len(sPlanes)) and ("PixelData" in dose.ds)):

        # Get the dose and image data information
        dd = dose.GetDoseData()
        id = dose.GetImageData()

        maxdose = int(dd['dosemax'] * dd['dosegridscaling'] * 100)
        # Remove values above the limit (cGy) if specified
        if not (limit == None):
            if (limit < maxdose):
                maxdose = limit
        hist = np.zeros(maxdose)
    else:
        hist = np.array([0])
    volume = 0

    plane = 0
    # Iterate over each plane in the structure
    for z, sPlane in sPlanes.iteritems():

        # Get the contours with calculated areas and the largest contour index
        contours, largestIndex = calculate_contour_areas(sPlane)

        # Get the dose plane for the current structure plane
        doseplane = dose.GetDoseGrid(z)

        # If there is no dose for the current plane, go to the next plane
        if not len(doseplane):
            break

        # Calculate the histogram for each contour
        for i, contour in enumerate(contours):
            m = get_contour_mask(doselut, dosegridpoints, contour['data'])
            h, vol = calculate_contour_dvh(m, doseplane, maxdose,
                                           dd, id, structure)
            # If this is the largest contour, just add to the total histogram
            if (i == largestIndex):
                hist += h
                volume += vol
            # Otherwise, determine whether to add or subtract histogram
            # depending if the contour is within the largest contour or not
            else:
                contour['inside'] = False
                for point in contour['data']:
                    if matplotlib.__version__ > '1.2':
                        if mpl_Path(np.array(contours[largestIndex]['data'])).contains_point(point):
                            contour['inside'] = True
                            # Assume if one point is inside, all will be inside
                            break
                    else:
                        if nx.pnpoly(point[0], point[1],
                                 np.array(contours[largestIndex]['data'])):
                            contour['inside'] = True
                            # Assume if one point is inside, all will be inside
                            break
                # If the contour is inside, subtract it from the total histogram
                if contour['inside']:
                    hist -= h
                    volume -= vol
                # Otherwise it is outside, so add it to the total histogram
                else:
                    hist += h
                    volume += vol
        plane += 1
        if not (callback == None):
            callback(plane, len(sPlanes))
    # Volume units are given in cm^3
    volume = volume/1000
    # Rescale the histogram to reflect the total volume
    hist = hist*volume/sum(hist)
    # Remove the bins above the max dose for the structure
    hist = np.trim_zeros(hist, trim='b')

    return hist

def calculate_contour_areas(plane):
    """Calculate the area of each contour for the given plane.
       Additionally calculate and return the largest contour index."""

    # Calculate the area for each contour in the current plane
    contours = []
    largest = 0
    largestIndex = 0
    for c, contour in enumerate(plane):
        # Create arrays for the x,y coordinate pair for the triangulation
        x = []
        y = []
        for point in contour['contourData']:
            x.append(point[0])
            y.append(point[1])

        cArea = 0
        # Calculate the area based on the Surveyor's formula
        for i in range(0, len(x)-1):
            cArea = cArea + x[i]*y[i+1] - x[i+1]*y[i]
        cArea = abs(cArea / 2)
        # Remove the z coordinate from the xyz point tuple
        data = map(lambda x: x[0:2], contour['contourData'])
        # Add the contour area and points to the list of contours
        contours.append({'area':cArea, 'data':data})

        # Determine which contour is the largest
        if (cArea > largest):
            largest = cArea
            largestIndex = c

    return contours, largestIndex

def get_contour_mask(doselut, dosegridpoints, contour):
    """Get the mask for the contour with respect to the dose plane."""

    if matplotlib.__version__ > '1.2':
        grid = mpl_Path(contour).contains_points(dosegridpoints)
    else:
        grid = nx.points_inside_poly(dosegridpoints, contour)
    grid = grid.reshape((len(doselut[1]), len(doselut[0])))

    return grid

def calculate_contour_dvh(mask, doseplane, maxdose, dd, id, structure):
    """Calculate the differential DVH for the given contour and dose plane."""

    # Multiply the structure mask by the dose plane to get the dose mask
    mask = ma.array(doseplane * dd['dosegridscaling'] * 100, mask=~mask)
    # Calculate the differential dvh
    hist, edges = np.histogram(mask.compressed(),
                               bins=maxdose,
                               range=(0,maxdose))

    # Calculate the volume for the contour for the given dose plane
    vol = sum(hist) * ((id['pixelspacing'][0]) *
                      (id['pixelspacing'][1]) *
                      (structure['thickness']))
    return hist, vol

def get_cdvh(ddvh):
    """Calculate the cumulative DVH from a differential DVH array."""

    # cDVH(x) is Sum (Integral) of dDVH with x as lower limit
    cdvh = []
    j = 0
    jmax = len(ddvh)
    while j < jmax:
        cdvh += [np.sum(ddvh[j:])]
        j += 1
    cdvh = np.array(cdvh)
    return cdvh

############################# Test DVH Calculation #############################

def main():

    import dicomparser
    import string

    has_pylab = True
    try:
        import pylab as pl
    except ImportError:
        has_pylab = False

    # Read the example RT structure and RT dose files
    # The testdata was downloaded from the dicompyler website as testdata.zip
    rtss = dicomparser.DicomParser(filename="testdata/rtss.dcm")
    rtdose = dicomparser.DicomParser(filename="testdata/rtdose.dcm")

    # Obtain the structures and DVHs from the DICOM data
    structures = rtss.GetStructures()
    dvhs = rtdose.GetDVHs()

    # Generate the calculated DVHs
    calcdvhs = {}
    for key, structure in structures.iteritems():
        calcdvhs[key] = get_dvh(structure, rtdose)

    # Compare the calculated and original DVH volume for each structure
    print '\nStructure Name\t\t' + 'Original Volume\t\t' + \
          'Calculated Volume\t' + 'Percent Difference'
    print '--------------\t\t' + '---------------\t\t' + \
          '-----------------\t' + '------------------'
    for key, structure in structures.iteritems():
        if (key in calcdvhs) and (len(calcdvhs[key]['data'])):
            if key in dvhs:
                ovol = dvhs[key]['data'][0]
                cvol = calcdvhs[key]['data'][0]
                print string.ljust(structure['name'], 18) + '\t' + \
                      string.ljust(str(ovol), 18) + '\t' + \
                      string.ljust(str(cvol), 18) + '\t' + \
                      "%.3f" % float((100)*(cvol-ovol)/(ovol))

    # Plot the DVHs if pylab is available
    if has_pylab:
        for key, structure in structures.iteritems():
            if (key in calcdvhs) and (len(calcdvhs[key]['data'])):
                if key in dvhs:
                    pl.plot(calcdvhs[key]['data']*100/calcdvhs[key]['data'][0],
                            color=np.array(structure['color'], dtype=float)/255,
                            label=structure['name'], linestyle='dashed')
                    pl.plot(dvhs[key]['data']*100/dvhs[key]['data'][0],
                            color=np.array(structure['color'], dtype=float)/255,
                            label='Original '+structure['name'])
        pl.legend(loc=7, borderaxespad=-5)
        pl.setp(pl.gca().get_legend().get_texts(), fontsize='x-small')
        pl.show()

if __name__ == '__main__':
    main()