This file is indexed.

/usr/share/acl2-7.2dfsg/proof-checker-b.lisp is in acl2-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
; ACL2 Version 7.2 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2016, Regents of the University of Texas

; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc.  See the documentation topic NOTE-2-0.

; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.

; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; LICENSE for more details.

; Written by:  Matt Kaufmann               and J Strother Moore
; email:       Kaufmann@cs.utexas.edu      and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.

(in-package "ACL2")

(defmacro install-new-pc-meta-or-macro (command-type raw-name name formals doc body)
  `(progn ,(pc-meta-or-macro-defun raw-name name formals doc body)
          (add-pc-command ,name ',command-type)))

(defun define-pc-meta-or-macro-fn (command-type raw-name formals body)
  (let ((name (make-official-pc-command raw-name)) )
    `(install-new-pc-meta-or-macro ,command-type ,raw-name ,name
                                   ,formals
                                   nil ; ,doc
                                   ,body)))

(defmacro define-pc-meta (raw-name formals &rest body)
  (define-pc-meta-or-macro-fn 'meta raw-name formals body))

(defmacro define-pc-macro (raw-name formals &rest body)
  (define-pc-meta-or-macro-fn 'macro raw-name formals body))

(defmacro define-pc-atomic-macro (raw-name formals &rest body)
  (define-pc-meta-or-macro-fn 'atomic-macro raw-name formals body))

(defmacro toggle-pc-macro (name &optional new-tp)
  (declare (xargs :guard (and (symbolp new-tp)
                              (or (null new-tp)
                                  (member-equal (symbol-name new-tp)
                                                '("MACRO" "ATOMIC-MACRO"))))))
  `(toggle-pc-macro-fn ',(make-official-pc-command name) ',new-tp state))

(defmacro define-pc-primitive (raw-name formals &rest body)

; Define-pc-primitive defines a new primitive for the proof-checker.  That
; primitive is always a function returning (mv pc-state state), where the
; (pc-value state-stack) has not been changed for state.

; Primitive command definitions should never look at the instruction field of
; the current state; see pc-primitive-defun-form.

; We generally rely in pc-single-step-primitive on the following property: a
; primitive leaves the top goal on the top of the :goals stack of the pc-state,
; adjusted as necessary, with its depends-on field reflecting all new subgoals
; added to that stack.  However, if the top goal is proved and no forced
; hypotheses are stored in the tag tree (see pc-single-step-primitive), then we
; may drop a proved goal.

  (let ((name (make-official-pc-command raw-name)))
    `(progn
       ,(pc-primitive-defun-form raw-name name formals
                                 nil ; doc
                                 body)
       (add-pc-command ,name 'primitive))))

(define-pc-primitive comment (&rest x)
  (declare (ignore x))
  (mv pc-state state))

(defun non-bounded-nums (nums lower upper)
  (declare (xargs :guard (and (rationalp lower)
                              (rationalp upper)
                              (true-listp nums))))
  (if (consp nums)
      (if (and (integerp (car nums))
               (<= lower (car nums))
               (<= (car nums) upper))
          (non-bounded-nums (cdr nums) lower upper)
        (cons (car nums)
              (non-bounded-nums (cdr nums) lower upper)))
    nil))

(defun delete-by-position (lst current-index nums)
  (declare (xargs :guard (and (true-listp nums)
                              (integerp current-index))))
  (if (consp lst)
      (if (member current-index nums)
          (delete-by-position (cdr lst) (1+ current-index) nums)
        (cons (car lst)
              (delete-by-position (cdr lst) (1+ current-index) nums)))
    nil))

(define-pc-primitive drop (&rest nums)
  (if nums
      (let ((bad-nums (non-bounded-nums nums 1 (length hyps))))
        (if bad-nums
            (print-no-change2 "The following are not in-range hypothesis numbers:  ~&0."
                              (list (cons #\0 bad-nums)))
          (mv (change-pc-state
               pc-state
               :goals
               (cons (change goal (car goals)
                             :hyps (delete-by-position hyps 1 nums))
                     (cdr goals)))
              state)))
    (if hyps
        (mv (change-pc-state
             pc-state
             :goals
             (cons (change goal (car goals)
                           :hyps nil)
                   (cdr goals)))
            state)
      (print-no-change2 "There are no hypotheses to drop!"))))

(define-pc-meta lisp (form)
  (cond ((not (f-get-global 'in-verify-flg state))
         (er soft 'acl2-pc::lisp
             "You may only invoke the proof-checker LISP command when ~
              you are inside the interactive loop."))
        ((and (symbolp form)
              (or (eq form t)
                  (eq form nil)
                  (keywordp form)))
         (value form))
        (t
         (mv-let (erp stobjs-out/vals state)
                 (trans-eval form :lisp state t)
                 (let ((stobjs-out (car stobjs-out/vals))
                       (vals (cdr stobjs-out/vals)))
                 (if (equal stobjs-out *error-triple-sig*)
                     (mv (or erp (car vals)) (cadr vals) state)
                   (mv erp vals state)))))))

(define-pc-primitive fail-primitive ()
  (declare (ignore pc-state))
  (mv nil state))

(define-pc-macro fail (&optional hard)
  (if hard
      (value '(lisp (mv hard nil state)))
    (value 'fail-primitive)))

(define-pc-macro illegal (instr)
  (pprogn (print-no-change "Illegal interactive instruction, ~x0.~%  An instruction must be a ~
                            symbol or a proper list headed by a symbol."
                           (list (cons #\0 instr)))
          (value :fail)))

(defun chk-assumption-free-ttree-1 (ttree ctx)

  ;; Same as chk-assumption-free-ttree, but returns a value.

  (cond ((tagged-objectsp 'assumption ttree)
         (er hard ctx
             "The 'assumption ~x0 was found in the final ttree!"
             (car (tagged-objects 'assumption ttree))))
        ((tagged-objectsp 'fc-derivation ttree)
         (er hard ctx
             "The 'fc-derivation ~x0 was found in the final ttree!"
             (car (tagged-objects 'fc-derivation ttree))))
        (t t)))

(defun put-cdr-assoc-query-id (id val alist)
  (cond ((atom alist) (cons (cons id val) alist))
        ((eq id (caar alist)) (cons (cons id val) (cdr alist)))
        (t (cons (car alist)
                 (put-cdr-assoc-query-id id val (cdr alist))))))

(defun set-query-val (id val state)
  ;; If val is 'toggle, then a NIL default is changed to T and every
  ;; other default is changed to NIL.  Otherwise, VAL is the new default.
  (let ((alist (ld-query-control-alist state)))
    (set-ld-query-control-alist
     (put-cdr-assoc-query-id
      id
      (if (eq val 'toggle)
          (not (cdr-assoc-query-id id alist))
        val)
      alist)
     state)))

(defmacro query-on-exit (&optional (val 'toggle))
  `(set-query-val 'acl2-pc::exit ',val state))

(defun replay-query (state)
  ;; Returns a state-stack, T or NIL.  A T value means we should replay instructions
  ;; in order to create the state-stack.  A value of NIL means that we should exit
  ;; without creating the event (by making the state-stack nil).
  ;;    In fact, the only time we return other than the current
  ;; state-stack is if we're inside verify and
  ;; either the query flag is off or the response is other than "Y".
  (acl2-query 'acl2-pc::exit
              '("~%Do you want to submit this event?  Possible replies are:~%~
                         Y (Yes), R (yes and Replay commands), N (No, but exit), A (Abort exiting).~|~ "
                :y :y :r :r :n :n :a :a)
              nil state))

(define-pc-meta exit (&optional event-name rule-classes do-it-flg)

; We allow (exit .. nil ..) to indicate that information is to be picked up
; from the initial pc-state.

  (if (not (f-get-global 'in-verify-flg state))
      (er soft 'acl2-pc::exit
          "You may not invoke the EXIT command unless inside the ~
           interactive loop.")
    (if args ; so it's not just a command to exit
        (let* ((event-name-and-types-and-raw-term
                (event-name-and-types-and-raw-term state-stack))
               (event-name
                (or event-name
                    (car event-name-and-types-and-raw-term)))
               (instructions (instructions-of-state-stack state-stack nil)))
          (er-let* ((event-name
                     (if event-name
                         (value event-name)
                       (pprogn (io? proof-checker nil state
                                    nil
                                    (fms0 "Please supply an event name (or :A to ~
                                   abort)~%>> "))
                               (state-global-let*
                                ((infixp nil))
                                (read-object *standard-oi* state))))))
            (if (eq event-name :a)
                (pprogn (io? proof-checker nil state
                             nil
                             (fms0 "~|Exit aborted.~%"))
                        (mv nil nil state))
              (if (null (goals t))
                  (let* ((rule-classes (if (consp (cdr args))
                                           rule-classes
                                         (if (and (consp args)
                                                  (eq (car args) nil))
                                             (cadr event-name-and-types-and-raw-term)
                                           '(:rewrite))))
                         (event-form `(defthm ,event-name
                                        ,(caddr event-name-and-types-and-raw-term)
                                        ,@(if (equal rule-classes '(:rewrite))
                                              nil
                                            (list :rule-classes rule-classes))
                                        :instructions ,instructions)))
                    (mv-let (erp stobjs-out/vals state)
                            (pprogn
                             (print-pc-defthm event-form state)
                             (mv-let (erp ans state)
                                     (cond (do-it-flg (value :y))
                                           ((eq event-name t) (value :n))
                                           (t (replay-query state)))
                                     (declare (ignore erp))
                                     (case ans
                                       (:y (trans-eval event-form
                                                       'acl2-pc::exit
                                                       state
                                                       t))
                                       (:r (pprogn (state-from-instructions
                                                    (caddr event-form)
                                                    event-name
                                                    rule-classes
                                                    instructions
                                                    '(signal value)
                                                    state)
                                                   (trans-eval event-form
                                                               'acl2-pc::exit
                                                               state
                                                               t)))
                                       (:a (mv t '(nil . t) state))
                                       (otherwise (mv t '(nil . nil) state)))))

; We assume here that if DEFTHM returns without error, then it succeeds.

                            (if (or erp (null (car stobjs-out/vals)))
                                (if (eq (cdr stobjs-out/vals) t)
                                    (pprogn (io? proof-checker nil state
                                                 nil
                                                 (fms0 "~|Exit aborted.~%"))
                                            (mv nil nil state))
                                  (mv *pc-complete-signal* nil state))
                              (mv *pc-complete-signal* event-name state))))

; Otherwise, we have an incomplete proof.

