This file is indexed.

/usr/include/cppad/utility/thread_alloc.hpp is in cppad 2017.00.00.4-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
// $Id: thread_alloc.hpp 3845 2016-11-19 01:50:47Z bradbell $
# ifndef CPPAD_UTILITY_THREAD_ALLOC_HPP
# define CPPAD_UTILITY_THREAD_ALLOC_HPP

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-16 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */

# include <sstream>
# include <limits>
# include <memory>


# ifdef _MSC_VER
// Supress warning that Microsoft compiler changed its behavior and is now
// doing the correct thing at the statement:
//			new(array + i) Type();
# pragma warning(disable:4345)
# endif

# include <cppad/core/cppad_assert.hpp>
# include <cppad/core/define.hpp>
# include <cppad/local/set_get_in_parallel.hpp>
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\file thread_alloc.hpp
File used to define the CppAD multi-threading allocator class
*/

/*!
\def CPPAD_MAX_NUM_CAPACITY
Maximum number of different capacities the allocator will attempt.
This must be larger than the log base two of numeric_limit<size_t>::max().
*/
# define CPPAD_MAX_NUM_CAPACITY 100

/*!
\def CPPAD_MIN_DOUBLE_CAPACITY
Minimum number of double values that will fit in an allocation.
*/
# define CPPAD_MIN_DOUBLE_CAPACITY 16

/*!
\def CPPAD_TRACE_CAPACITY
If NDEBUG is not defined, print all calls to \c get_memory and \c return_memory
that correspond to this capacity and thread CPPAD_TRACE_THREAD.
(Note that if CPPAD_TRACE_CAPACITY is zero, or any other value not in the list
of capacities, no tracing will be done.)
*/
# define CPPAD_TRACE_CAPACITY 0

/*!
\def CPPAD_TRACE_THREAD
If NDEBUG is not defined, print all calls to \c get_memory and \c return_memory
that correspond to this thead and capacity CPPAD_TRACE_CAPACITY.
*/
# define CPPAD_TRACE_THREAD 0

/*
Note that Section 3.6.2 of ISO/IEC 14882:1998(E) states: "The storage for
objects with static storage duration (3.7.1) shall be zero-initialized
(8.5) before any other initialization takes place."
*/

/*!
Capacity vector for memory allocation block sizes.

Only one of these objects should be created and used as a
static variable inside of the \c thread_alloc::capacity_info function.
*/

/*!
Allocator class that works well with an multi-threading environment.
*/
class thread_alloc{
// ============================================================================
private:

	class capacity_t {
	public:
		/// number of capacity values actually used
		size_t number;
		/// the different capacity values
		size_t value[CPPAD_MAX_NUM_CAPACITY];
		/// ctor
		capacity_t(void)
		{	// Cannot figure out how to call thread_alloc::in_parallel here.
			// CPPAD_ASSERT_UNKNOWN(
			//	! thread_alloc::in_parallel() , "thread_alloc: "
			//	"parallel mode and parallel_setup not yet called."
			// );
			number           = 0;
			size_t capacity  = CPPAD_MIN_DOUBLE_CAPACITY * sizeof(double);
			while( capacity < std::numeric_limits<size_t>::max() / 2 )
			{	CPPAD_ASSERT_UNKNOWN( number < CPPAD_MAX_NUM_CAPACITY );
				value[number++] = capacity;
				// next capactiy is 3/2 times the current one
				capacity        = 3 * ( (capacity + 1) / 2 );
			}
			CPPAD_ASSERT_UNKNOWN( number > 0 );
		}
	};

	class block_t {
	public:
		/// extra information (currently used by create and delete array)
		size_t             extra_;
		/// an index that uniquely idenfifies both thread and capacity
		size_t             tc_index_;
		/// pointer to the next memory allocation with the same tc_index_
		void*              next_;
		// -----------------------------------------------------------------
		/// make default constructor private. It is only used by constructor
		/// for `root arrays below.
		block_t(void) : extra_(0), tc_index_(0), next_(CPPAD_NULL)
		{ }
	};

	// ---------------------------------------------------------------------
	/// Vector of fixed capacity values for this allocator
	static const capacity_t* capacity_info(void)
	{	CPPAD_ASSERT_FIRST_CALL_NOT_PARALLEL;
		static const capacity_t capacity;
		return &capacity;
	}
	// ---------------------------------------------------------------------
	/// Structure of information for each thread
	struct thread_alloc_info {
		/// count of available bytes for this thread
		size_t  count_inuse_;
		/// count of inuse bytes for this thread
		size_t  count_available_;
		/// root of available list for this thread and each capacity
		block_t root_available_[CPPAD_MAX_NUM_CAPACITY];
		/// root of inuse list for this thread and each capacity
		/// If NDEBUG is true, this memory is not used, but it still
		/// helps separate this structure from one for the next thread.
		block_t root_inuse_[CPPAD_MAX_NUM_CAPACITY];
	};
	// ---------------------------------------------------------------------
	/*!
	Set and Get hold available memory flag.

	\param set [in]
	if true, the value returned by this return is changed.

	\param new_value [in]
	if \a set is true, this is the new value returned by this routine.
	Otherwise, \c new_value is ignored.

	\return
	the current setting for this routine (which is initially false).
	*/
	static bool set_get_hold_memory(bool set, bool new_value = false)
	{	static bool value = false;
		if( set )
			value = new_value;
		return value;
	}
	// ---------------------------------------------------------------------
	/*!
	Get pointer to the information for this thread.

	\param thread [in]
	Is the thread number for this information pointer.

	\param clear
	If \a clear is true, then the information pointer for this thread
	is deleted and the \c CPPAD_NULL pointer is returned.
	There must be no memory currently in either the inuse or avaialble
	lists when this routine is called.

