/usr/share/axiom-20140801/input/images7a.input is in axiom-test 20140801-12.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | --Copyright The Numerical Algorithms Group Limited 1994.
-- Drawing conformal maps.
-- The functions in this file draw conformal maps both on the
-- complex plane and on the Riemann sphere.
-- Compile, don't interpret functions.
)set fun comp on
C := Complex DoubleFloat -- Complex Numbers
S := Segment DoubleFloat -- Draw ranges
R3 := POINT DoubleFloat -- points in 3-space
-- conformalDraw(f, rRange, tRange, rSteps, tSteps, coord)
-- draws the image of the coordinate grid under f in the complex plane.
-- The grid may be given in either polar or cartesian coordinates.
-- parameter descriptions:
-- f: the function to draw
-- rRange: the range of the radius (in polar) or real (in cartesian)
-- tRange: the range of theta (in polar) or imaginary (in cartesian)
-- tSteps, rSteps: the number of intervals in each direction
-- coord: the coordinate system to use. Either "polar" or "cartesian"
conformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D
conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) ==
transformC :=
coord = "polar" => polar2Complex
cartesian2Complex
cm := makeConformalMap(f, transformC)
sp := createThreeSpace()
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
makeViewport3D(sp, "Conformal Map")
-- riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord)
-- draws the image of the coordinate grid under f on the Riemann sphere.
-- The grid may given in either polar or cartesian coordinates.
-- parameter descriptions:
-- f: the function to draw
-- rRange: the range of the radius(in polar) or real (in cartesian)
-- tRange: the range of theta (in polar) or imaginary (in cartesian)
-- tSteps, rSteps: the number of intervals in each direction
-- coord: the coordinate system to use. either "polar" or "cartesian"
riemannConformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D
riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) ==
transformC :=
coord = "polar" => polar2Complex
cartesian2Complex
sp := createThreeSpace()
cm := makeRiemannConformalMap(f, transformC)
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
-- add an invisible point at the north pole for scaling
curve(sp, [point [0,0,2.0@DoubleFloat,0], point [0,0, 2.0@DoubleFloat,0]])
makeViewport3D(sp, "Conformal Map on the Riemann Sphere")
-- Plot the coordinate grid using adaptive plotting for the coordinate
-- lines, and drawing tubes around the lines.
adaptGrid(sp, f, uRange, vRange, uSteps, vSteps) ==
delU := (hi(uRange) - lo(uRange))/uSteps
delV := (hi(vRange) - lo(vRange))/vSteps
uSteps := uSteps + 1; vSteps := vSteps + 1
u := lo uRange
-- draw the coodinate lines in the v direction
for i in 1..uSteps repeat
-- create a curve 'c' which fixes the current value of 'u'
c := curryLeft(f,u)
cf := (t:DoubleFloat):DoubleFloat +-> 0
-- draw the 'v' coordinate line
makeObject(c, vRange::Segment Float, colorFunction == cf, space == sp, _
tubeRadius == 0.02, tubePoints == 6)
u := u + delU
v := lo vRange
-- draw the coodinate lines in the u direction
for i in 1..vSteps repeat
-- create a curve 'c' which fixes the current value of 'v'
c := curryRight(f,v)
cf := (t:DoubleFloat):DoubleFloat +-> 1
-- draw the 'u' coordinate line
makeObject(c, uRange::Segment Float, colorFunction == cf, space == sp, _
tubeRadius == 0.02, tubePoints == 6)
v := v + delV
void()
-- map a point in the complex plane to the Riemann sphere.
riemannTransform(z) ==
r := sqrt norm z
cosTheta := (real z)/r
sinTheta := (imag z)/r
cp := 4*r/(4+r**2)
sp := sqrt(1-cp*cp)
if r>2 then sp := -sp
point [cosTheta*cp, sinTheta*cp, -sp + 1]
-- convert cartesian coordinates to cartesian form complex
cartesian2Complex(r:DoubleFloat, i:DoubleFloat):C == complex(r, i)
-- convert polar coordinates to cartesian form complex
polar2Complex(r:DoubleFloat, th:DoubleFloat):C == complex(r*cos(th), r*sin(th))
-- convert a complex function into a mapping from (DoubleFloat,DoubleFloat)
-- to R3 in the complex plane.