                (pprogn (io? proof-checker nil state
                             (instructions event-name-and-types-and-raw-term
                                           state-stack)
                             (fms0 "~%Not exiting, as there remain unproved ~
                                   goals:  ~&0.~%The original goal is:~%~ ~ ~ ~
                                   ~ ~y1~|  Here is the current instruction ~
                                   list, starting with the first:~%~ ~ ~ ~ ~
                                   ~y2~|"
                                   (list (cons #\0 (goal-names (goals t)))
                                         (cons #\1 (caddr event-name-and-types-and-raw-term))
                                         (cons #\2 instructions))))
                        (mv nil nil state))))))
      (pprogn (io? proof-checker nil state
                   nil
                   (fms0 "~|Exiting....~%"))
              (mv *pc-complete-signal* nil state)))))

(define-pc-meta undo (&optional n)
  (if (and args
           (not (and (integerp n)
                     (< 0 n))))
      (pprogn (print-no-change
               "The optional argument to undo must be a positive integer.")
              (mv nil nil state))
    (let ((m (min (or n 1) (1- (length state-stack)))))
      (if (null (cdr state-stack))
          (pprogn (print-no-change "Already at the start.")
                  (mv nil nil state))
        (pprogn (pc-assign old-ss state-stack)
                (io? proof-checker nil state
                     (state-stack m)
                     (fms0 "~|Undoing:  ~y0~|"
                           (list (cons #\0
                                       (access pc-state
                                               (car (nthcdr (1- m) state-stack))
                                               :instruction)))))
                (pc-assign state-stack
                           (nthcdr m state-stack))
                (if (consp (cdr (state-stack)))
                    state
                  (io? proof-checker nil state
                       nil
                       (fms0 "Back to the start.~%")))
                (mv nil t state))))))

(define-pc-meta restore ()
  (let ((old-ss (pc-value old-ss)))
    (if (null old-ss)
        (pprogn (io? proof-checker nil state
                     nil
                     (fms0 "~%Nothing to restore from!~%"))
                (mv nil nil state))
      (let ((saved-ss state-stack))
        (pprogn (pc-assign state-stack old-ss)
                (pc-assign old-ss saved-ss)
                (mv nil t state))))))

(defun print-commands (indexed-instrs state)
  (if (null indexed-instrs)
      state
    (if (null (caar indexed-instrs))
        (io? proof-checker nil state
             (indexed-instrs)
             (fms0 (car (cdar indexed-instrs))
                   (cdr (cdar indexed-instrs))))
      (pprogn (io? proof-checker nil state
                   (indexed-instrs)
                   (fms0 "~|~x0. ~y1~|"
                         (list (cons #\0 (caar indexed-instrs))
                               (cons #\1 (cdar indexed-instrs)))))
              (print-commands (cdr indexed-instrs) state)))))

(defun make-pretty-start-instr (state-stack)
  (let* ((triple (event-name-and-types-and-raw-term state-stack))
         (name (car triple))
         (types (cadr triple)))
    (if name
        (list "~|[started with (~x0 ~x1 ...)]~%"
              (cons #\0 name)
              (cons #\1 types))
      (list "~|<< no event name specified at start >>~%"))))

(defun raw-indexed-instrs (start-index finish-index state-stack)
  (declare (xargs :guard (and (integerp start-index)
                              (integerp finish-index)
                              (<= start-index finish-index)
                              (true-listp state-stack)
                              ;; It's tempting to add the following guard, but
                              ;; since state-stack keeps shrinking, it can get violated
                              ;; on recursive calls.
                              ;; (<= finish-index (length state-stack))
                              )))
  (if (< start-index finish-index)
      (cons (cons start-index (access pc-state (car state-stack) :instruction))
            (raw-indexed-instrs (1+ start-index) finish-index (cdr state-stack)))
    (if (cdr state-stack)
        (list (cons start-index (access pc-state (car state-stack) :instruction)))
      (list (cons nil (make-pretty-start-instr state-stack))))))

(define-pc-macro sequence-no-restore (instr-list)
  (value `(sequence ,instr-list nil nil nil nil t)))

(define-pc-macro skip ()
  (value '(sequence-no-restore nil)))

(defmacro define-pc-help (name args &rest body)
  `(define-pc-macro ,name ,args ,@(butlast body 1)
     (pprogn ,(car (last body))
             (value 'skip))))

(defun evisc-indexed-instrs-1 (name rev-indexed-instrs)
  (if (consp rev-indexed-instrs)
      (let ((instr (cdr (car rev-indexed-instrs))))
        (case-match instr
                    ((comm ':end x . &)
                     (if (and (eq comm (make-pretty-pc-command :comment))
                              (equal x name))
                         rev-indexed-instrs
                       (evisc-indexed-instrs-1 name (cdr rev-indexed-instrs))))
                    (& (evisc-indexed-instrs-1 name (cdr rev-indexed-instrs)))))
    nil))

(defun evisc-indexed-instrs-rec (rev-indexed-instrs)
  (if (consp rev-indexed-instrs)
      (let ((instr (cdr (car rev-indexed-instrs)))
            (evisc-cdr (evisc-indexed-instrs-rec (cdr rev-indexed-instrs))))
        (case-match instr
                    ((comm ':begin name . &)
                     (if (eq comm (make-pretty-pc-command :comment))
                         (let ((rst (evisc-indexed-instrs-1 name evisc-cdr)))
                           (if rst
                               (cons (cons (car (car rev-indexed-instrs))
                                           (cons "***HIDING***" instr))
                                     (cdr rst))
                             (cons (car rev-indexed-instrs)
                                   evisc-cdr)))
                       (cons (car rev-indexed-instrs)
                             evisc-cdr)))
                    (& (cons (car rev-indexed-instrs)
                             evisc-cdr))))
    nil))

(defun mark-unfinished-instrs (indexed-instrs)
  ;; any "begin" in here was not matched with an "end"
  (if (consp indexed-instrs)
      (let ((instr (cdr (car indexed-instrs))))
        (case-match instr
                    ((comm ':begin & . &)
                     (if (eq comm (make-pretty-pc-command :comment))
                         (cons (cons (car (car indexed-instrs))
                                     (cons "***UNFINISHED***" instr))
                               (mark-unfinished-instrs (cdr indexed-instrs)))
                       (cons (car indexed-instrs)
                             (mark-unfinished-instrs (cdr indexed-instrs)))))
                    (& (cons (car indexed-instrs)
                             (mark-unfinished-instrs (cdr indexed-instrs))))))
    nil))

(defun evisc-indexed-instrs (indexed-instrs)
  ;; for now, returns a new state stack in which we drop bookends
  ;; (comment (begin <name>) ...)
  ;; (comment (end <name>) ...)
  (mark-unfinished-instrs (reverse (evisc-indexed-instrs-rec (reverse indexed-instrs)))))

(define-pc-help commands (&optional n evisc-p)
  (if (and n (not (and (integerp n) (> n 0))))
      (io? proof-checker nil state
           (n)
           (fms0 "*** The first optional argument to the COMMANDS command must ~
                  be a positive integer, but ~x0 is not.~|"
                 (list (cons #\0 n))))
    (let* ((indexed-instrs (raw-indexed-instrs 1
                                               (if n
                                                   (min n (length state-stack))
                                                 (length state-stack))
                                               state-stack)))
      (print-commands (if evisc-p (evisc-indexed-instrs indexed-instrs) indexed-instrs)
                      state))))

(define-pc-macro comm (&optional n)
  (value (list 'commands n t)))

(defun promote-guts (pc-state goals hyps x y no-flatten-flg)
  (change-pc-state
   pc-state
   :goals
   (cons (change goal (car goals)
                 :hyps (append hyps
                               (if no-flatten-flg
                                   (list x)
                                 (flatten-ands-in-lit x)))
                 :conc y)
         (cdr goals))))

(define-pc-primitive promote (&optional do-not-flatten-flag)
  (if current-addr
      (print-no-change2 "You must be at the top ~
                         of the goal in order to promote the ~
                         antecedents of an implication. Try TOP first.")
    (case-match conc
                (('implies x y)
                 (mv (promote-guts pc-state goals hyps x y do-not-flatten-flag) state))
                (('if x y *t*)
                 (mv (promote-guts pc-state goals hyps x y do-not-flatten-flag) state))
                (& (print-no-change2 "The goal must be of the form ~x0 or ~x1."
                                     (list (cons #\0 '(IMPLIES P Q))
                                           (cons #\1 '(IF P Q T))))))))

(defun remove-by-indices (m indices lst)
  ;;  (declare (xargs :guard (null (non-bounded-nums indices m (length lst)))))
  ;; this was ok for the original entry, but it's not preserved
  (if (consp lst)
      (if (member-equal m indices)
          (remove-by-indices (1+ m) indices (cdr lst))
        (cons (car lst) (remove-by-indices (1+ m) indices (cdr lst))))
    nil))

;;; **** Should improve the following so that if form outputs a state or
;;; does return just one result, then fms0 isn't even called but instead
;;; an appropriate error message is printed.
(define-pc-macro print (form &optional without-evisc)

; NOTE: The saved-output mechanism described in the Essay on Saved-output won't
; work here, because there is no call of io?.  We can't call io? because form
; is arbitrary and hence we cannot check its variables.

  (let ((print-form `(fms0 "~|~y0~|" (list (cons #\0 ,form)))))
    (value `(lisp ,(if without-evisc
                       `(without-evisc ,print-form)
                     print-form)))))

(defun bounded-integer-listp (i j lst)
  ;; If i is a non-integer, then it's -infinity.
  ;; If j is a non-integer, then it's +infinity.
  (if (consp lst)
      (and (integerp (car lst))
           (if (integerp i)
               (if (integerp j)
                   (and (<= i (car lst))
                        (<= (car lst) j))
                 (<= i (car lst)))
             (<= (car lst) j)))
    (null lst)))

(defun fetch-term-and-cl (term addr cl)
  ;; Returns the subterm of TERM at address ADDR paired with a list
  ;; containing the tests governing that occurrence of the subterm plus
  ;; the literals of the input CL.  However, if CL is T then we simply
  ;; return (mv nil t) (see also below).
  ;; I've assumed that the address is a list of positive integers.  If
  ;; the address is not valid for diving into TERM according to ADDR,
  ;; then we return (mv nil t).  Notice that ADDR is expected to be in
  ;; the correct order, while CL is in reverse order and the extension
  ;; of CL returned in the second position is also in reverse order.
  ;; For the funny contrapositive subcase of IMPLIES, note that
  ;;    (implies (implies (and u (not x)) (equal y1 y2))
  ;;             (implies u (equal (implies y1 x) (implies y2 x))))
  ;; is a tautology.  However, the corresponding fact does not hold in
  ;; general for IF; it depends on x being boolean.
  (declare (xargs :guard (bounded-integer-listp 1 'infinity addr)))
  (cond ((eq cl t)
         (mv nil t))
        ((null addr)
         (mv term cl))
        ((or (variablep term) (fquotep term))
         ;; can't dive any further
         (mv nil t))
        ((and (integerp (car addr))
              (< 0 (car addr))
              (< (car addr) (length term)))
         (case-match term
                     (('if t1 t2 t3)
                      (cond ((= 1 (car addr))
                             (fetch-term-and-cl t1 (cdr addr) cl))
                            ((= 2 (car addr))
                             (fetch-term-and-cl t2 (cdr addr) (cons t1 cl)))
                            (t (fetch-term-and-cl t3 (cdr addr) (cons (dumb-negate-lit t1) cl)))))
                     (('implies t1 t2)
                      (cond ((= 1 (car addr))
                             (fetch-term-and-cl t1 (cdr addr) (cons (dumb-negate-lit t2) cl)))
                            (t
                             (fetch-term-and-cl t2 (cdr addr) (cons t1 cl)))))
                     (& (fetch-term-and-cl (nth (1- (car addr)) (fargs term)) (cdr addr) cl))))
        (t
         (mv nil t))))