	\return
	is the current informaiton pointer for this thread.
	If \a clear is false, and the current pointer is CPPAD_NULL,
	a new infromation record is allocated and its pointer returned.
	In this case, if \c info is the retured pointer,
	<code>info->count_inuse == 0</code> and
	<code>info->count_available == 0</code>.
	In addition,
	for <code>c = 0 , ... , CPPAD_MAX_NUM_CAPACITY-1</code>
	<code>info->root_inuse_[c].next_ == CPPAD_NULL</code> and
	<code>info->root_available_[c].next_ == CPPAD_NULL</code>.
	*/
	static thread_alloc_info* thread_info(
		size_t             thread          ,
		bool               clear = false   )
	{	static thread_alloc_info* all_info[CPPAD_MAX_NUM_THREADS];
		static thread_alloc_info  zero_info;

		CPPAD_ASSERT_FIRST_CALL_NOT_PARALLEL;

		CPPAD_ASSERT_UNKNOWN( thread < CPPAD_MAX_NUM_THREADS );

		thread_alloc_info* info = all_info[thread];
		if( clear )
		{	if( info != CPPAD_NULL )
			{
# ifndef NDEBUG
				CPPAD_ASSERT_UNKNOWN(
					info->count_inuse_     == 0 &&
					info->count_available_ == 0
				);
				for(size_t c = 0; c < CPPAD_MAX_NUM_CAPACITY; c++)
				{	CPPAD_ASSERT_UNKNOWN(
						info->root_inuse_[c].next_     == CPPAD_NULL &&
						info->root_available_[c].next_ == CPPAD_NULL
					);
				}
# endif
				if( thread != 0 )
					::operator delete( reinterpret_cast<void*>(info) );
				info             = CPPAD_NULL;
				all_info[thread] = info;
			}
		}
		else if( info == CPPAD_NULL )
		{	if( thread == 0 )
				info = &zero_info;
			else
			{	size_t size = sizeof(thread_alloc_info);
				void* v_ptr = ::operator new(size);
				info        = reinterpret_cast<thread_alloc_info*>(v_ptr);
			}
			all_info[thread] = info;

			// initialize the information record
			for(size_t c = 0; c < CPPAD_MAX_NUM_CAPACITY; c++)
			{	info->root_inuse_[c].next_       = CPPAD_NULL;
				info->root_available_[c].next_   = CPPAD_NULL;
			}
			info->count_inuse_     = 0;
			info->count_available_ = 0;
		}
		return info;
	}
	// -----------------------------------------------------------------------
	/*!
	Increase the number of bytes of memory that are currently in use; i.e.,
	that been obtained with \c get_memory and not yet returned.

	\param inc [in]
	amount to increase memory in use.

	\param thread [in]
	Thread for which we are increasing the number of bytes in use
	(must be less than \c num_threads).
	Durring parallel execution, this must be the thread
	that is currently executing.
	*/
	static void inc_inuse(size_t inc, size_t thread)
	{
		CPPAD_ASSERT_UNKNOWN( thread < num_threads() );
		CPPAD_ASSERT_UNKNOWN(
			thread == thread_num() || (! in_parallel())
		);
		thread_alloc_info* info = thread_info(thread);

		// do the addition
		size_t result = info->count_inuse_ + inc;
		CPPAD_ASSERT_UNKNOWN( result >= info->count_inuse_ );

		info->count_inuse_ = result;
	}
	// -----------------------------------------------------------------------
	/*!
	Increase the number of bytes of memory that are currently avaialble; i.e.,
	have been obtained obtained from the system and are being held future use.

	\copydetails inc_inuse
	*/
	static void inc_available(size_t inc, size_t thread)
	{
		CPPAD_ASSERT_UNKNOWN( thread < CPPAD_MAX_NUM_THREADS);
		CPPAD_ASSERT_UNKNOWN(
			thread == thread_num() || (! in_parallel())
		);
		thread_alloc_info* info = thread_info(thread);
		// do the addition
		size_t result = info->count_available_ + inc;
		CPPAD_ASSERT_UNKNOWN( result >= info->count_available_ );

		info->count_available_ = result;
	}
	// -----------------------------------------------------------------------
	/*!
	Decrease the number of bytes of memory that are currently in use; i.e.,
	that been obtained with \c get_memory and not yet returned.

	\param dec [in]
	amount to decrease number of bytes in use.

	\param thread [in]
	Thread for which we are decreasing the number of bytes in use
	(must be less than \c num_threads).
	Durring parallel execution, this must be the thread
	that is currently executing.
	*/
	static void dec_inuse(size_t dec, size_t thread)
	{
		CPPAD_ASSERT_UNKNOWN(
			thread < num_threads() || (! in_parallel())
		);
		CPPAD_ASSERT_UNKNOWN(
			thread == thread_num() || (! in_parallel())
		);
		thread_alloc_info* info = thread_info(thread);

		// do the subtraction
		CPPAD_ASSERT_UNKNOWN( info->count_inuse_ >= dec );
		info->count_inuse_ = info->count_inuse_ - dec;
	}
	// -----------------------------------------------------------------------
	/*!
	Decrease the number of bytes of memory that are currently avaialble; i.e.,
	have been obtained obtained from the system and are being held future use.

	\copydetails dec_inuse
	*/
	static void dec_available(size_t dec, size_t thread)
	{
		CPPAD_ASSERT_UNKNOWN( thread < CPPAD_MAX_NUM_THREADS);
		CPPAD_ASSERT_UNKNOWN(
			thread == thread_num() || (! in_parallel())
		);
		thread_alloc_info* info = thread_info(thread);
		// do the subtraction
		CPPAD_ASSERT_UNKNOWN( info->count_available_ >= dec );
		info->count_available_ =  info->count_available_ - dec;
	}

	// ----------------------------------------------------------------------
	/*!
	Set and get the number of threads that are sharing memory.

