This file is indexed.

/usr/src/castle-game-engine-5.2.0/3d/castletriangles_dualimplementation.inc is in castle-game-engine-src 5.2.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
{
  Copyright 2003-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ CastleTriangles Implementation parameterized with macros,
  so that it's suitable for both Single and Double versions. }

function IsValidTriangle(const Tri: TTriangle3): boolean;
begin
  (* chcemy sprawdzic czy Tri nie jest zdegenerowanym trojkatem, czyli czy
     wyznacza dobra plaszczyzne; wiec nie tylko wszstkie punkty musza byc
     rozne ale tez nie moga byc wspolliniowe. Jak to najlatwiej sprawdzic ?

     Sprawdzajac czy VectorProduct(
       VectorSubtract(Tri[2], Tri[1]),
       VectorSubtract(Tri[0], Tri[1]))
     ma dlugosc > 0.
     Mozna to uzasadnic na dwa sposoby : prosto i nie do konca scisle -
     liczymy TrianglePlane uzywajac takiego wlasnie VectorProduct, a przeciez
     chcemy wlasnie sprawdzic czy TrianglePlane zwroci prawidlowy plane.
     Albo inaczej : te trzy punkty wyznaczaja plaszczyzne wtw. gdy rownoleglobok
     ktorego dwa boki tworza wektory Tri[2]-Tri[1] i Tri[0]-Tri[1] ma niezerowe
     pole. A przeciez dlugosc VectorProduct to pole tego rownolegloboku.
     Wiec testujac dlugosc VectorProduct testujemy dlugosc tego rownolegloboku.

     Taki VectorProduct() mozemy obliczyc uzywajac TriangleDir().
  *)
  result := VectorLenSqr(TriangleDir(Tri)) > Sqr(ScalarEqualityEpsilon);
end;

function TriangleDir(const Tri: TTriangle3): TVector3;
begin
  result := VectorProduct(
    VectorSubtract(Tri[2], Tri[1]),
    VectorSubtract(Tri[0], Tri[1]));
end;

function TriangleDir(const p0, p1, p2: TVector3): TVector3;
begin
  result := VectorProduct(
    VectorSubtract(p2, p1),
    VectorSubtract(p0, p1));
end;

function TriangleNormal(const Tri: TTriangle3): TVector3;
begin
  result := Normalized( TriangleDir(Tri) );
end;

function TriangleNormal(const p0, p1, p2: TVector3): TVector3;
begin
  result := Normalized( TriangleDir(p0, p1, p2) );
end;

function TrianglePlane(const Tri: TTriangle3): TVector4;
var
  ResultDir: TVector3 absolute result;
begin
  ResultDir := TriangleDir(Tri);
  (* Punkt Tri[0] musi lezec na plane result. Wiec musi zachodzic
     ResulrDir[0]*Tri[0, 0] + ResulrDir[1]*Tri[0, 1] + ResulrDir[2]*Tri[0, 2]
       + result[3] = 0.
     Stad widac jak wyznaczyc result[3]. *)
  result[3] := -ResultDir[0]*Tri[0, 0]
               -ResultDir[1]*Tri[0, 1]
               -ResultDir[2]*Tri[0, 2];
end;

function TrianglePlane(const p0, p1, p2: TVector3): TVector4;
var
  ResultDir: TVector3 absolute result;
begin
  ResultDir := TriangleDir(p0, p1, p2);
  result[3] := -ResultDir[0]*p0[0]
               -ResultDir[1]*p0[1]
               -ResultDir[2]*p0[2];
end;

function TriangleNormPlane(const Tri: TTriangle3): TVector4;
var
  resultNormal: TVector3 absolute result;
begin
  (* dzialamy tak samo jak TrianglePlane tyle ze teraz uzywamy TriangleNormal
     zamiast TriangleNormalNotNorm *)
  resultNormal := TriangleNormal(Tri);
  result[3] := -resultNormal[0]*Tri[0, 0] -resultNormal[1]*Tri[0, 1]
    -resultNormal[2]*Tri[0, 2];
end;