makeConformalMap(f, transformC) ==
(u:DoubleFloat,v:DoubleFloat):R3 +->
z := f transformC(u, v)
point [real z, imag z, 0.0@DoubleFloat]
-- convert a complex function into a mapping from (DoubleFloat,DoubleFloat)
-- to R3 on the Riemann sphere.
makeRiemannConformalMap(f, transformC) ==
(u:DoubleFloat, v:DoubleFloat):R3 +-> riemannTransform f transformC(u, v)
-- draw a picture of the mapping of the complex plane to the Riemann sphere.
riemannSphereDraw: (S, S, PI, PI, String) -> VIEW3D
riemannSphereDraw(rRange, tRange, rSteps, tSteps, coord) ==
transformC :=
coord = "polar" => polar2Complex
cartesian2Complex
grid := (u:DoubleFloat , v:DoubleFloat): R3 +->
z1 := transformC(u, v)
point [real z1, imag z1, 0]
sp := createThreeSpace()
adaptGrid(sp, grid, rRange, tRange, rSteps, tSteps)
connectingLines(sp, grid, rRange, tRange, rSteps, tSteps)
makeObject(riemannSphere, 0..2*%pi, 0..%pi, space == sp)
f := (z:C):C +-> z
cm := makeRiemannConformalMap(f, transformC)
adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
makeViewport3D(sp, "Riemann Sphere")
-- draw the lines which connect the points in the complex plane to
-- the north pole of the Riemann sphere.
connectingLines(sp, f, uRange, vRange, uSteps, vSteps) ==
delU := (hi(uRange) - lo(uRange))/uSteps
delV := (hi(vRange) - lo(vRange))/vSteps
uSteps := uSteps + 1; vSteps := vSteps + 1
u := lo uRange
-- for each grid point
for i in 1..uSteps repeat
v := lo vRange
for j in 1..vSteps repeat
p1 := f(u,v)
p2 := riemannTransform complex(p1.1, p1.2)
fun := lineFromTo(p1,p2)
cf := (t:DoubleFloat):DoubleFloat +-> 3
makeObject(fun, 0..1, space == sp, tubePoints == 4, tubeRadius == 0.01,
colorFunction == cf)
v := v + delV
u := u + delU
void()
riemannSphere(u,v) ==
sv := sin(v)
0.99@DoubleFloat*(point [cos(u)*sv, sin(u)*sv, cos(v),0.0@DoubleFloat]) +
point [0.0@DoubleFloat, 0.0@DoubleFloat, 1.0@DoubleFloat, 4.0@DoubleFloat]
-- create a line functions which goeas from p1 to p2 as its paramter
-- goes from 0 to 1.
lineFromTo(p1, p2) ==
d := p2 - p1
(t:DoubleFloat):Point DoubleFloat +-> p1 + t*d
-- Conformal maps
-- The map z +-> z + 1/z on the complex plane
-- The coordinate grid for the complex plane
f z == z
conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian")
f z == z + 1/z
conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian")
-- The map z +-> -(z+1)/(z-1)
-- This function maps the unit disk to the right half-plane, as shown
-- on the Riemann sphere.
-- The unit disk
f z == z
riemannConformalDraw(f, 0.1..0.99, 0..2*%pi, 7, 11, "polar")
-- The right half-plane
f z == -(z+1)/(z-1)
riemannConformalDraw(f, 0.1..0.99, 0..2*%pi, 7, 11, "polar")
-- Visualization of the mapping from the complex plane to the Riemann Sphere.
riemannSphereDraw(-4..4, -4..4, 7, 7, "cartesian")
|