	\param number_new
	If \c number is zero, we are only retreiving the current maximum
	number of threads. Otherwise, we are setting and retreiving
	maximum number of threads.

	\return
	the number of threads that are sharing memory.
	If \c number_new is non-zero, the return value is equal to
	\c number_new.
	*/
	static size_t set_get_num_threads(size_t number_new)
	{	static size_t number_user = 1;

		CPPAD_ASSERT_UNKNOWN( number_new <= CPPAD_MAX_NUM_THREADS );
		CPPAD_ASSERT_UNKNOWN( ! in_parallel() || (number_new == 0) );

		// case where we are changing the number of threads
		if( number_new != 0 )
			number_user = number_new;

		return number_user;
	}
	/*!
	Set and call the routine that determine the current thread number.

	\return
	returns value for the most recent setting for \a thread_num_new.
	If \a set is true,
	or the most recent setting is \c CPPAD_NULL (its initial value),
	the return value is zero.
	Otherwise the routine corresponding to the most recent setting
	is called and its value returned by \c set_get_thread_num.

	\param thread_num_new [in]
	If \a set is false, \a thread_num_new it is not used.
	Otherwise, the current value of \c thread_num_new becomes the
	most recent setting for thread_num.

	\param set
	If \a set is true, then \a thread_num_new is becomes the most
	recent setting for this \c set_get_thread_num.
	*/
	static size_t set_get_thread_num(
		size_t (*thread_num_new)(void)  ,
		bool set = false                )
	{	static size_t (*thread_num_user)(void) = CPPAD_NULL;

		if( set )
		{	thread_num_user = thread_num_new;
			return 0;
		}

		if( thread_num_user == CPPAD_NULL )
			return 0;

		size_t thread = thread_num_user();
		CPPAD_ASSERT_KNOWN(
			thread < set_get_num_threads(0) ,
			"parallel_setup: thread_num() >= num_threads"
		);
		return thread;
	}
// ============================================================================
public:
/*
$begin ta_parallel_setup$$
$spell
	alloc
	num
	bool
$$
$section Setup thread_alloc For Use in Multi-Threading Environment$$
$mindex parallel initialize$$




$head Syntax$$
$codei%thread_alloc::parallel_setup(%num_threads%, %in_parallel%, %thread_num%)
%$$

$head Purpose$$
By default there is only one thread and all execution is in sequential mode,
i.e., multiple threads are not sharing the same memory; i.e.
not in parallel mode.

$head Speed$$
It should be faster, even when $icode num_thread$$ is equal to one,
for $code thread_alloc$$ to hold onto memory.
This can be accomplished using the function call
$codei%
	thread_alloc::hold_memory(true)
%$$
see $cref/hold_memory/ta_hold_memory/$$.

$head num_threads$$
This argument has prototype
$codei%
	size_t %num_threads%
%$$
and must be greater than zero.
It specifies the number of threads that are sharing memory.
The case $icode%num_threads% == 1%$$ is a special case that is
used to terminate a multi-threading environment.

$head in_parallel$$
This function has prototype
$codei%
	bool %in_parallel%(void)
%$$
It must return $code true$$ if there is more than one thread
currently executing.
Otherwise it can return false.
$pre

$$
In the special case where $icode%num_threads% == 1%$$,
the routine $icode in_parallel$$ is not used.

$head thread_num$$
This function has prototype
$codei%
	size_t %thread_num%(void)
%$$
It must return a thread number that uniquely identifies the
currently executing thread.
Furthermore
$codei%
	0 <= %thread_num%() < %num_threads%
%$$.
In the special case where $icode%num_threads% == 1%$$,
the routine $icode thread_num$$ is not used.
$pre

$$
Note that this function is called by other routines so,
as soon as a new thread is executing,
one must be certain that $icode thread_num()$$ will
work for that thread.

$head Restrictions$$
The function $code parallel_setup$$ must be called before
the program enters $cref/parallel/ta_in_parallel/$$ execution mode.
In addition, this function cannot be called while in parallel mode.

$head Example$$
The files
$cref simple_ad_openmp.cpp$$,
$cref simple_ad_bthread.cpp$$, and
$cref simple_ad_pthread.cpp$$,
contain examples and tests that use this function.

$end
*/
	/*!
	Set thread_alloc up for parallel mode usage.

	\param num_threads [in]
	Is the number of thread that may be executing at the same time.

	\param in_parallel [in]
	Is the routine that determines if we are in parallel mode or not.

	\param thread_num [in]
	Is the routine that determines the current thread number
	(between zero and num_threads minus one).
	*/
	static void parallel_setup(
		size_t num_threads         ,
		bool (*in_parallel)(void)  ,
		size_t (*thread_num)(void) )
	{
		// Special case where we go back to single thread mode right away
		// (previous settings may no longer be valid)
		if( num_threads == 1 )
		{	bool set = true;
			set_get_num_threads(num_threads);
			// emphasize that this routine is outside thread_alloc class
			CppAD::local::set_get_in_parallel(CPPAD_NULL, set);
			set_get_thread_num(CPPAD_NULL, set);
			return;
		}