function TriangleTransform(const Tri: TTriangle3; const M: TMatrix4): TTriangle3;
begin
  Result[0] := MatrixMultPoint(M, Tri[0]);
  Result[1] := MatrixMultPoint(M, Tri[1]);
  Result[2] := MatrixMultPoint(M, Tri[2]);
end;

function TriangleArea(const Tri: TTriangle3): TScalar;
begin
  result := VectorLen(
    VectorProduct(VectorSubtract(Tri[1], Tri[0]),
                  VectorSubtract(Tri[2], Tri[0]))) / 2;
end;

function TriangleAreaSqr(const Tri: TTriangle3): TScalar;
begin
  result := VectorLenSqr(
    VectorProduct(VectorSubtract(Tri[1], Tri[0]),
                  VectorSubtract(Tri[2], Tri[0]))) / 4;
end;

function IsPointWithinTriangle2d(const P: TVector2; const Tri: TTriangle2): boolean;
var
  TriMiddle: TVector2;
  line: TVector3;
  i: integer;
begin
  TriMiddle := VectorAdd( VectorAdd(VectorScale(Tri[0], 1/3), VectorScale(Tri[1], 1/3)), VectorScale(Tri[2], 1/3));
  (* teraz dla kazdej z 3 prostych zawierajacych boki trojkata
     P musi byc po tej samej stronie prostej co TriMiddle. *)
  for i := 0 to 2 do
  begin
    line := LineOfTwoDifferentPoints2d(Tri[i], Tri[(i+1)mod 3]);
    if TriMiddle[0]*line[0] + TriMiddle[1]*line[1] + line[2] >= 0 then
    begin
      if P[0]*line[0] + P[1]*line[1] + line[2] < -ScalarEqualityEpsilon then exit(false);
    end else
    begin
      if P[0]*line[0] + P[1]*line[1] + line[2] > ScalarEqualityEpsilon then exit(false);
    end;
  end;

  result := true;
end;

function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3;
  const Tri: TTriangle3; const TriDir: TVector3): boolean;

{ We tried many approaches for this:
  - Check do three angles:
    between vectors (t[0]-p) and (t[1]-p),
    between vectors (t[1]-p) and (t[2]-p),
    between vectors (t[2]-p) and (t[0]-p)
    sum to full 360 stopni.
  - Cast triangle on the most suitable 2D plane, and check there.

  The current algorithm is very slightly faster than the above. It's based on
  http://geometryalgorithms.com/Archive/algorithm_0105/algorithm_0105.htm
  (still accessible through
  http://web.archive.org/web/20081018162011/http://www.geometryalgorithms.com/Archive/algorithm_0105/algorithm_0105.htm
  ).

  Idea:
  - Every point on the plane of our triangle may be expressed as s,t, such that
    point = tri[0] + s*u + t*v, where u = tri[1]-tri[0], v = tri[2]-tri[0].
    This way 2 triangle edges determine the 2D coordinates axes,
    analogous to normal OX and OY axes on a 2D plane.
    (We only handle non-degenerate triangles is, so we can assume that
    all triangle points are different and u is not parallel to v.)

  - Point is within the triangle iff s >= 0 and t >= 0 and s+t <= 1.
    (Some reason: note that point = tri[0]*(1-s-t) + tri[1]*s + tri[2]*t,
    so s,t are just 2 barycentric coordinates of our point.)

  - It remains to find s,t.
    Let w = point - tri[0], so w = s*u + t*v.
    Let x^ (for x = direction on a plane) mean VectorProduct(x, PlaneDir),
    so a direction orthogonal to x and still on the plane.
    Note some dot product properties:

      (a + b).c = a.c + b.c
      (x * a).c = x * (a.c)
      where a, b, c are some vectors, x is scalar, * is scalar multiplication.

    Now make a dot product of both sides of "w = ..." equation with v^,
    and use the dot product properties mentioned above:

      w.v^ = s*u.v^ + t*v.v^

    v.v^ = 0, because v and v^ are orthogonal.
    So we can calculate s as

      s := w.v^ / (u.v^)

    Analogously, we can calculate v.