(defun fetch-term (term addr)
  ;; causes hard error when appropriate
  (mv-let (term cl)
          (fetch-term-and-cl term addr nil)
          (if (eq cl t)
              (er hard 'fetch-term
                  "FETCH-TERM-AND-CL did not find a subterm of ~x0 at address ~x1."
                  term addr)
            term)))

(defun governors (term addr)
  (mv-let (term cl)
          (fetch-term-and-cl term addr nil)
          (declare (ignore term))
          ;; note that cl could be T rather than a list of governors
          cl))

;;;;;;!!!!!!! I should generalize the following to arbitrary equivalence stuff.
(defun term-id-iff (term address iff-flg)
  ;; The property we want is that if one substitutes an equivalent subterm
  ;; of TERM at the given address (equivalent modulo the flag returned by
  ;; this function, that is), then the resulting term is equivalent modulo
  ;; the IFF-FLG argument to the original TERM.  We assume that address is
  ;; a valid address for term.  (*** This should really be a guard.)
  (if (null address)
      iff-flg
    ;; so, the term is a function application
    (term-id-iff (nth (car address) term)
                 (cdr address)
                 (cond ((eq (ffn-symb term) (quote if))
                        (if (= (car address) 1)
                            t
                          iff-flg))
                       ((member-eq (ffn-symb term) (quote (implies iff not)))
                        t)
                       (t
                        nil)))))

;; The way abbreviations will work is as follows.  For input, an
;; abbreviation variable is to be thought of as a placeholder for
;; literal substitution (*before* translation!).  It was tempting to
;; think of abbreviation variables as standing for something else only
;; when they're in variable position, but the problem with that
;; approach is that we can't tell about the position until we've done
;; the translation (consider macro calls that look at the first
;; character, say, for example).  On a pragmatic (implementation)
;; level, it's hard to see how to implement a translator that
;; substitutes for abbreviation variables only when they're in
;; variable position, except by modifying translate.  On the other
;; hand, for untranslation the specification is only that
;; (trans (untrans x)) = x, where here translation is with respect
;; to abbreviations.  Notice though that this spec messes things
;; up, because if x is (quote &v) then untrans of that is still
;; (quote &v) but then trans would remove the &v, if we use sublis
;; to deal with abbreviations.

;; So, I think I'll implement abbreviations as follows.  There will
;; be a new "macro":

;; (defmacro ? (x)
;;   (cdr (assoc-eq x (abbreviations))))

;; Notice however that (abbreviations) generates a reference to
;; state, which isn't compatible with ? being a macro.  So, I'll
;; stub it out:

(defmacro ? (x)
  `(?-fn ',x))

(defstub ?-fn (x)
  t)

;; Now, translation will be followed by an appropriate substitution.
;; For convenience, abbreviations will be turned into an alist whose
;; pairs are of the form ((&-fn 'var) . term).

(defun abbreviations-alist (abbreviations)
  (if (consp abbreviations)
      (cons (cons (fcons-term* '?-fn (kwote (caar abbreviations)))
                  (cdar abbreviations))
            (abbreviations-alist (cdr abbreviations)))
    nil))

(mutual-recursion

(defun chk-?s (term ctx state)
  ;; There shouldn't be any ?-fns in term.
  (cond
   ((or (variablep term) (fquotep term))
    (value nil))
   ((eq (ffn-symb term) '?-fn)
    (case-match term
                ((& ('quote var))
                 (if (variablep var)
                     (er soft ctx "The variable ~x0 is not among the current abbreviations."
                         var)
                   (er soft ctx "Expected a variable in place of ~x0."
                       var)))
                (& (value (er hard ctx "Bad call of ?-FN, ~x0.  ?-FN must be called on the quotation of ~
                                        a variable."
                              term)))))
   ((flambdap (ffn-symb term))
    (er-progn (chk-?s (lambda-body (ffn-symb term)) ctx state)
              (chk-?s-lst (fargs term) ctx state)))
   (t (chk-?s-lst (fargs term) ctx state))))

(defun chk-?s-lst (term-lst ctx state)
  (if (consp term-lst)
      (er-progn (chk-?s (car term-lst) ctx state)
                (chk-?s-lst (cdr term-lst) ctx state))
    (value nil)))

)

(defun remove-?s (term abbreviations-alist ctx state)
  (let ((newterm (sublis-expr abbreviations-alist term)))
    (er-progn (chk-?s newterm ctx state)
              (value newterm))))

(defun translate-abb (x abbreviations ctx state)
  (mv-let
   (erp term state)
   (translate x t

; Since we only use this function in a logical context, we set
; logic-modep to t.

              t t ctx (w state) state)
   (if erp
       (mv erp term state)
     (remove-?s term (abbreviations-alist abbreviations) ctx state))))

(defmacro trans0 (x &optional abbreviations ctx)
  `(translate-abb ,x ,abbreviations ,(or ctx ''trans0) state))

(defun p-body (conc current-addr abbreviations state)
  (io? proof-checker nil state
       (abbreviations current-addr conc)
       (fms0 "~|~y0~|"
             (list (cons #\0 (untrans0 (fetch-term conc current-addr)
                                       (term-id-iff conc current-addr t)
                                       abbreviations))))))

(define-pc-help p ()
  (when-goals
   (p-body (conc t) (current-addr t) (abbreviations t) state)))

(define-pc-help pp ()
  (when-goals
   (io? proof-checker nil state
        (state-stack)
        (fms0 "~|~y0~|"
              (list (cons #\0 (fetch-term (conc t) (current-addr t))))))))

(defun take-by-indices (m indices lst)
  ;;  (declare (xargs :guard (null (non-bounded-nums indices m (length lst)))))
  ;; this was ok for the original entry, but it's not preserved
  (if (consp lst)
      (if (member-equal m indices)
          (cons (car lst) (take-by-indices (1+ m) indices (cdr lst)))
        (take-by-indices (1+ m) indices (cdr lst)))
    nil))

(defun print-hyps (indexed-hyps ndigits abbreviations state)
  (declare (xargs :guard (and (eqlable-alistp indexed-hyps)
                              (integerp ndigits)
                              (> ndigits 0))))
  (if (null indexed-hyps)
      state
    (pprogn (io? proof-checker nil state
                 (abbreviations ndigits indexed-hyps)
                 (fms0 "~c0. ~y1~|"
                       (list (cons #\0 (cons (caar indexed-hyps) ndigits))
                             (cons #\1 (untrans0 (cdar indexed-hyps) t abbreviations)))))
            (print-hyps (cdr indexed-hyps) ndigits abbreviations state))))

(defun some-> (lst n)
  ;; says whether some element of lst exceeds n
  (declare (xargs :guard (and (rational-listp lst)
                              (rationalp n))))
  (if lst
      (or (> (car lst) n)
          (some-> (cdr lst) n))
    nil))

(defun print-hyps-top (indexed-hyps abbreviations state)
  (declare (xargs :guard (eqlable-alistp indexed-hyps)))
  (if (null indexed-hyps)
      (io? proof-checker nil state
           nil
           (fms0 "~|There are no top-level hypotheses.~|"))
    (print-hyps indexed-hyps (if (some-> (strip-cars indexed-hyps) 9) 2 1)
                abbreviations state)))

(defun print-governors-top (indexed-hyps abbreviations state)
  (declare (xargs :guard (eqlable-alistp indexed-hyps)))
  (if (null indexed-hyps)
      (io? proof-checker nil state
           nil
           (fms0 "~|There are no governors.~|"))
    (print-hyps indexed-hyps (if (some-> (strip-cars indexed-hyps) 9) 2 1)
                abbreviations state)))

(defun pair-indices (seed indices lst)
  ;; Returns a list of indices paired with the corresponding (1-based) element of
  ;; lst when in range.  Seed is a starting integer; we do things this way
  ;; because we want the result sorted (and hence want to recurse on lst).
  (declare (xargs :guard (and (integerp seed)
                              (true-listp lst)
                              (bounded-integer-listp 1 (length lst) indices))))
  (if lst
      (let ((rest-lst
             (pair-indices (1+ seed) indices (cdr lst))))
        (if (member seed indices)
            (cons (cons seed (car lst))
                  rest-lst)
          rest-lst))
    nil))

(define-pc-macro hyps (&optional hyps-indices govs-indices)
  (when-goals-trip
   (let* ((hyps (hyps t))
          (len-hyps (length hyps))
          (govs (and govs-indices;; for efficiency
                     (governors (conc t) (current-addr t))))
          (len-govs (length govs))
          (abbs (abbreviations t))
          (hyps-indices (or hyps-indices
                            (null args))))
     (cond
      ((not (or (eq hyps-indices t) (bounded-integer-listp 1 len-hyps hyps-indices)))
       (pprogn
        (io? proof-checker nil state
             (len-hyps hyps-indices)
             (fms0 "~|Bad hypothesis-list argument to HYPS, ~X0n.  The ~
                    hypothesis-list argument should either be T or should be a ~
                    list of integers between 1 and the number of top-level ~
                    hypotheses, ~x1.~%"
                   (list (cons #\0 hyps-indices)
                         (cons #\n nil)
                         (cons #\1 len-hyps))))
        (value :fail)))
      ((not (or (eq govs-indices t) (bounded-integer-listp 1 len-govs govs-indices)))
       (pprogn
        (io? proof-checker nil state
             (len-govs govs-indices)
             (fms0 "~|Bad governors-list argument to HYPS,~%  ~X0n.~%The ~
                    governors-list argument should either be T or should be a ~
                    list of integers between 1 and the number of top-level ~
                    governors, ~x1."
                   (list (cons #\0 govs-indices)
                         (cons #\n nil)
                         (cons #\1 len-govs))))
        (value :fail)))
      ((and (null hyps-indices) (null govs-indices))
       (pprogn
        (io? proof-checker nil state
             nil
             (fms0 "~|You have specified no printing of either hypotheses or ~
                    governors!  Perhaps you should read the documentation for ~
                    the HYPS command.~|"))
        (value :fail)))
      (t
       (let ((hyps-to-print
              (if (eq hyps-indices t)
                  (count-off 1 hyps)
                (pair-indices 1 hyps-indices hyps)))
             (govs-to-print
              (if (eq govs-indices t)
                  (count-off 1 govs)
                (pair-indices 1 govs-indices govs))))
         (pprogn
          (if hyps-indices
              (pprogn
               (if (eq hyps-indices t)
                   (io? proof-checker nil state
                        nil
                        (fms0 "~|*** Top-level hypotheses:~|"))
                 (io? proof-checker nil state
                      nil
                      (fms0 "~|*** Specified top-level hypotheses:~|")))
               (print-hyps-top hyps-to-print abbs state))
            state)
          (if govs-indices
              (pprogn
               (if (eq govs-indices t)
                   (io? proof-checker nil state
                        nil
                        (fms0 "~|~%*** Governors:~|"))
                 (io? proof-checker nil state
                      nil
                      (fms0 "~|~%*** Specified governors:~|")))
               (print-governors-top govs-to-print abbs state))
            state)
          (value 'skip))))))))

(define-pc-primitive demote (&rest rest-args)
  (cond
   (current-addr
    (print-no-change2 "You must be at the top of the conclusion in order to ~
                       demote hypotheses. Try TOP first."))
   ((null hyps)
    (print-no-change2 "There are no top-level hypotheses."))
   (t
    (let ((badindices (non-bounded-nums rest-args 1 (length hyps))))
      (if badindices
          (print-no-change2 "The arguments to DEMOTE ~
                             must be indices of active top-level hypotheses, ~
                             but the following are not:  ~&0."
                            (list (cons #\0 badindices)))
        (mv (change-pc-state
             pc-state
             :goals
             (cons (change goal (car goals)
                           :hyps (if rest-args
                                     (remove-by-indices 1 rest-args hyps)
                                   nil)
                           :conc (make-implication
                                  (if rest-args
                                      (take-by-indices 1 rest-args hyps)
                                    hyps)
                                  conc))
                   (cdr goals)))
            state))))))

(defun pair-keywords (keywords lst)
  (declare (xargs :guard (and (all-keywords-p keywords)
                              (keyword-value-listp lst))))
  ;; returns (mv alist rst)
  (if (consp keywords)
      (mv-let (alist rst)
              (pair-keywords (cdr keywords) lst)
              (let ((tail (assoc-keyword (car keywords) rst)))
                (if tail
                    (mv (cons (cons (car tail) (cadr tail)) alist)
                        ;; could use a remove1 version of the following, but who cares?
                        (remove-keyword (car keywords) rst))
                  (mv alist rst))))
    (mv nil lst)))

(defun null-pool (pool)
  (cond
   ((null pool) t)
   ((eq (access pool-element (car pool) :tag) 'being-proved-by-induction)
    (null-pool (cdr pool)))
   (t nil)))

(defun initial-pspv (term displayed-goal otf-flg ens wrld state splitter-output)

; This is close to being equivalent to a call (make-pspv ...).  However, the
; splitter-output is supplied as a parameter here.