		CPPAD_ASSERT_KNOWN(
			num_threads <= CPPAD_MAX_NUM_THREADS ,
			"parallel_setup: num_threads is too large"
		);
		CPPAD_ASSERT_KNOWN(
			num_threads != 0 ,
			"parallel_setup: num_threads == zero"
		);
		CPPAD_ASSERT_KNOWN(
			in_parallel != CPPAD_NULL ,
			"parallel_setup: num_threads != 1 and in_parallel == CPPAD_NULL"
		);
		CPPAD_ASSERT_KNOWN(
			thread_num != CPPAD_NULL ,
			"parallel_setup: num_threads != 1 and thread_num == CPPAD_NULL"
		);

		// Make sure that constructors for all static variables in this file
		// are called in sequential mode.
		for(size_t thread = 0; thread < num_threads; thread++)
			thread_info(thread);
		capacity_info();
		size_t cap_bytes;
		void* v_ptr = get_memory(0, cap_bytes);

		// free memory allocated by call to get_memory above
		return_memory(v_ptr);
		free_available( set_get_thread_num(CPPAD_NULL) );

		// delay this so thread_num() call above is in previous mode
		// (current setings may not yet be valid)
		if( num_threads > 1 )
		{	bool set = true;
			set_get_num_threads(num_threads);
			// emphasize that this routine is outside thread_alloc class
			CppAD::local::set_get_in_parallel(in_parallel, set);
			set_get_thread_num(thread_num, set);
		}
	}
/*
$begin ta_num_threads$$
$spell
	inv
	CppAD
	num
	alloc
$$
$section Get Number of Threads$$


$head Syntax$$
$icode%number% = thread_alloc::num_threads()%$$

$head Purpose$$
Determine the number of threads as set during $cref/parallel_setup/ta_parallel_setup/$$.

$head number$$
The return value $icode number$$ has prototype
$codei%
	size_t %number%
%$$
and is equal to the value of
$cref/num_threads/ta_parallel_setup/num_threads/$$
in the previous call to $icode parallel_setup$$.
If there was no such previous call, the value one is returned.

$head Example$$
The example and test $cref thread_alloc.cpp$$ uses this routine.

$end
*/
	/*!
	Get the current number of threads that thread_alloc can use.
	*/
	static size_t num_threads(void)
	{	return set_get_num_threads(0); }
/* -----------------------------------------------------------------------
$begin ta_in_parallel$$

$section Is The Current Execution in Parallel Mode$$
$mindex sequential$$
$spell
	thread_alloc
	bool
$$


$head Syntax$$
$icode%flag% = thread_alloc::in_parallel()%$$

$head Purpose$$
Some of the $cref thread_alloc$$ allocation routines have different
specifications for parallel (not sequential) execution mode.
This routine enables you to determine if the current execution mode
is sequential or parallel.

$head flag$$
The return value has prototype
$codei%
	bool %flag%
%$$
It is true if the current execution is in parallel mode
(possibly multi-threaded) and false otherwise (sequential mode).

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/// Are we in a parallel execution state; i.e., is it possible that
	/// other threads are currently executing.
	static bool in_parallel(void)
	{	// emphasize that this routine is outside thread_alloc class
		return CppAD::local::set_get_in_parallel(0);
	}
/* -----------------------------------------------------------------------
$begin ta_thread_num$$
$spell
	CppAD
	num
	thread_alloc
	cppad.hpp
$$

$section Get the Current Thread Number$$


$head Syntax$$
$icode%thread% = thread_alloc::thread_num()%$$

$head Purpose$$
Some of the $cref thread_alloc$$ allocation routines have a thread number.
This routine enables you to determine the current thread.

$head thread$$
The return value $icode thread$$ has prototype
$codei%
	size_t %thread%
%$$
and is the currently executing thread number.

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/// Get current thread number
	static size_t thread_num(void)
	{	return set_get_thread_num(CPPAD_NULL); }
/* -----------------------------------------------------------------------
$begin ta_get_memory$$
$spell
	std
	num
	ptr
	thread_alloc
$$

$section Get At Least A Specified Amount of Memory$$
$mindex allocate$$


$head Syntax$$
$icode%v_ptr% = thread_alloc::get_memory(%min_bytes%, %cap_bytes%)%$$

$head Purpose$$
Use $cref thread_alloc$$ to obtain a minimum number of bytes of memory
(for use by the $cref/current thread/ta_thread_num/$$).

$head min_bytes$$
This argument has prototype
$codei%
	size_t %min_bytes%
%$$
It specifies the minimum number of bytes to allocate.
This value must be less than
$codep
	std::numeric_limits<size_t>::max() / 2
$$

$head cap_bytes$$
This argument has prototype
$codei%
	size_t& %cap_bytes%
%$$
It's input value does not matter.
Upon return, it is the actual number of bytes (capacity)
that have been allocated for use,
$codei%
	%min_bytes% <= %cap_bytes%
%$$

$head v_ptr$$
The return value $icode v_ptr$$ has prototype
$codei%
	void* %v_ptr%
%$$
It is the location where the $icode cap_bytes$$ of memory
that have been allocated for use begins.

$head Allocation Speed$$
This allocation should be faster if the following conditions hold:
$list number$$
The memory allocated by a previous call to $code get_memory$$
is currently available for use.
$lnext
The current $icode min_bytes$$ is between
the previous $icode min_bytes$$ and previous $icode cap_bytes$$.
$lend

$head Alignment$$
We call a memory allocation aligned if the address is a multiple
of the number of bytes in a $code size_t$$ value.
If the system $code new$$ allocator is aligned, then $icode v_ptr$$
pointer is also aligned.

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/*!
	Use thread_alloc to get a specified amount of memory.

	If the memory allocated by a previous call to \c get_memory is now
	avaialable, and \c min_bytes is between its previous value
	and the previous \c cap_bytes, this memory allocation will have
	optimal speed. Otherwise, the memory allocation is more complicated and
	may have to wait for other threads to complete an allocation.