  - With some optimizations, this can be further simplified,
    but we found out that the simplified version is actually slightly slower.
}

{ $define IsPointOnTrianglePlaneWithinTriangle_Simplified}
{$ifdef IsPointOnTrianglePlaneWithinTriangle_Simplified}

var
  S, T, One, UU, UV, VV, WV, WU, Denominator: TScalar;
  W, U, V: TVector3;
begin
  U := VectorSubtract(Tri[1], Tri[0]);
  V := VectorSubtract(Tri[2], Tri[0]);
  UV := VectorDotProduct(U, V);
  UU := VectorLenSqr(U); { = VectorDotProduct(U, U) }
  VV := VectorLenSqr(V); { = VectorDotProduct(V, V) }
  Denominator := Sqr(UV) - UU * VV;

  W := VectorSubtract(P, Tri[0]);
  WV := VectorDotProduct(W, V);
  WU := VectorDotProduct(W, U);

  One := 1 + ScalarEqualityEpsilon;

  S := (UV * WV - VV * WU) / Denominator;
  if (S < -ScalarEqualityEpsilon) or
    { As far as only correctness is concerned, check for S > One isn't needed
      here since we will check S+T <= One later anyway.
      But for the speed, it's better to make here a quick check
      "S > One" and in many cases avoid the long calculation of T.
      See ~/3dmodels/rayhunter-demos/raporty/2006-11-12/README:
      speed of this procedure has a significant impact
      on the ray-tracer speed, so it's really a justified optimization. }
     (S > One) then
    Exit(false);

  T := (UV * WU - UU * WV) / Denominator;
  if T < -ScalarEqualityEpsilon then
    Exit(false);

  result := S + T <= One;
end;

{$else}

var
  S, T: TScalar;
  W, U, V, Ortho: TVector3;
  One: TScalar;
begin
  U := VectorSubtract(Tri[1], Tri[0]);
  V := VectorSubtract(Tri[2], Tri[0]);
  W := VectorSubtract(P, Tri[0]);

  One := 1 + ScalarEqualityEpsilon;

  Ortho := VectorProduct(V, TriDir);
  S := VectorDotProduct(W, Ortho) / VectorDotProduct(U, Ortho);
  if (S < -ScalarEqualityEpsilon) or
    { As far as only correctness is concerned, check for S > One isn't needed
      here since we will check S+T <= One later anyway.
      But for the speed, it's better to make here a quick check
      "S > One" and in many cases avoid the long calculation of T.
      See ~/3dmodels/rayhunter-demos/raporty/2006-11-12/README:
      speed of this procedure has a significant impact
      on the ray-tracer speed, so it's really a justified optimization. }
     (S > One) then
    Exit(false);

  Ortho := VectorProduct(U, TriDir);
  T := VectorDotProduct(W, Ortho) / VectorDotProduct(V, Ortho);
  if T < -ScalarEqualityEpsilon then
    Exit(false);

  result := S + T <= One;
end;

{$endif IsPointOnTrianglePlaneWithinTriangle_Simplified}

//function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3;
//  const Tri: TTriangle3): boolean;
//begin
//  result := IsPointOnTrianglePlaneWithinTriangle(P, Tri, TriangleDir(Tri));
//end;

{$define TryTriangleRayCollision_IMPLEMENT:=
var
  MaybeIntersection: TVector3;
  MaybeT: TScalar;
  TriDir: TVector3 absolute TriPlane;
begin
  result := TryPlaneRayIntersection(MaybeIntersection, MaybeT, TriPlane, RayOrigin, RayDirection) and
          IsPointOnTrianglePlaneWithinTriangle(MaybeIntersection, Tri, TriDir);
  if result then
  begin
    Intersection := MaybeIntersection;
    {$ifdef HAS_T} T := MaybeT; {$endif}
  end;
end;}