  (change prove-spec-var *empty-prove-spec-var*
          :rewrite-constant
          (initial-rcnst-from-ens ens wrld state splitter-output)
          :user-supplied-term term
          :displayed-goal displayed-goal
          :otf-flg otf-flg
          ))

(defun pc-prove (term displayed-goal hints otf-flg ens wrld ctx state)

; This is exactly the same as the ACL2 PROVE function, except that we allow
; :bye objects in the tag-tree, there is no checking of the load mode, and the
; warning above.

  (prog2$
   (initialize-brr-stack state)
   (er-let* ((ttree
              (let ((pspv (initial-pspv term displayed-goal otf-flg ens wrld
                                        state
                                        (splitter-output)))
                    (clauses (list (list term))))
                (if (f-get-global 'in-verify-flg state) ;interactive
                    (state-global-let*
                     ((saved-output-p t)
                      (saved-output-token-lst :all))
                     (pprogn (f-put-global 'saved-output-reversed nil state)
                             (prove-loop clauses pspv hints ens wrld ctx state)))
                  (prove-loop clauses pspv hints ens wrld ctx state)))))
            (er-progn
             (chk-assumption-free-ttree ttree ctx state)
             (value ttree)))))

(defun sublis-equal (alist tree)
  (declare (xargs :guard (alistp alist)))
  (let ((pair (assoc-equal tree alist)))
    (if pair
        (cdr pair)
      (if (atom tree)
          tree
        (cons (sublis-equal alist (car tree))
              (sublis-equal alist (cdr tree)))))))

(defun abbreviations-alist-? (abbreviations)
  ;; Same as abbreviations-alist, except that we assume that we
  ;; haven't translated yet, and hence we use ? instead of ?-fn
  ;; and we don't quote the variable.
  (if (consp abbreviations)
      (cons (cons (fcons-term* '? (caar abbreviations))
                  (cdar abbreviations))
            (abbreviations-alist-? (cdr abbreviations)))
    nil))

(defun find-?-fn (x)
  ;; x is not necessarily a term.  Heuristically though it's useful
  ;; to be able to find all (?-fn var) subexpressions of x.
  (if (atom x)
      nil
    (if (eq (car x) '?-fn)
        (list (cadr x))
      (union-equal (find-?-fn (car x))
                   (find-?-fn (cdr x))))))

(defun unproved-pc-prove-clauses (ttree)
  (reverse-strip-cdrs (tagged-objects :bye ttree) nil))

(defun prover-call (comm term-to-prove rest-args pc-state state)
  ;; We assume that the :otf-flg and :hints "hints" are locally inside
  ;; a variable called rest-args, which in fact are the arguments to the
  ;; instruction being processed.
  ;; Returns an error triple (mv erp-flg ttree state).
  (declare (xargs :guard (keywordp comm)))
  (let ((prover-call-abbreviations (access pc-state pc-state :abbreviations))
        (prover-call-wrld (w state)))
    (let ((prover-call-pc-ens (make-pc-ens (access pc-state pc-state :pc-ens)
                                           state)))
      (mv-let (prover-call-pairs prover-call-tail)
              (pair-keywords '(:otf-flg :hints) rest-args)
              (if prover-call-tail
                  (pprogn
                   (print-no-change
                    "The only keywords allowed in the arguments to the ~x0 command ~
                     are :otf-flg and :hints.  Your ~
                     instruction ~x1 violates this requirement."
                    (list (cons #\0 comm)
                          (cons #\1
                                (make-pretty-pc-instr (cons comm rest-args)))))
                   (mv t nil state))
                (mv-let (prover-call-erp prover-call-hints state)
                        (let ((un-?-hints
                               (sublis-equal
                                ;; *** someday I should do this all right
                                (abbreviations-alist-? prover-call-abbreviations)
                                (cdr (assoc-eq :hints prover-call-pairs)))))
                          (let ((?-exprs (find-?-fn un-?-hints)))
                            (if ?-exprs
                                (pprogn
                                 (print-no-change
                                  "You appear to have attempted to use the following ~
                                   abbreviation variable~#0~[~/~/s~], which however ~
                                   ~#0~[~/is~/are~] not among ~
                                   the current abbreviation variables (see SHOW-ABBREVIATIONS):  ~&1."
                                  (list (cons #\0 (zero-one-or-more (length ?-exprs)))
                                        (cons #\1 ?-exprs)))
                                 (mv t nil state))
                              (pprogn
                               (io? proof-checker nil state
                                    nil
                                    (fms0 "~|***** Now entering the theorem ~
                                           prover *****~|"))
                               (translate-hints+
                                'proof-checker
                                un-?-hints
                                (default-hints prover-call-wrld)
                                comm
                                prover-call-wrld
                                state)))))
                        (if prover-call-erp
                            (pprogn (print-no-change
                                     "Failed to translate hints successfully.")
                                    (mv t nil state))
                          (let ((prover-call-otf-flg (cdr (assoc-eq :otf-flg prover-call-pairs))))
                            (mv-let (prover-call-erp prover-call-ttree state)
                                    (pc-prove
                                     term-to-prove
                                     (untranslate term-to-prove t prover-call-wrld)
                                     prover-call-hints prover-call-otf-flg
                                     prover-call-pc-ens
                                     prover-call-wrld
                                     comm state)
                                    (pprogn (io? proof-checker nil state
                                                 nil
                                                 (fms0 "~%"))
                                            (if prover-call-erp
                                                (pprogn (print-no-change "Proof failed.")
                                                        (mv t nil state))
                                              (mv nil prover-call-ttree
                                                  state))))))))))))

(defun make-new-goals (cl-set goal-name start-index)
  ;; assumes that every member of CL-SET is a non-empty true list (should be a guard)
  (if (consp cl-set)
      (cons (make goal
                  :conc (car (last (car cl-set)))
                  :hyps (dumb-negate-lit-lst (butlast (car cl-set) 1))
                  :current-addr nil
                  :goal-name (cons goal-name start-index)
                  :depends-on 1)
            (make-new-goals (cdr cl-set) goal-name (1+ start-index)))
    nil))

(defun same-goal (goal1 goal2)
  (and (equal (access goal goal1 :hyps)
              (access goal goal2 :hyps))
       (equal (access goal goal1 :conc)
              (access goal goal2 :conc))))

(defun remove-byes-from-tag-tree (ttree)
  (remove-tag-from-tag-tree :bye ttree))

(define-pc-primitive prove (&rest rest-args)
  (cond
   (current-addr
    (print-no-change2 "The PROVE command should only be used at ~
                       the top.  Use (= T) if that is what you want."))
   ((not (keyword-value-listp rest-args))
    (print-no-change2 "The argument list for the PROVE command should ~
                       be empty or a list of even length with keywords in the odd ~
                       positions.  See the documentation for examples and details."))
   (t
    (mv-let
     (erp ttree state)
     (prover-call
      :prove (make-implication hyps conc) rest-args pc-state state)
     (cond
      (erp (mv nil state))
      (t
       (let* ((new-clauses
               (unproved-pc-prove-clauses ttree))
              (new-goals
               (make-new-goals new-clauses goal-name depends-on))
              (len-new-goals (length new-goals)))
         (cond
          ((and (equal len-new-goals 1)
                (same-goal (car new-goals)
                           (car goals)))
           (print-no-change2 "Exactly one new goal was created by your PROVE ~
                              command, and it has exactly the same hypotheses ~
                              and conclusion as did the current goal."))
          ((tagged-objects 'assumption ttree)

; See the comment in define-pc-primitive about leaving the top goal on the top
; of the :goals stack.

           (mv (change-pc-state
                pc-state
                :goals
                (cons (change goal (car goals)
                              :conc *t*
                              :depends-on (+ (access goal (car goals)
                                                     :depends-on)
                                             len-new-goals))
                      (append new-goals (cdr goals)))
                :local-tag-tree
                (remove-byes-from-tag-tree ttree))
               state))
          (t (mv (change-pc-state
                  pc-state
                  :goals
                  (append new-goals (cdr goals))
                  :local-tag-tree
                  (remove-byes-from-tag-tree ttree))
                 state))))))))))

(defun add-string-val-pair-to-string-val-alist (key key1 val alist)

; Key is a string (typically a goal name) and key1 is a keyword (presumably a
; hint keyword).  Alist associates keys (strings) with keyword alists.
; Associate key1 with val in the keyword alist associated with key, unless key1
; is already bound in that keyword alist in which case just return alist.