	\param min_bytes [in]
	The minimum number of bytes of memory to be obtained for use.

	\param cap_bytes [out]
	The actual number of bytes of memory obtained for use.

	\return
	pointer to the beginning of the memory allocated for use.
	*/
	static void* get_memory(size_t min_bytes, size_t& cap_bytes)
	{	// see first_trace below
		CPPAD_ASSERT_FIRST_CALL_NOT_PARALLEL;

		// check that number of requested bytes is not to large
		CPPAD_ASSERT_KNOWN(
			min_bytes < std::numeric_limits<size_t>::max() / 2 ,
			"get_memory(min_bytes, cap_bytes): min_bytes is too large"
		);

		size_t num_cap = capacity_info()->number;
		using std::cout;
		using std::endl;

		// determine the capacity for this request
		size_t c_index   = 0;
		const size_t* capacity_vec = capacity_info()->value;
		while( capacity_vec[c_index] < min_bytes )
		{	++c_index;
			CPPAD_ASSERT_UNKNOWN(c_index < num_cap );
		}
		cap_bytes = capacity_vec[c_index];

		// determine the thread, capacity, and info for this thread
		size_t thread            = thread_num();
		size_t tc_index          = thread * num_cap + c_index;
		thread_alloc_info* info  = thread_info(thread);

# ifndef NDEBUG
		// trace allocation
		static bool first_trace = true;
		if(	cap_bytes == CPPAD_TRACE_CAPACITY &&
		     thread    ==  CPPAD_TRACE_THREAD  && first_trace )
		{	cout << endl;
			cout << "thread_alloc: Trace for Thread = " << thread;
			cout << " and capacity = " << cap_bytes << endl;
			if( first_trace )
				first_trace = false;
		}

		// Root nodes for both lists. Note these are different for different
		// threads because tc_index is different for different threads.
		block_t* inuse_root     = info->root_inuse_ + c_index;
# endif
		block_t* available_root = info->root_available_ + c_index;

		// check if we already have a node we can use
		void* v_node              = available_root->next_;
		block_t* node             = reinterpret_cast<block_t*>(v_node);
		if( node != CPPAD_NULL )
		{	CPPAD_ASSERT_UNKNOWN( node->tc_index_ == tc_index );

			// remove node from available list
			available_root->next_ = node->next_;

			// return value for get_memory
			void* v_ptr = reinterpret_cast<void*>(node + 1);
# ifndef NDEBUG
			// add node to inuse list
			node->next_           = inuse_root->next_;
			inuse_root->next_     = v_node;

			// trace allocation
			if(	cap_bytes == CPPAD_TRACE_CAPACITY &&
			     thread    ==  CPPAD_TRACE_THREAD   )
			{	cout << "get_memory:    v_ptr = " << v_ptr << endl; }
# endif

			// adjust counts
			inc_inuse(cap_bytes, thread);
			dec_available(cap_bytes, thread);

			// return pointer to memory, do not inclue thread_alloc information
			return v_ptr;
		}

		// Create a new node with thread_alloc information at front.
		// This uses the system allocator, which is thread safe, but slower,
		// because the thread might wait for a lock on the allocator.
		v_node          = ::operator new(sizeof(block_t) + cap_bytes);
		node            = reinterpret_cast<block_t*>(v_node);
		node->tc_index_ = tc_index;
		void* v_ptr     = reinterpret_cast<void*>(node + 1);

# ifndef NDEBUG
		// add node to inuse list
		node->next_       = inuse_root->next_;
		inuse_root->next_ = v_node;

		// trace allocation
		if( cap_bytes == CPPAD_TRACE_CAPACITY &&
		    thread    == CPPAD_TRACE_THREAD    )
		{	cout << "get_memory:    v_ptr = " << v_ptr << endl; }
# endif

		// adjust counts
		inc_inuse(cap_bytes, thread);

		return v_ptr;
	}

/* -----------------------------------------------------------------------
$begin ta_return_memory$$
$spell
	num
	ptr
	thread_alloc
$$

$section Return Memory to thread_alloc$$
$mindex return_memory available$$


$head Syntax$$
$codei%thread_alloc::return_memory(%v_ptr%)%$$

$head Purpose$$
If $cref/hold_memory/ta_hold_memory/$$ is false,
the memory is returned to the system.
Otherwise, the memory is retained by $cref thread_alloc$$ for quick future use
by the thread that allocated to memory.

$head v_ptr$$
This argument has prototype
$codei%
	void* %v_ptr%
%$$.
It must be a pointer to memory that is currently in use; i.e.
obtained by a previous call to
$cref/get_memory/ta_get_memory/$$ and not yet returned.

$head Thread$$
Either the $cref/current thread/ta_thread_num/$$ must be the same as during
the corresponding call to $cref/get_memory/ta_get_memory/$$,
or the current execution mode must be sequential
(not $cref/parallel/ta_in_parallel/$$).

$head NDEBUG$$
If $code NDEBUG$$ is defined, $icode v_ptr$$ is not checked (this is faster).
Otherwise, a list of in use pointers is searched to make sure
that $icode v_ptr$$ is in the list.

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/*!
	Return memory that was obtained by \c get_memory.
	If  <code>num_threads() == 1</code>,
	the memory is returned to the system.
	Otherwise, it is retained by \c thread_alloc and available for use by
	\c get_memory for this thread.

	\param v_ptr [in]
	Value of the pointer returned by \c get_memory and still in use.
	After this call, this pointer will available (and not in use).