{$define TryTriangleSegmentDirCollision_IMPLEMENT:=
var
  MaybeIntersection: TVector3;
  MaybeT: TScalar;
  TriDir: TVector3 absolute TriPlane;
begin
  result := TryPlaneSegmentDirIntersection(MaybeIntersection, MaybeT, TriPlane, Segment0, SegmentVector) and
          IsPointOnTrianglePlaneWithinTriangle(MaybeIntersection, Tri, TriDir);
  if result then
  begin
    Intersection := MaybeIntersection;
    {$ifdef HAS_T} T := MaybeT; {$endif}
  end;
end;}

function IsTriangleSegmentCollision(const Tri: TTriangle3;
  const TriPlane: TVector4; const pos1, pos2: TVector3): boolean;
var
  lineVector, MaybeIntersection: TVector3;
  TriDir: TVector3 absolute TriPlane;
begin
  lineVector := VectorSubtract(pos2, pos1);
  result := TryPlaneLineIntersection(MaybeIntersection, TriPlane, pos1, lineVector) and
            IsPointOnSegmentLineWithinSegment(MaybeIntersection, pos1, pos2) and
            IsPointOnTrianglePlaneWithinTriangle(MaybeIntersection, Tri, TriDir);
end;

function IsTriangleSegmentCollision(const Tri: TTriangle3; const pos1, pos2: TVector3): boolean;
begin
  result := IsTriangleSegmentCollision(Tri, TrianglePlane(Tri), pos1, pos2);
end;

function TryTriangleSegmentCollision(var Intersection: TVector3;
  const Tri: TTriangle3; const TriPlane: TVector4;
  const pos1, pos2: TVector3): boolean;
begin
  result := TryTriangleSegmentDirCollision(Intersection, Tri, TriPlane,
    Pos1, VectorSubtract(Pos2, Pos1));
end;

function TryTriangleSegmentDirCollision(var Intersection: TVector3; var T: TScalar;
  const Tri: TTriangle3; const TriPlane: TVector4;
  const Segment0, SegmentVector: TVector3): boolean;
{$define HAS_T}
TryTriangleSegmentDirCollision_IMPLEMENT
{$undef HAS_T}

function TryTriangleSegmentDirCollision(var Intersection: TVector3;
  const Tri: TTriangle3; const TriPlane: TVector4;
  const Segment0, SegmentVector: TVector3): boolean;
TryTriangleSegmentDirCollision_IMPLEMENT

function IsTriangleSphereCollision(const Tri: TTriangle3;
  const TriPlane: TVector4;
  const SphereCenter: TVector3; SphereRadius: TScalar): boolean;
(*$define HAS_PRECALC_PLANE*)
(*$I castletriangles_istrianglespherecollision.inc*)
(*$undef HAS_PRECALC_PLANE*)

function IsTriangleSphereCollision(const Tri: TTriangle3;
  const SphereCenter: TVector3; SphereRadius: TScalar): boolean;
(*$I castletriangles_istrianglespherecollision.inc*)

function TryTriangleRayCollision(var Intersection: TVector3; var T: TScalar;
  const Tri: TTriangle3; const TriPlane: TVector4;
  const RayOrigin, RayDirection: TVector3): boolean;
{$define HAS_T}
TryTriangleRayCollision_IMPLEMENT
{$undef HAS_T}

function TryTriangleRayCollision(var Intersection: TVector3;
  const Tri: TTriangle3; const TriPlane: TVector4;
  const RayOrigin, RayDirection: TVector3): boolean;
TryTriangleRayCollision_IMPLEMENT

{ triangles and strings ------------------------------------------------------ }

function TriangleToNiceStr(const t: TTriangle2): string;
begin
  result := '['+VectorToNiceStr(t[0])+', '
               +VectorToNiceStr(t[1])+', '
               +VectorToNiceStr(t[2])+']';
end;

function TriangleToNiceStr(const t: TTriangle3): string;
begin
  result := '['+VectorToNiceStr(t[0])+', '
               +VectorToNiceStr(t[1])+', '
               +VectorToNiceStr(t[2])+']';
end;

function TriangleToRawStr(const T: TTriangle3): string;
begin
  Result := '[' + VectorToRawStr(T[0]) + ', '
                + VectorToRawStr(T[1]) + ', '
                + VectorToRawStr(T[2]) + ']';
end;