  (cond ((null alist) (list (list key key1 val)))
        ((and (stringp (caar alist))
              (string-equal key (caar alist)))
         (if (assoc-keyword key1 (cdar alist))
             alist
           (cons (list* (caar alist) key1 val (cdar alist))
                 (cdr alist))))
        (t (cons (car alist)
                 (add-string-val-pair-to-string-val-alist
                  key key1 val (cdr alist))))))

(defconst *bash-skip-forcing-round-hints*
  '(("[1]Goal" :by nil)
    ("[1]Subgoal 1" :by nil)
    ("[1]Subgoal 2" :by nil)
    ("[1]Subgoal 3" :by nil)
    ("[1]Subgoal 4" :by nil)
    ("[1]Subgoal 5" :by nil)
    ("[1]Subgoal 6" :by nil)
    ("[1]Subgoal 7" :by nil)
    ("[1]Subgoal 8" :by nil)
    ("[1]Subgoal 9" :by nil)
    ("[1]Subgoal 10" :by nil)
    ("[1]Subgoal 11" :by nil)
    ("[1]Subgoal 12" :by nil)
    ("[1]Subgoal 13" :by nil)
    ("[1]Subgoal 14" :by nil)
    ("[1]Subgoal 15" :by nil)))

(define-pc-atomic-macro bash (&rest hints)
  (if (alistp hints)
      (value (list :prove :hints
                   (append
                    *bash-skip-forcing-round-hints*
                    (add-string-val-pair-to-string-val-alist
                     "Goal"
                     ;; only preprocess and simplify are allowed
                     :do-not
                     (list 'quote '(generalize eliminate-destructors
                                               fertilize eliminate-irrelevance))
                     (add-string-val-pair-to-string-val-alist
                      "Goal"
                      :do-not-induct
                      'proof-checker
                      hints)))
                   :otf-flg t))
    (pprogn (print-no-change
             "A BASH instruction must be of the form~%~ ~ ~
              (:BASH (goal_name_1 ...) ... (goal_name_n ...)),~%and hence ~
              your instruction,~%~ ~ ~x0,~%is not legal."
             (list (cons #\0 (cons :bash hints))))
            (value :fail))))

(define-pc-primitive dive (n &rest rest-addr)
  (if (not (bounded-integer-listp 1 'infinity args))
      (print-no-change2 "The arguments to DIVE must all be positive integers.")
    (mv-let (subterm cl)
            (fetch-term-and-cl (fetch-term conc current-addr) args nil)
            (declare (ignore subterm))
            (if (eq cl t)
                (print-no-change2
                 "Unable to DIVE according to the address~%~ ~ ~y0."
                 (list (cons #\0 (cons n rest-addr))))
              (mv (change-pc-state pc-state
                                   :goals
                                   (cons (change goal (car goals)
                                                 :current-addr
                                                 (append (access goal (car goals) :current-addr)
                                                         args))
                                         (cdr goals)))
                  state)))))

; Keep this in sync with translate-in-theory-hint.

(define-pc-atomic-macro split ()
  (value '(:prove :hints
                  (("Goal"
                    :do-not-induct proof-checker
                    :do-not '(generalize eliminate-destructors
                                         fertilize eliminate-irrelevance)
                    :in-theory (theory 'minimal-theory))))))

(define-pc-primitive add-abbreviation (var &optional raw-term)
  (mv-let (erp term state)
          (if (cdr args)
              (trans0 raw-term abbreviations :add-abbreviation)
            (value (fetch-term conc current-addr)))
          (cond
           (erp (mv nil state))
           ((variablep var)
            (if (assoc-eq var abbreviations)
                (print-no-change2 "The abbreviation ~x0 has already been used, and stands for  ~x1."
                                  (list (cons #\0 var)
                                        (cons #\1 (untrans0 (cdr (assoc-eq var abbreviations))))))
              (mv (change-pc-state pc-state
                                   :abbreviations
                                   (cons (cons var term) abbreviations))
                  state)))
           (t
            (print-no-change2 "An abbreviation must be a variable, but ~x0 is not."
                              (list (cons #\0 var)))))))

(defun not-in-domain-eq (lst alist)
  (declare (xargs :guard (if (symbol-listp lst)
                             (alistp alist)
                           (symbol-alistp alist))))
  (if (consp lst)
      (if (assoc-eq (car lst) alist)
          (not-in-domain-eq (cdr lst) alist)
        (cons (car lst)
              (not-in-domain-eq (cdr lst) alist)))
    nil))

(define-pc-primitive remove-abbreviations (&rest vars)
  (if (null abbreviations)
      (print-no-change2 "There are currently no abbreviations.")
    (let ((badvars (and args (not-in-domain-eq vars abbreviations))))
      (if (and args badvars)
          (print-no-change2 "The variable~#0~[~/~/s~] ~&1 ~
                             ~#0~[~/is not currently an abbreviation variable~/~
                                    are not currently abbreviation variables~]."
                            (list (cons #\0 (zero-one-or-more (length badvars)))
                                  (cons #\1 badvars)))
        (mv (change-pc-state
             pc-state
             :abbreviations
             (if args
                 (delete-assoc-eq-lst vars abbreviations)
               nil))
            state)))))

(defun print-abbreviations (vars abbreviations state)
  ;; Here abbreviations can contain junky pairs.
  (declare (xargs :guard (and (true-listp vars)
                              (symbol-alistp abbreviations))))
  (if (null vars)
      state
    (pprogn
     (io? proof-checker nil state
          nil
          (fms0 "~%"))
     (let ((pair (assoc-equal (car vars) abbreviations)))
       (if (null pair)
           ;; then this pair is junk
           (io? proof-checker nil state
                (vars)
                (fms0 "*** ~x0 does not abbreviate a term.~|"
                      (list (cons #\0 (car vars)))))
         (let ((untrans-1 (untrans0 (cdr pair)))
               (untrans-2 (untrans0 (cdr pair)
                                    nil
                                    (delete-assoc-eq (car pair) abbreviations))))
           (pprogn
            (io? proof-checker nil state
                 (pair)
                 (fms0 "(? ~x0) is an abbreviation for:~%~ ~ "
                       (list (cons #\0 (car pair)))))
            (io? proof-checker nil state
                 (untrans-1)
                 (fms0 "~y0~|"
                       (list (cons #\0 untrans-1))
                       2))
            (if (equal untrans-1 untrans-2)
                state
              (pprogn
               (io? proof-checker nil state
                    nil
                    (fms0 "i.e. for~%~ ~ "))
               (io? proof-checker nil state
                    (untrans-2)
                    (fms0 "~y0~|"
                          (list (cons #\0 untrans-2))
                          2))))))))
     (print-abbreviations (cdr vars) abbreviations state))))

(define-pc-help show-abbreviations (&rest vars)
  (if (null (abbreviations t))
      (io? proof-checker nil state
           nil
           (fms0 "~|There are currently no abbreviations.~%"))
    (print-abbreviations (or vars (strip-cars (abbreviations t))) (abbreviations t) state)))

(defun drop-from-end (n l)
  (declare (xargs :guard (and (integerp n)
                              (not (< n 0))
                              (true-listp l)
                              (<= n (length l)))))
  (take (- (length l) n) l))

(define-pc-primitive up (&optional n)
  (let ((n (or n 1)))
    (cond ((null current-addr)
           (print-no-change2 "Already at the top."))
          ((not (and (integerp n) (> n 0)))
           (print-no-change2 "If UP is supplied with an argument, it must be ~
                              a positive integer or NIL, unlike ~x0."
                             (list (cons #\0 n))))
          ((<= n (length current-addr))
           (mv (change-pc-state pc-state
                                :goals
                                (cons (change goal (car goals)
                                              :current-addr
                                              (drop-from-end n current-addr))
                                      (cdr goals)))
               state))
          (t
           (print-no-change2 "Can only go up ~x0 level~#1~[~/~/s~]."
                             (list (cons #\0 (length current-addr))
                                   (cons #\1 (zero-one-or-more (length current-addr)))))))))

(define-pc-atomic-macro top ()
  (when-goals-trip
   (let ((current-addr (current-addr t)))
     (value (list :up (length current-addr))))))

(defmacro expand-address-recurse
  (&key (ans '(cons (car addr) rest-addr))
        (new-addr '(cdr addr))
        (new-raw-term '(nth (car addr) raw-term))
        (new-term '(nth (car addr) term))
        (new-iff-flg 'nil)
        (new-accumulated-addr-r '(cons (car addr) accumulated-addr-r)))
  `(mv-let (erp rest-addr)
           (expand-address
            ,new-addr ,new-raw-term ,new-term abbreviations ,new-iff-flg ,new-accumulated-addr-r
            wrld)
           (if erp
               (mv erp rest-addr)
             (mv nil ,ans))))

(defmacro dive-once-more-error ()
  '(mv "When diving to subterm ~x0 using address ~x1, ~
              the additional dive to ~x2 was impossible."
       (list (cons #\0 raw-term)
             (cons #\1 (reverse accumulated-addr-r))
             (cons #\2 (car addr)))))

(defun abbreviation-raw-term-p (x)
  (and (consp x)
       (eq (car x) '?)))

(defmacro addr-recur (pos b)
  `(if (integerp ,pos)
       (mv-let (addr new-term new-iff-flg not-flg)
           ,b
         (if (stringp addr)
             (mv addr nil nil nil)
           (mv (cons ,pos addr) new-term new-iff-flg not-flg)))
     (if (eq ,pos 'not)
         ,(case-match b
                      (('mv 'nil x y 'nil)
                       `(mv nil ,x ,y t))
                      (&
                       '(mv "a NOT term unexpected by the code; sorry" nil nil nil)))
       (mv ,pos nil nil nil))))

(defun or-addr (n term iff-flg)

; Warning: Keep this in sync with untranslate-or and its use in untranslate1.

; See and-addr, which has a corresponding spec except that it is applied to
; terms that untranslate as AND calls, where the present function is for OR
; instead.

  (case-match term
    (('if x1 x1 x2) ; see untranslate1
     (prog2$
      x1 ; otherwise we get a "not used" complaint
      (cond ((int= n 1)
             (mv "an ambiguous dive to first arg of an OR"
                 nil nil nil))
            ((int= n 2)
             (addr-recur 3
                         (or-addr (1- n) x2 iff-flg)))
            (t
             (mv "an index that is out of range"
                 nil nil nil)))))
    (('if x1 x2 *t*) ; see untranslate1
     (cond ((int= n 1)
            (cond ((ffn-symb-p x1 'not)
                   (mv '(1) x1 t t))
                  (t
                   (mv "an unexpected case of diving to first argument: for ~
                        an if-then-else term with THEN branch of nil, the ~
                        TEST was expected to be a call of NOT."
                       nil nil nil))))
           (t
            (addr-recur 2
                        (or-addr (1- n) x2 iff-flg)))))
    (('if x1 *t* x2) ; see untranslate1
     (cond ((int= n 1)
            (mv '(1) x1 t nil))
           (t
            (addr-recur 3
                        (or-addr (1- n) x2 iff-flg)))))
    (&
     (cond ((int= n 1) ; presumably in a recursive call of this function
            (mv nil term iff-flg nil))
           (t
            (mv "a non-IF term encountered when diving to the first argument ~
                 (perhaps because your DV argument was greater than the ~
                 number of disjuncts)."
                nil nil nil))))))

(defun and-addr (n term iff-flg)

; Warning: Keep this in sync with untranslate-and and its use in untranslate1.

; We assume that term has already been abbreviated.  To dive via n into the
; given translated term, which untranslates to an AND expression, we use the
; address returned by this function, dive-addr.  This value is the first in the
; multiple values that we return: (mv dive-addr new-term new-iff-flg
; finish-not-p), where new-term and new-iff-flg are the term after the dive by
; addr, and finish-not-p is t if an additional dive into a NOT call is required
; for the corresponding untranslated term so that the result matches up with
; using dive-addr on the translated term.  (That is, user should provide a next
; address of 1 after n so that the dive can be completed.  The new-term
; returned here "assumes" that this further dive has already been done.)