	\par
	We must either be in sequential (not parallel) execution mode,
	or the current thread must be the same as for the corresponding call
	to \c get_memory.
	*/
	static void return_memory(void* v_ptr)
	{	size_t num_cap   = capacity_info()->number;

		block_t* node    = reinterpret_cast<block_t*>(v_ptr) - 1;
		size_t tc_index  = node->tc_index_;
		size_t thread    = tc_index / num_cap;
		size_t c_index   = tc_index % num_cap;
		size_t capacity  = capacity_info()->value[c_index];

		CPPAD_ASSERT_UNKNOWN( thread < CPPAD_MAX_NUM_THREADS );
		CPPAD_ASSERT_KNOWN(
			thread == thread_num() || (! in_parallel()),
			"Attempt to return memory for a different thread "
			"while in parallel mode"
		);

		thread_alloc_info* info = thread_info(thread);
# ifndef NDEBUG
		// remove node from inuse list
		void* v_node         = reinterpret_cast<void*>(node);
		block_t* inuse_root  = info->root_inuse_ + c_index;
		block_t* previous    = inuse_root;
		while( (previous->next_ != CPPAD_NULL) & (previous->next_ != v_node) )
			previous = reinterpret_cast<block_t*>(previous->next_);

		// check that v_ptr is valid
		if( previous->next_ != v_node )
		{	using std::endl;
			std::ostringstream oss;
			oss << "return_memory: attempt to return memory not in use";
			oss << endl;
			oss << "v_ptr    = " << v_ptr    << endl;
			oss << "thread   = " << thread   << endl;
			oss << "capacity = " << capacity << endl;
			oss << "See CPPAD_TRACE_THREAD & CPPAD_TRACE_CAPACITY in";
			oss << endl << "%# include <cppad/utility/thread_alloc.hpp>" << endl;
			// oss.str() returns a string object with a copy of the current
			// contents in the stream buffer.
			std::string msg_str       = oss.str();
			// msg_str.c_str() returns a pointer to the c-string
			// representation of the string object's value.
			const char* msg_char_star = msg_str.c_str();
			CPPAD_ASSERT_KNOWN(false, msg_char_star );
		}

		// trace option
		if( capacity==CPPAD_TRACE_CAPACITY && thread==CPPAD_TRACE_THREAD )
		{	std::cout << "return_memory: v_ptr = " << v_ptr << std::endl; }

		// remove v_ptr from inuse list
		previous->next_  = node->next_;
# endif
		// capacity bytes are removed from the inuse pool
		dec_inuse(capacity, thread);

		// check for case where we just return the memory to the system
		if( ! set_get_hold_memory(false) )
		{	::operator delete( reinterpret_cast<void*>(node) );
			return;
		}

		// add this node to available list for this thread and capacity
		block_t* available_root = info->root_available_ + c_index;
		node->next_             = available_root->next_;
		available_root->next_   = reinterpret_cast<void*>(node);

		// capacity bytes are added to the available pool
		inc_available(capacity, thread);
	}
/* -----------------------------------------------------------------------
$begin ta_free_available$$
$spell
	num
	thread_alloc
$$

$section Free Memory Currently Available for Quick Use by a Thread$$
$mindex free_available$$
$spell
	inuse
$$


$head Syntax$$
$codei%thread_alloc::free_available(%thread%)%$$

$head Purpose$$
Return to the system all the memory that is currently being
$cref/held/ta_hold_memory/$$ for quick use by the specified thread.

$subhead Extra Memory$$
In the case where $icode%thread% > 0%$$,
some extra memory is used to track allocations by the specified thread.
If
$codei%
	thread_alloc::inuse(%thread%) == 0
%$$
the extra memory is also returned to the system.

$head thread$$
This argument has prototype
$codei%
	size_t %thread%
%$$
Either $cref/thread_num/ta_thread_num/$$ must be the same as $icode thread$$,
or the current execution mode must be sequential
(not $cref/parallel/ta_in_parallel/$$).

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/*!
	Return all the memory being held as available for a thread to the system.

	\param thread [in]
	this thread that will no longer have any available memory after this call.
	This must either be the thread currently executing, or we must be
	in sequential (not parallel) execution mode.
	*/
	static void free_available(size_t thread)
	{	CPPAD_ASSERT_KNOWN(
			thread < CPPAD_MAX_NUM_THREADS,
			"Attempt to free memory for a thread >= CPPAD_MAX_NUM_THREADS"
		);
		CPPAD_ASSERT_KNOWN(
			thread == thread_num() || (! in_parallel()),
			"Attempt to free memory for a different thread "
			"while in parallel mode"
		);

		size_t num_cap = capacity_info()->number;
		if( num_cap == 0 )
			return;
		const size_t*     capacity_vec  = capacity_info()->value;
		size_t c_index;
		thread_alloc_info* info = thread_info(thread);
		for(c_index = 0; c_index < num_cap; c_index++)
		{	size_t capacity = capacity_vec[c_index];
			block_t* available_root = info->root_available_ + c_index;
			void* v_ptr             = available_root->next_;
			while( v_ptr != CPPAD_NULL )
			{	block_t* node = reinterpret_cast<block_t*>(v_ptr);
				void* next    = node->next_;
				::operator delete(v_ptr);
				v_ptr         = next;

				dec_available(capacity, thread);
			}
			available_root->next_ = CPPAD_NULL;
		}
		CPPAD_ASSERT_UNKNOWN( available(thread) == 0 );
		if( inuse(thread) == 0 )
		{	// clear the information for this thread
			thread_info(thread, true);
		}
	}
/* -----------------------------------------------------------------------
$begin ta_hold_memory$$
$spell
	alloc
	num
$$

$section Control When Thread Alloc Retains Memory For Future Use$$
$mindex hold$$

$head Syntax$$
$codei%thread_alloc::hold_memory(%value%)%$$

$head Purpose$$
It should be faster, even when $icode num_thread$$ is equal to one,
for $code thread_alloc$$ to hold onto memory.
Calling $icode hold_memory$$ with $icode value$$ equal to true,
instructs $code thread_alloc$$ to hold onto memory,
and put it in the $cref/available/ta_available/$$ pool,
after each call to $cref/return_memory/ta_return_memory/$$.

