/usr/share/axiom-20140801/input/cdraw.input is in axiom-test 20140801-12.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | --Copyright The Numerical Algorithms Group Limited 1994.
-- complex surface and vector field drawing by SCM
-- complex surface vector field drawing
C := Complex DoubleFloat
S := Segment DoubleFloat
PC := Record(rr:DoubleFloat, th:DoubleFloat)
realSteps: PI := 25 -- the number of steps in the real direction
imagSteps: PI := 25 -- the number of steps in the imaginary direction
clipValue: DoubleFloat := 10 -- the maximum length of a vector to draw
-- Draw a complex function as a height field
-- uses the complex norm as the height and the complex argument as the color
-- optionally it will draw arrows on the surface indicating the direction
-- of the complex argument
-- sample call:
-- f: C -> C
-- f z == exp(1/z)
-- drawComplex(f, 0.3..3, 0..2*%pi, false)
-- parameter descriptions:
-- f: the function to draw
-- rRange: the range of the real values
-- imagRange: the range of imaginary values
drawComplex(f: C -> C, realRange: S, imagRange: S): VIEW3D ==
free realSteps, imagSteps
delReal := (hi(realRange) - lo(realRange))/realSteps
delImag := (hi(imagRange) - lo(imagRange))/imagSteps
funTable: ARRAY2(PC) := new(realSteps+1, imagSteps+1, [0,0]$PC)
real := lo(realRange)
for i in 1..realSteps+1 repeat
imag := lo(imagRange)
for j in 1..imagSteps+1 repeat
z := f complex(real, imag)
funTable(i,j) := [clipFun(sqrt norm z), argument(z)]$PC
imag := imag + delImag
real := real + delReal
llp:List List Point DoubleFloat := []
real := lo(realRange)
for i in 1..realSteps+1 repeat
imag := lo(imagRange)
lp:List Point DoubleFloat := []
for j in 1..imagSteps+1 repeat
lp := cons(point [real,imag, funTable(i,j).rr,
funTable(i,j).th] ,lp)
imag := imag + delImag
real := real + delReal
llp := cons(reverse! lp, llp)
llp := reverse! llp
space := mesh(llp)$ThreeSpace(DoubleFloat)
makeViewport3D(space, "Complex Function")$VIEW3D
-- draw a complex vector field
-- these vector fields should be viewed from the top by pressing the
-- "XY" translate button on the VIEW3D control panel
-- parameters:
-- f: the mapping from C to C which we will draw
-- realRange: the range of the reals
-- tRange: the range of the imaginaries
-- sample call:
-- f z == sin z
-- drawComplexVectorField(f, -2..2, -2..2)
-- call the functions 'setRealSteps' and 'setImagSteps' to change the
-- number of arrows drawn in each direction.
drawComplexVectorField(f: C -> C, realRange: S, imagRange: S): VIEW3D ==
-- compute the steps size of the grid
delReal := (hi(realRange) - lo(realRange))/realSteps
delImag := (hi(imagRange) - lo(imagRange))/imagSteps
-- create the space to hold the arrows
space := create3Space()$ThreeSpace DoubleFloat
real := lo(realRange)
for i in 1..realSteps+1 repeat
imag := lo(imagRange)
for j in 1..imagSteps+1 repeat
-- compute the function
z := f complex(real, imag)
-- get the direction of the arrow
arg := argument z
-- get the length of the arrow
len := clipFun(sqrt norm z)
-- create point at the base of the arrow
p1 := point [real, imag, 0.0@DoubleFloat, arg]
-- scale the arrow length so it isn't too long
scaleLen := delReal * len
-- create the point at the top of the arrow
p2 := point [p1.1 + scaleLen*cos(arg), p1.2 + scaleLen*sin(arg),
0.0@DoubleFloat, arg]
-- make the pointer at the top of the arrow
arrow := makeArrow(p1, p2, scaleLen, arg)
-- add the line segments in the arrow to the space
for a in arrow repeat curve(space, a)$ThreeSpace DoubleFloat
imag := imag + delImag
real := real + delReal
-- draw the vector feild
makeViewport3D(space, "Complex Vector Field")$VIEW3D
-- relative size of the arrow head compared to the length of the arrow
arrowScale := 0.25@DoubleFloat
-- angle of the arrow head
arrowAngle := %pi-%pi/10.0@DoubleFloat
-- Add an arrow head to a line segment, which starts at 'p1', ends at 'p2',
-- has length 'len', and and angle 'arg'. We pass 'len' and 'arg' as
-- arguments since thet were already computed by the calling program
makeArrow(p1, p2, len, arg) ==
c1 := cos(arg + arrowAngle)
s1 := sin(arg + arrowAngle)
c2 := cos(arg - arrowAngle)
s2 := sin(arg - arrowAngle)
p3 := point [p2.1 + c1*arrowScale*len, p2.2 + s1*arrowScale*len,
p2.3, p2.4]
p4 := point [p2.1 + c2*arrowScale*len, p2.2 + s2*arrowScale*len,
p2.3, p2.4]
[[p1, p2, p3], [p2, p4]]
-- set the number of steps to use in the real direction
setRealSteps(n) ==
free realSteps
realSteps := n
-- set the number of steps to use in the imaginary direction
setImagSteps(n) ==
free imagSteps
imagSteps := n
-- set the maximum length of a vector
setClipValue clip ==
free clipValue
clipValue := clip
-- clip a value in the interval (-clip...clip)
clipFun(x:DoubleFloat):DoubleFloat ==
min(max(x, -clipValue), clipValue)
|