  (case-match term
    (('if *t* x2 *nil*) ; see untranslate-and
     (addr-recur 2
                 (and-addr n x2 iff-flg)))
    (('if x1 x2 *nil*)
     (cond ((and iff-flg (equal x2 *t*)) ; see untranslate-and
            (addr-recur 1
                        (and-addr n x1 t)))
           ((int= n 1)
            (mv '(1) x1 t nil))
           (t
            (addr-recur 2
                        (and-addr (1- n) x2 iff-flg)))))
    (('if x1 *nil* x2)
     (cond ((int= n 1)
            (cond ((ffn-symb-p x1 'not)
                   (mv '(1) x1 t t))
                  (t
                   (mv "an unexpected case of diving to first argument: for ~
                        an if-then-else term with THEN branch of nil, the ~
                        TEST was expected to be a call of NOT"
                       nil nil nil))))
           (t
            (addr-recur 3
                        (and-addr (1- n) x2 iff-flg)))))
    (&
     (cond ((int= n 1) ; presumably in a recursive call of this function
            (mv nil term iff-flg nil))
           (t
            (mv "a non-IF term encountered when diving to the first argument ~
                 (perhaps because your DV argument was greater than the ~
                 number of conjuncts)"
                nil nil nil))))))

(table dive-into-macros-table nil nil
       :guard
       (and (symbolp key)
            (or (and (function-symbolp val world)

; We can call key using ev-fncall-w in expand-address, so we had better be sure
; that the guard of ev-fncall-w will be satisfied.

                     (equal (stobjs-in val world) '(nil nil nil nil))
                     (not (assoc-eq val *ttag-fns-and-macros*))
                     (not (member-eq val (global-val 'untouchable-fns world))))
                (integerp val)
                (null val))))

(defmacro add-dive-into-macro (name val)
  `(table dive-into-macros-table ',name ',val))

(defmacro remove-dive-into-macro (name)
  `(table dive-into-macros-table ',name nil))

(defun dive-into-macros-table (wrld)
  (declare (xargs :guard (plist-worldp wrld)))
  (table-alist 'dive-into-macros-table wrld))

(defun rassoc-eq-as-car (key alist)
  (cond ((endp alist) nil)
        ((eq key (car (cdr (car alist))))
         (car alist))
        (t (rassoc-eq-as-car key (cdr alist)))))

(defconst *ca<d^n>r-alist*

; This alist can be constructed as follows in raw Lisp.  Thus, it associates
; each legal cd..dr macro with the number of ds in its name.

; ? (loop for x in
; '(cadr           cdar          caar          cddr
;   caadr   cdadr  cadar  cddar  caaar  cdaar  caddr  cdddr
;   caaadr  cadadr caadar caddar
;   cdaadr  cddadr cdadar cdddar
;                                caaaar cadaar caaddr cadddr
;                                cdaaar cddaar cdaddr cddddr)
; collect (cons x (- (length (symbol-name x)) 2)))

  '((CADR . 2) (CDAR . 2) (CAAR . 2) (CDDR . 2)
    (CAADR . 3) (CDADR . 3) (CADAR . 3) (CDDAR . 3)
    (CAAAR . 3) (CDAAR . 3) (CADDR . 3) (CDDDR . 3)
    (CAAADR . 4) (CADADR . 4) (CAADAR . 4) (CADDAR . 4)
    (CDAADR . 4) (CDDADR . 4) (CDADAR . 4) (CDDDAR . 4)
    (CAAAAR . 4) (CADAAR . 4) (CAADDR . 4) (CADDDR . 4)
    (CDAAAR . 4) (CDDAAR . 4) (CDADDR . 4) (CDDDDR . 4)))

(defun car/cdr^n (n term)

; This function assumes that term is a nest of n or more nested calls of car
; and/or cdr, and returns the term obtained by stripping n such calls.

  (cond
   ((zp n) term)
   ((or (variablep term)
;       (fquotep term)
        (not (member-eq (car term) '(car cdr))))
    (er hard 'car/cdr^n
        "Illegal call: ~x0.~|If you encountered this call in the ~
         proof-checker, please contact the ACL2 implemntors."
        `(car/cdr^n ,n ,term)))
   (t (car/cdr^n (1- n) (fargn term 1)))))

(defun expand-address (addr raw-term term abbreviations iff-flg
                            accumulated-addr-r wrld)

; This definition roughly parallels the definition of untranslate.  It normally
; returns (mv nil new-addr), where new-addr is an address appropriate for
; diving into term that corresponds (in a translated setting) to use of the
; given addr to dive into raw-term (in an untranslated setting).  However, this
; function can return (mv string fmt-alist) or (mv t hard-error) when there is
; an error.  We keep accumulated-addr-r as the raw address already traversed,
; in reverse order, only for error messages.

; It's tempting to have a guard of (equal raw-term (untrans0 term iff-flg
; abbreviations)).  We make some attempt to maintain this invariant.

  (cond ((or (null addr)
             (equal addr '(0)))
         (mv nil nil))
        ((abbreviation-raw-term-p raw-term)

; The car of addr should be 0 or 1, but we forgivingly strip off whatever it
; is.  By the way, it doesn't make a whole lot of sense for the cdr of addr to
; be anything other than nil (else why is dv being used?), but we won't enforce
; that here.

         (let ((pair (assoc-eq (cadr raw-term) abbreviations)))
           (if pair
               (expand-address (cdr addr) (cdr pair) term
                               (remove1-equal pair abbreviations)
                               iff-flg
                               (cons (car addr) accumulated-addr-r)
                               wrld)
             (mv t (er hard 'expand-address
                       "Found abbreviation variable ~x0 that is not in the ~
                        current abbreviations alist, ~x1."
                       (cadr raw-term) abbreviations)))))
        ((not (and (integerp (car addr))
                   (< 0 (car addr))))
         (mv "All members of an address must be positive integers (except ~
              that 0 is allowed in circumstances involving CASE, COND, and ~
              abbreviations, which do not apply here).  ~x0 violates this ~
              requirement."
             (list (cons #\0 (car addr)))))
        ((or (variablep raw-term)
             (fquotep raw-term)
             (not (< (car addr) (length raw-term))))
         (dive-once-more-error))
        ((flambda-applicationp term)

; Raw-term is of the form
;   (let ((var_0 term_0) ... (var_k-1 term_k-1)) body)
; and term is of the form
;   ((lambda (var_0 ... var_k-1) body') term_0' ... term_k-1')
; where body' and termi' are the translation of body through termi,
; respectively.  We cannot dive into the lambda, but we can dive into some
; term_i.  So the DV command must be of the form (DV 1 n 1 . rest) for
; 0<=n<=k-1, which tells us to apply (DV . rest) after diving to term_n, which
; corresponds to position n+1 of the translated term.

         (cond
          ((eql (car addr) 2)
            (mv "Unable to dive to the body of a LET, which is really part of ~
                 the function symbol of the translated LAMBDA term."
                nil))
          ((and (consp raw-term)
                (eq (car raw-term) 'let) ; so we assume raw-term is well-formed
                (>= (length addr) 3)
                (eql (car addr) 1)
                (natp (cadr addr))
                (< (cadr addr) (length (cadr raw-term)))
                (member (caddr addr) '(0 1)))
           (cond ((eql (caddr addr) 0)
                  (mv "Unable to dive to a variable of a LET."
                      nil))
                 (t
                  (expand-address-recurse
                   :ans (cons (1+ (cadr addr)) rest-addr)
                   :new-addr (cdddr addr)
                   :new-raw-term (nth 1 (nth (cadr addr) (nth 1 raw-term)))
                   :new-term (nth (1+ (car addr)) term)
                   :new-accumulated-addr-r (cons (1+ (car addr))
                                                 accumulated-addr-r)))))
          (t (mv "Unable to expand LAMBDA (LET) term."
                 nil))))
        ((atom raw-term)
         (mv t (er hard 'expand-address
                   "Surprise!  Found an unexpected raw-term atom, ~x0."
                   raw-term)))
        (t
         (let ((dive-fn
                (cdr (assoc-eq (car raw-term)
                               (dive-into-macros-table wrld)))))
           (cond
            (dive-fn
             (mv-let (erp val)
                     (ev-fncall-w dive-fn
                                  (list (car addr) raw-term term wrld)
                                  wrld nil nil t nil t)
                     (cond
                      ((or erp (stringp (car val)))
                       (mv (car val) (cdr val)))
                      (t (expand-address-recurse
                          :ans (append val rest-addr)
                          :new-iff-flg nil
                          :new-term (fetch-term term val))))))
            ((or (eq (car term) 'list)
                 (let ((pair (rassoc-eq-as-car (car raw-term)
                                               (untrans-table wrld))))
                   (and pair
                        (eql (arity (car pair) wrld) 2))))

; E.g., (append a b c d) is (binary-append a (binary-append b (binary-append c
; d))), so diving 3 into this (to c) generates address (2 2 1), but diving 4
; generates address (2 2 2), not (2 2 2 1).

             (let* ((lst
                     (cond ((= (car addr) (1- (length raw-term)))
                            (make-list (1- (car addr)) :initial-element 2))
                           (t
                            (append (make-list (1- (car addr)) :initial-element 2)
                                    '(1)))))
                    (subterm (fetch-term term lst)))
               (if subterm
                   (expand-address-recurse
                    :ans (append lst rest-addr)
                    :new-iff-flg nil
                    :new-term subterm)
                 (dive-once-more-error))))
            (t
             (case
               (car raw-term)
               (list*
                (let* ((lst (make-list (1- (car addr)) :initial-element 2))
                       (subterm (fetch-term term lst)))
                  (if subterm
                      (expand-address-recurse
                       :ans (append lst rest-addr)
                       :new-iff-flg nil
                       :new-term subterm)
                    (dive-once-more-error))))
               (<=

; Note that (<= x y) translates to (not (< y x)).

                (cond
                 ((not (member (car addr) '(1 2)))
                  (dive-once-more-error))
                 ((= (car addr) 1)
                  (expand-address-recurse
                   :ans (cons 1 (cons 2 rest-addr))
                   :new-iff-flg nil
                   :new-term (nth 2 (nth 1 term))))
                 (t ; (= (car addr) 2)
                  (expand-address-recurse
                   :ans (cons 1 (cons 1 rest-addr))
                   :new-iff-flg nil
                   :new-term (nth 1 (nth 1 term))))))
               ((and or)
                (mv-let (and-or-addr new-term new-iff-flg finish-not-p)
                        (if (eq (car raw-term) 'and)
                            (and-addr (car addr)
                                      (abbreviate term abbreviations)
                                      iff-flg)
                          (or-addr (car addr)
                                   (abbreviate term abbreviations)
                                   iff-flg))
                        (cond
                         ((stringp and-or-addr)
                          (mv "The dive via address ~x0 brings us to the ~x4 ~
                               term~%~ ~ ~y1,~|~%which translates to~%~ ~ ~
                               ~y2.~|~%The requested dive into this ~x4 term ~
                               is problematic, because of ~@3.  Try using ~
                               DIVE instead (after using PP to find the ~
                               appropriate address)."
                              (list (cons #\0 (reverse accumulated-addr-r))
                                    (cons #\1 raw-term)
                                    (cons #\2 term)
                                    (cons #\3 and-or-addr)
                                    (cons #\4 (car raw-term)))))
                         (finish-not-p
                          (cond
                           ((and (cdr addr)
                                 (int= (cadr addr) 1))
                            (expand-address-recurse
                             :ans (append and-or-addr rest-addr)
                             :new-addr (cddr addr)
                             :new-term new-term
                             :new-iff-flg new-iff-flg
                             :new-accumulated-addr-r
                             (cons 1 (cons (car addr) accumulated-addr-r))))
                           (t
                            (mv "The dive via address ~x0 apparently brings ~
                                 us to the NOT term ~x1, which does not ~
                                 actually exist in the internal syntax of the ~
                                 current term, namely:~%~x2.  Try using DIVE ~
                                 instead (after using PP to find the ~
                                 appropriate address)."
                                (list (cons #\0 (reverse (cons (car addr)
                                                               accumulated-addr-r)))
                                      (cons #\1 (nth (car addr) raw-term))
                                      (cons #\2 term))))))
                         (t
                          (expand-address-recurse
                           :ans (append and-or-addr rest-addr)
                           :new-term new-term
                           :new-iff-flg new-iff-flg)))))
               (case