$head value$$
If $icode value$$ is true,
$code thread_alloc$$ with hold onto memory for future quick use.
If it is false, future calls to $cref/return_memory/ta_return_memory/$$
will return the corresponding memory to the system.
By default (when $code hold_memory$$ has not been called)
$code thread_alloc$$ does not hold onto memory.

$head free_available$$
Memory that is being held by $code thread_alloc$$ can be returned
to the system using $cref/free_available/ta_free_available/$$.

$end
*/
	/*!
	Change the thread_alloc hold memory setting.

	\param value [in]
	New value for the thread_alloc hold memory setting.
	*/
	static void hold_memory(bool value)
	{	bool set = true;
		set_get_hold_memory(set, value);
	}

/* -----------------------------------------------------------------------
$begin ta_inuse$$
$spell
	num
	inuse
	thread_alloc
$$

$section Amount of Memory a Thread is Currently Using$$
$mindex inuse$$


$head Syntax$$
$icode%num_bytes% = thread_alloc::inuse(%thread%)%$$

$head Purpose$$
Memory being managed by $cref thread_alloc$$ has two states,
currently in use by the specified thread,
and quickly available for future use by the specified thread.
This function informs the program how much memory is in use.

$head thread$$
This argument has prototype
$codei%
	size_t %thread%
%$$
Either $cref/thread_num/ta_thread_num/$$ must be the same as $icode thread$$,
or the current execution mode must be sequential
(not $cref/parallel/ta_in_parallel/$$).

$head num_bytes$$
The return value has prototype
$codei%
	size_t %num_bytes%
%$$
It is the number of bytes currently in use by the specified thread.

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/*!
	Determine the amount of memory that is currently inuse.

	\param thread [in]
	Thread for which we are determining the amount of memory
	(must be < CPPAD_MAX_NUM_THREADS).
	Durring parallel execution, this must be the thread
	that is currently executing.

	\return
	The amount of memory in bytes.
	*/
	static size_t inuse(size_t thread)
	{
		CPPAD_ASSERT_UNKNOWN( thread < CPPAD_MAX_NUM_THREADS);
		CPPAD_ASSERT_UNKNOWN(
			thread == thread_num() || (! in_parallel())
		);
		thread_alloc_info* info = thread_info(thread);
		return info->count_inuse_;
	}
/* -----------------------------------------------------------------------
$begin ta_available$$
$spell
	num
	thread_alloc
$$

$section Amount of Memory Available for Quick Use by a Thread$$


$head Syntax$$
$icode%num_bytes% = thread_alloc::available(%thread%)%$$

$head Purpose$$
Memory being managed by $cref thread_alloc$$ has two states,
currently in use by the specified thread,
and quickly available for future use by the specified thread.
This function informs the program how much memory is available.

$head thread$$
This argument has prototype
$codei%
	size_t %thread%
%$$
Either $cref/thread_num/ta_thread_num/$$ must be the same as $icode thread$$,
or the current execution mode must be sequential
(not $cref/parallel/ta_in_parallel/$$).

$head num_bytes$$
The return value has prototype
$codei%
	size_t %num_bytes%
%$$
It is the number of bytes currently available for use by the specified thread.

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/*!
	Determine the amount of memory that is currently available for use.

	\copydetails inuse
	*/
	static size_t available(size_t thread)
	{
		CPPAD_ASSERT_UNKNOWN( thread < CPPAD_MAX_NUM_THREADS);
		CPPAD_ASSERT_UNKNOWN(
			thread == thread_num() || (! in_parallel())
		);
		thread_alloc_info* info = thread_info(thread);
		return info->count_available_;
	}
/* -----------------------------------------------------------------------
$begin ta_create_array$$
$spell
	inuse
	thread_alloc
	sizeof
$$

$section Allocate An Array and Call Default Constructor for its Elements$$
$mindex create_array$$


$head Syntax$$
$icode%array% = thread_alloc::create_array<%Type%>(%size_min%, %size_out%)%$$.

$head Purpose$$
Create a new raw array using $cref thread_alloc$$ memory allocator
(works well in a multi-threading environment)
and call default constructor for each element.

$head Type$$
The type of the elements of the array.

$head size_min$$
This argument has prototype
$codei%
	size_t %size_min%
%$$
This is the minimum number of elements that there can be
in the resulting $icode array$$.

$head size_out$$
This argument has prototype
$codei%
	size_t& %size_out%
%$$
The input value of this argument does not matter.
Upon return, it is the actual number of elements
in $icode array$$
($icode% size_min %<=% size_out%$$).

$head array$$
The return value $icode array$$ has prototype
$codei%
	%Type%* %array%
%$$
It is array with $icode size_out$$ elements.
The default constructor for $icode Type$$ is used to initialize the
elements of $icode array$$.
Note that $cref/delete_array/ta_delete_array/$$
should be used to destroy the array when it is no longer needed.

$head Delta$$
The amount of memory $cref/inuse/ta_inuse/$$ by the current thread,
will increase $icode delta$$ where
$codei%
	sizeof(%Type%) * (%size_out% + 1) > %delta% >= sizeof(%Type%) * %size_out%
%$$
The $cref/available/ta_available/$$ memory will decrease by $icode delta$$,
(and the allocation will be faster)
if a previous allocation with $icode size_min$$ between its current value
and $icode size_out$$ is available.

$head Alignment$$
We call a memory allocation aligned if the address is a multiple
of the number of bytes in a $code size_t$$ value.
If the system $code new$$ allocator is aligned, then $icode array$$
pointer is also aligned.

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/*!
	Use thread_alloc to allocate an array, then call default construtor
	for each element.

	\tparam Type
	The type of the elements of the array.

	\param size_min [in]
	The minimum number of elements in the array.

	\param size_out [out]
	The actual number of elements in the array.

	\return
	pointer to the first element of the array.
	The default constructor is used to initialize
	all the elements of the array.

	\par
	The \c extra_ field, in the \c thread_alloc node before the return value,
	is set to size_out.
	*/
	template <class Type>
	static Type* create_array(size_t size_min, size_t& size_out)
	{	// minimum number of bytes to allocate
		size_t min_bytes = size_min * sizeof(Type);
		// do the allocation
		size_t num_bytes;
		void*  v_ptr     = get_memory(min_bytes, num_bytes);
		// This is where the array starts
		Type*  array     = reinterpret_cast<Type*>(v_ptr);
		// number of Type values in the allocation
		size_out         = num_bytes / sizeof(Type);
		// store this number in the extra field
		block_t* node    = reinterpret_cast<block_t*>(v_ptr) - 1;
		node->extra_     = size_out;

		// call default constructor for each element
		size_t i;
		for(i = 0; i < size_out; i++)
			new(array + i) Type();

		return array;
	}
/* -----------------------------------------------------------------------
$begin ta_delete_array$$
$spell
	inuse
	thread_alloc
	sizeof
	deallocate
$$

$section Deallocate An Array and Call Destructor for its Elements$$
$mindex delete_array$$


$head Syntax$$
$codei%thread_alloc::delete_array(%array%)%$$.

$head Purpose$$
Returns memory corresponding to an array created by
(create by $cref/create_array/ta_create_array/$$) to the
$cref/available/ta_available/$$ memory pool for the current thread.

$head Type$$
The type of the elements of the array.

$head array$$
The argument $icode array$$ has prototype
$codei%
	%Type%* %array%
%$$
It is a value returned by $cref/create_array/ta_create_array/$$ and not yet deleted.
The $icode Type$$ destructor is called for each element in the array.

$head Thread$$
The $cref/current thread/ta_thread_num/$$ must be the
same as when $cref/create_array/ta_create_array/$$ returned the value $icode array$$.
There is an exception to this rule:
when the current execution mode is sequential
(not $cref/parallel/ta_in_parallel/$$) the current thread number does not matter.

$head Delta$$
The amount of memory $cref/inuse/ta_inuse/$$ will decrease by $icode delta$$,
and the $cref/available/ta_available/$$ memory will increase by $icode delta$$,
where $cref/delta/ta_create_array/Delta/$$
is the same as for the corresponding call to $code create_array$$.

$head Example$$
$cref thread_alloc.cpp$$

$end
*/
	/*!
	Return Memory Used for an Array to the Available Pool
	(include destructor call for each element).

	\tparam Type
	The type of the elements of the array.

	\param array [in]
	A value returned by \c create_array that has not yet been deleted.
	The \c Type destructor is used to destroy each of the elements
	of the array.

	\par
	Durring parallel execution, the current thread must be the same
	as during the corresponding call to \c create_array.
	*/
	template <class Type>
	static void delete_array(Type* array)
	{	// determine the number of values in the array
		block_t* node = reinterpret_cast<block_t*>(array) - 1;
		size_t size     = node->extra_;

		// call destructor for each element
		size_t i;
		for(i = 0; i < size; i++)
			(array + i)->~Type();

		// return the memory to the available pool for this thread
		thread_alloc::return_memory( reinterpret_cast<void*>(array) );
	}
/* -----------------------------------------------------------------------
$begin ta_free_all$$
$spell
	alloc
	bool
	inuse
$$

$section Free All Memory That Was Allocated for Use by thread_alloc$$


$head Syntax$$
$icode%ok% = thread_alloc::free_all()%$$.

$head Purpose$$
Returns all memory that was used by $code thread_alloc$$ to the system.

$head ok$$
The return value $icode ok$$ has prototype
$codei%
	bool %ok%
%$$
Its value will be $code true$$ if all the memory can be freed.
This requires that for all $icode thread$$ indices, there is no memory
$cref/inuse/ta_inuse/$$; i.e.,
$codei%
	0 == thread_alloc::inuse(%thread%)
%$$
Otherwise, the return value will be false.

$head Restrictions$$
This function cannot be called while in parallel mode.

$head Example$$
$cref thread_alloc.cpp$$
$end
*/
	/*!
	Return to the system all thread_alloc memory that is not currently inuse.

	\return
	If no \c thread_alloc memory is currently inuse,
	all memory is returned to the system and the return value is true.
	Otherwise the return value is false.
	*/
	static bool free_all(void)
	{	CPPAD_ASSERT_KNOWN(
			! in_parallel(),
			"free_all cannot be used while in parallel execution"
		);
		bool ok = true;
		size_t thread = CPPAD_MAX_NUM_THREADS;
		while(thread--)
		{	ok &= inuse(thread) == 0;
			free_available(thread);
		}
		return ok;
	}
};


} // END_CPPAD_NAMESPACE

// preprocessor symbols local to this file
# undef CPPAD_MAX_NUM_CAPACITY
# undef CPPAD_MIN_DOUBLE_CAPACITY
# undef CPPAD_TRACE_CAPACITY
# undef CPPAD_TRACE_THREAD
# endif