; For example,
;   (case a (b c) (d e) ((f g) h) (otherwise k))
; translates to
; (IF (EQL A 'B)
;     C
;     (IF (EQL A 'D)
;         E
;         (IF (MEMBER A '(F G)) H K))) .
; So, we can only dive to addresses of the form (n 1 ...)
; and (n 0 ...), though the latter cases aren't too interesting.
; In the example above,
; (2 1 ...) gets us to c, which should generate (2)
; (3 1 ...) gets us to e, which should generate (3 2)
; (4 1 ...) gets us to h, which should generate (3 3 2)
; (5 1 ...) gets us to k, which should generate (3 3 3).
; (2 0 ...) gets us to b, which should generate (1 2)
; (3 0 ...) gets us to d, which should generate (3 1 2)
; (4 0 ...) gets us to (f g), which should generate (3 3 1 2)
; (5 0 ...) gets us to "otherwise", which is an error

                 (cond
                  ((= (car addr) 1)
                   (mv "The dive via address ~x0 brings us to the CASE ~
                        term~%~ ~ ~x1,~%which corresponds to the translated ~
                        term~%~ ~ ~x2.~%A further dive to the first argument ~
                        doesn't really make sense here."
                       (list (cons #\0 (reverse accumulated-addr-r))
                             (cons #\1 raw-term)
                             (cons #\2 term))))
                  ((not (and (consp (cdr addr))
                             (member-equal (cadr addr) '(0 1))))
                   (mv "The dive via address ~x0 brings us to the CASE ~
                        term~%~ ~ ~x1,~%A further dive past argument number ~
                        ~x2 to the zeroth or first ``argument'' is required ~
                        at this point.~%"
                       (list (cons #\0 (reverse accumulated-addr-r))
                             (cons #\1 raw-term)
                             (cons #\2 (car addr)))))
                  ((and (= (cadr addr) 0)
                        (= (car addr) (1- (length raw-term))))
                   (mv "The dive via address ~x0 brings us to the CASE ~
                        term~%~ ~ ~x1,~%A further dive to the ``otherwise'' ~
                        expression is not allowed."
                       (list (cons #\0 (reverse accumulated-addr-r))
                             (cons #\1 raw-term))))
                  (t
                   (let* ((lst (if (= (cadr addr) 1)
                                   (if (= (car addr) (1- (length raw-term)))
                                       (make-list (- (car addr) 2) :initial-element 3)
                                     (append (make-list (- (car addr) 2)
                                                        :initial-element 3)
                                             '(2)))
                                 ;; otherwise (car addr) is 0 and
                                 ;; (car addr) < (1- (length raw-term))
                                 (append (make-list (- (car addr) 2)
                                                    :initial-element 3)
                                         '(1 2))))
                          (subterm (fetch-term term lst)))
                     (if subterm
                         (expand-address-recurse
                          :ans (append lst rest-addr)
                          :new-addr (cddr addr)
                          :new-raw-term (cadr (nth (1+ (car addr)) raw-term))
                          :new-term subterm
                          :new-iff-flg iff-flg
                          :new-accumulated-addr-r (cons (car addr) (cons (cadr addr) accumulated-addr-r)))
                       (mv t
                           (er hard 'expand-address
                               "Surprise!  Unable to dive into raw-term ~x0, which is term ~x1,
                           using list ~x2.  So far we have DV-ed using ~x3."
                               raw-term
                               term
                               lst
                               (reverse accumulated-addr-r))))))))
               (cond

; For example,
;   (cond (a b) (c d) (e f) (t g))
; translates to
;   (if a b (if c d (if e f g)))
; So, we can dive to addresses of the form (n 0 ...)
; and (n 1 ...).
; (1 0 ...) gets us to a, which should generate (1)
; (2 0 ...) gets us to c, which should generate (3 1)
; (3 0 ...) gets us to e, which should generate (3 3 1)
; (4 0 ...) gets us to t, which is not allowed.
; (1 1 ...) gets us to b, which should generate (2)
; (2 1 ...) gets us to d, which should generate (3 2)
; (3 1 ...) gets us to f, which should generate (3 3 2)
; (4 1 ...) gets us to g, which should generate (3 3 3)

                (cond
                 ((not (and (consp (cdr addr))
                            (member-equal (cadr addr) '(0 1))))
                  (mv "The dive via address ~x0 brings us to the COND term~%~ ~
                       ~ ~x1,~%A further dive past argument number ~x2 to the ~
                       zeroth or first ``argument'' is required at this ~
                       point.~%"
                      (list (cons #\0 (reverse accumulated-addr-r))
                            (cons #\1 raw-term)
                            (cons #\2 (car addr)))))
                 ((and (= (cadr addr) 0)
                       (= (car addr) (1- (length raw-term))))
                  (mv "The dive via address ~x0 brings us to the COND term~%~ ~
                       ~ ~x1,~%A further dive to the ``T'' expression is not ~
                       allowed."
                      (list (cons #\0 (reverse accumulated-addr-r))
                            (cons #\1 raw-term))))
                 (t
                  (let* ((lst (if (= (cadr addr) 1)
                                  (if (= (car addr) (1- (length raw-term)))
                                      (make-list (1- (car addr)) :initial-element 3)
                                    (append (make-list (1- (car addr))
                                                       :initial-element 3)
                                            '(2)))
                                ;; otherwise (cadr addr) is 0 and (car addr) < (1- (length raw-term))
                                (append (make-list (1- (car addr))
                                                   :initial-element 3)
                                        '(1))))
                         (subterm (fetch-term term lst)))
                    (if subterm
                        (expand-address-recurse
                         :ans (append lst rest-addr)
                         :new-addr (cddr addr)
                         :new-raw-term (cadr (nth (1+ (car addr)) raw-term))
                         :new-term subterm
                         :new-iff-flg iff-flg
                         :new-accumulated-addr-r (cons (car addr) (cons (cadr addr) accumulated-addr-r)))
                      (mv t
                          (er hard 'expand-address
                              "Surprise!  Unable to dive into raw-term ~x0, ~
                               which is term ~x1, using list ~x2.  So far we ~
                               have DV-ed using ~x3."
                              raw-term
                              term
                              lst
                              (reverse accumulated-addr-r))))))))
               (if
                   (expand-address-recurse
                    :new-iff-flg (if (= (car addr) 1) t iff-flg)))
               ((implies iff)
                (expand-address-recurse :new-iff-flg t))
               (t
                (let ((pair (and (consp raw-term)
                                 (assoc-eq (car raw-term) *ca<d^n>r-alist*))))
                  (cond
                   (pair
                    (expand-address-recurse
                     :ans (append (make-list (cdr pair)
                                             :initial-element 1)
                                  rest-addr)
                     :new-term (car/cdr^n (cdr pair) term)))
                   (t (expand-address-recurse))))))))))))

(defmacro dv-error (str alist)
  `(pprogn (print-no-change
            (string-append "Unable to perform the requested dive.~|~%" ,str)

; We could print the current term using ~xt in the string above, but that
; appears to be distracting in the error message.

            (cons (cons #\t current-term) ,alist))
           (mv t nil state)))

(define-pc-atomic-macro dv (&rest rest-args)
  (let* ((conc (conc t))
         (current-addr (current-addr t))
         (abbreviations (abbreviations t))
         (current-term (fetch-term conc current-addr))
         (term-id-iff (term-id-iff conc current-addr t)))
    (mv-let (erp addr)
            ;; If erp is not nil, then it's a string explaining why DV failed,
            ;; and then addr is a list of args for that string (except #\t is
            ;; associated with 'current-term).
            (expand-address rest-args
                            (untrans0 current-term
                                      term-id-iff
                                      abbreviations)
                            current-term
                            abbreviations
                            term-id-iff
                            nil
                            (w state))
            (if erp
                (dv-error erp addr)
              (mv nil (cons ':dive addr) state)))))

(mutual-recursion

(defun deposit-term (term addr subterm)

  ;; Puts subterm at address addr in term.  Assumes that error checking is
  ;; not necessary, i.e. that addr is given correctly relative to term,

  (cond ((null addr) subterm)
        (t
         (cons-term (ffn-symb term)
                    (deposit-term-lst (fargs term) (car addr) (cdr addr) subterm)))))

(defun deposit-term-lst (lst n addr subterm)

  ;; This simply puts (deposit-term term addr subterm) in place of the nth
  ;; element, term, of lst, but avoids consing up the unchanged tail.

  (cond ((= 1 n)
         (cons (deposit-term (car lst) addr subterm) (cdr lst)))
        (t (cons (car lst) (deposit-term-lst (cdr lst) (1- n) addr subterm)))))

)

;; Suppose that we want to make congruence-based substitution.  Here
;; is the plan.  Then (unless the congruence is equality) we need to
;; make sure that wherever the substitution is to be made, the
;; congruence relation is enough to preserve the geneqv at the current
;; subterm.  The following function actually returns a list of congruence
;; rules.

(defun geneqv-at-subterm (term addr geneqv pequiv-info ens wrld)

; Address is a valid address for the term, term.  This function returns a
; geneqv g such that if one substitutes a subterm u of term at the given
; address such that (g term u), resulting in a term term', then (geneqv term
; term').  As usual, we may return nil for to represent the geneqv for equal.

  (cond ((null addr)
         geneqv)
        (t
         (let ((child-geneqv0
                (nth (1- (car addr))

; It seems inefficient to compute the entire geneqv-lst, but we prefer not to
; write a separate function to obtain just the nth element of that list.

                     (geneqv-lst (ffn-symb term) geneqv ens wrld))))
           (mv-let
            (deep-pequiv-lst shallow-pequiv-lst)
            (pequivs-for-rewrite-args (ffn-symb term) geneqv pequiv-info wrld
                                      ens)
            (mv-let
             (pre-rev cur/post)
             (split-at-position (car addr) (fargs term) nil)
             (mv-let
              (child-geneqv child-pequiv-info)
              (geneqv-and-pequiv-info-for-rewrite
               (ffn-symb term)
               (car addr)
               pre-rev cur/post
               nil ; alist for cur/post (and, pre-rev in this case)
               geneqv child-geneqv0
               deep-pequiv-lst shallow-pequiv-lst
               wrld)
              (geneqv-at-subterm (car cur/post)
                                 (cdr addr)
                                 child-geneqv child-pequiv-info
                                 ens wrld))))))))

(defun geneqv-at-subterm-top (term addr ens wrld)
  (geneqv-at-subterm term addr *geneqv-iff* nil ens wrld))

;; In the following we want to know if every occurrence of old in term
;; is at a position at which substitution by something EQUIV to old
;; will guarantee a result that is GENEQV to term.

; (mutual-recursion
;
; (defun subst-expr1-okp (old term equiv geneqv ens wrld)
;   (cond ((equal term old)
;          (geneqv-refinementp equiv geneqv wrld))
;         ((variablep term) t)
;         ((fquotep term) t)
;         (t (subst-expr1-ok-listp old (fargs term)
;                                  (geneqv-lst (ffn-symb term) geneqv ens wrld)
;                                  equiv ens wrld))))
;
; (defun subst-expr1-ok-listp (old args equiv geneqv-lst ens wrld)
;   (cond ((null args) nil)
;         (t (and (subst-expr1-okp
;                  old (car args) equiv (car geneqv-lst) ens wrld)
;                 (subst-expr1-ok-listp
;                  old (cdr args) equiv (cdr geneqv-lst) ens wrld)))))
;
;
; )

;; **** Need to think about what happens if we, e.g., substitute T for X
;; inside (equal X T).  Probably that's OK -- but also, consider allowing
;; an equivalence relation as an argument.  One would have to check that
;; the relation is OK in at the current address, and then one would use
;; that relation instead of equal to create the proof obligation.  Also,
;; consider special handling for IFF in the case that it's (IFF ... T),
;; so that we can simulate pc-nqthm's PUSH command.

;; ****** give a warning if the term to be replaced doesn't occur in the
;; current subterm

;; The following are adapted from ACL2 definitions of subst-expr1 and
;; subst-expr1-lst.  Note that the parameter `new' has been dropped,
;; but the given and current equivalence relations have been added.

(defun maybe-truncate-current-address (addr term orig-addr acc state)
  ;; Truncates the current address if it tries to dive into a quotep.
  ;; Here orig-addr is the original address (used for the warning message)
  ;; and acc is the accumulated new address (in reverse order).
  (declare (xargs :guard (true-listp addr)))
  (if addr
      (cond
       ((variablep term)
        (mv (er hard 'maybe-truncate-current-address
                "Found variable with non-NIL address!")
            state))
       ((fquotep term)
        (let ((new-addr (reverse acc)))
          (pprogn (io? proof-checker nil state
                       (new-addr orig-addr)
                       (fms0 "~|NOTE:  truncating current address from ~x0 to ~
                              ~x1.  See explanation at end of help for X ~
                              command.~|"
                             (list (cons #\0 orig-addr)
                                   (cons #\1 new-addr))
                             0 nil))
                  (mv new-addr state))))
       (t
        (maybe-truncate-current-address
         (cdr addr) (nth (1- (car addr)) (fargs term))
         orig-addr (cons (car addr) acc) state)))
    (mv (reverse acc) state)))

(defun deposit-term-in-goal (given-goal conc current-addr new-term state)
  ;; state is passed in so that maybe-truncate-current-address can
  ;; print a warning message if appropriate
  (let ((new-conc (deposit-term conc current-addr new-term)))
    (if (quotep new-term)
        (mv-let (new-current-addr state)
                (maybe-truncate-current-address
                 current-addr new-conc current-addr nil state)
                (mv (change goal given-goal
                            :conc
                            new-conc
                            :current-addr
                            new-current-addr)
                    state))
      (mv (change goal given-goal
                  :conc
                  new-conc)
          state))))

(defun split-implies (term)
  ;; returns hyps and conc for term, e.g.
  ;; (implies x y) --> (mv (list x) y),
  ;; (implies x (implies (and y z)) w) --> (mv (list x y z) w), and
  ;; (foo 3) --> (mv nil (foo 3))
  (if (not (ffn-symb-p term 'implies))
      (mv nil term)
    (mv-let (h c)
            (split-implies (fargn term 2))
            (mv (append (flatten-ands-in-lit (fargn term 1)) h) c))))

(defun find-equivalence-hyp-term (term hyps target equiv w)
  ;; allows backchaining through IMPLIES
  (if (consp hyps)
      (mv-let (h c)
              (split-implies (car hyps))
              (if (or (variablep c)
                      (fquotep c)
                      (not (symbolp (ffn-symb c)))
                      (not (refinementp (ffn-symb c) equiv w)))
                  (find-equivalence-hyp-term term (cdr hyps) target equiv w)
                (let ((x (fargn c 1))
                      (y (fargn c 2)))
                  (or
                   (and (subsetp-equal h hyps)
                        (or (and (equal x term)
                                 (equal y target))
                            (and (equal y term)
                                 (equal x target))))
                   (find-equivalence-hyp-term term (cdr hyps) target equiv w)))))
    nil))

(defun flatten-ands-in-lit-lst (x)
  (if (endp x)
      nil
    (append (flatten-ands-in-lit (car x))
            (flatten-ands-in-lit-lst (cdr x)))))

(define-pc-primitive equiv (x y &optional equiv)
  (mv-let
   (current-term governors)
   (fetch-term-and-cl conc current-addr nil)
   (cond
    ((eq governors t)
     (mv (er hard ':=
             "Found governors of T inside command ~x0!"
             (cons := args))
         state))
    (t
     (let* ((assumptions (append hyps governors))
            (w (w state))
            (pc-ens (make-pc-ens pc-ens state)))
       (mv-let
        (erp new-pc-state state)
        (er-let*
         ((old (trans0 x abbreviations :equiv))
          (new (trans0 y abbreviations :equiv))
          (equiv (if (null equiv)
                     (value 'equal)
                   (if (equivalence-relationp equiv w)
                       (value equiv)
                     (er soft :equiv
                         "The name ~x0 is not currently the name of an ACL2 ~
                          equivalence relation.  The current list of ~
                          ACL2 equivalence relations is ~x1."
                         equiv
                         (getpropc 'equal 'coarsenings nil w))))))
         (if (find-equivalence-hyp-term old
                                        (flatten-ands-in-lit-lst assumptions)
                                        new equiv w)
             (mv-let (hitp new-current-term new-ttree)
                     (subst-equiv-expr1 equiv new old
                                        (geneqv-at-subterm-top conc current-addr pc-ens w)
                                        current-term pc-ens w state nil)
                     (if hitp
                         (mv-let
                          (new-goal state)
                          (deposit-term-in-goal
                           (car goals) conc current-addr new-current-term state)
                          (value (change-pc-state
                                  pc-state
                                  :local-tag-tree
                                  new-ttree
                                  :goals
                                  (cons new-goal (cdr goals)))))
                       (pprogn
                        (print-no-change
                         "The equivalence relation that you specified, namely ~x0, is ~
                          not appropriate at any occurrence of the ``old'' term ~x1 ~
                          inside the current term, and hence no substitution has ~
                          been made."
                         (list (cons #\0 equiv)
                               (cons #\1 x)))
                        (value nil))))
           (pprogn
            (print-no-change
             "The ~#2~[equivalence~/equality~] of the terms ~x0 and ~x1~#2~[ with respect ~
              to the equivalence relation ~x3~/~] is not known at the ~
              current subterm from the current hypotheses and governors."
             (list (cons #\0 x)
                   (cons #\1 y)
                   (cons #\2 (if (eq equiv 'equal) 1 0))
                   (cons #\3 equiv)))
            (value nil))))
        (if erp
            (print-no-change2 "EQUIV failed.")
          (mv new-pc-state state))))))))

(define-pc-primitive casesplit
  (expr &optional use-hyps-flag do-not-flatten-flag)
  (mv-let
   (erp term state)
   (trans0 expr abbreviations :casesplit)
   (if erp
       (print-no-change2 "~x0 failed."
                         (list (cons #\0 (cons :casesplit args))))
     (let ((claimed-term
            (if use-hyps-flag
                (mv-let
                 (current-term governors)
                 (fetch-term-and-cl conc current-addr nil)
                 (declare (ignore current-term))
                 (cond
                  ((eq governors t)
                   (er hard ':casesplit
                       "Found governors of T inside command ~x0!"
                       (cons :casesplit args)))
                  (governors
                   (fcons-term* 'implies (conjoin governors) term))
                  (t term)))
              term)))
       (mv (change-pc-state
            pc-state
            :goals
            (cons (change goal (car goals)
                          :hyps (append hyps
                                        (if do-not-flatten-flag
                                            (list claimed-term)
                                          (flatten-ands-in-lit claimed-term)))
                          :depends-on (1+ depends-on))
                  (cons (change goal (car goals)
                                :hyps (append
                                       hyps
                                       (if do-not-flatten-flag
                                           (list (dumb-negate-lit
                                                  claimed-term))
                                         (flatten-ands-in-lit
                                          (dumb-negate-lit claimed-term))))
                                :goal-name (cons goal-name depends-on)
                                :depends-on 1)
                        (cdr goals))))
           state)))))

;;(defconst *pc-catch-all-tag* :pc-catch-all-tag)

(define-pc-macro top? ()
  (when-goals-trip
   (if (current-addr t)
       (value 'top)
     (value 'skip))))

(define-pc-macro contrapose-last ()
  (when-goals-trip
   (let ((hyps (hyps)))
     (if (null hyps)
         (pprogn (print-no-change "CONTRAPOSE-LAST failed -- no top-level hypotheses!")
                 (value :fail))
       (value (list :contrapose (length hyps)))))))

(define-pc-macro drop-last ()
  (when-goals-trip
   (let ((hyps (hyps)))
     (if (null hyps)
         (pprogn (print-no-change "DROP-LAST failed -- no top-level hypotheses!")
                 (value :fail))
       (value (list :drop (length hyps)))))))

(define-pc-macro drop-conc ()
  (value `(do-strict top? contrapose-last drop-last)))

(define-pc-atomic-macro claim (expr &rest rest-args)
  (when-goals-trip
   (value
    (let ((rest-args-1 (if (and rest-args
                                (car rest-args)
                                (not (keywordp (car rest-args))))
                           (list* :hints :none (cdr rest-args))
                         rest-args)))
      (mv-let (pairs remaining-rest-args)
        (pair-keywords '(:do-not-flatten) rest-args-1)
        (let ((do-not-flatten-flag (cdr (assoc-eq :do-not-flatten pairs)))
              (temp (cadr (member-eq :hints rest-args-1))))
          (if (and temp (atom temp))
              `(protect
                (casesplit ,expr nil ,do-not-flatten-flag)
                change-goal
                drop-conc
                pro
                change-goal)
            `(protect
              (casesplit ,expr nil ,do-not-flatten-flag)
              change-goal
              drop-conc
              (prove ,@remaining-rest-args)))))))))

(define-pc-atomic-macro induct (&optional raw-term)
  (when-goals-trip
   (if (and (goals t)
            (current-addr t))
       (pprogn (print-no-change
                "You must be at the top of the goal in order to use the ~
                INDUCT command.  Try TOP first.")
               (value :fail))
     (let ((raw-term (or raw-term t)))
       (value `(prove :hints
                      (("Goal" :induct ,raw-term
                        :do-not-induct proof-checker
                        :do-not *do-not-processes*))))))))

(defun print-on-separate-lines (vals evisc-tuple chan state)
  (declare (xargs :guard (true-listp vals)))
  (if (null vals)
      (newline chan state)
    (pprogn (io? proof-checker nil state
                 (evisc-tuple chan vals)
                 (fms "~x0" (list (cons #\0 (car vals))) chan state
                      evisc-tuple))
            (print-on-separate-lines (cdr vals) evisc-tuple chan state))))

(define-pc-help goals ()
  (io? proof-checker nil state
       (state-stack)
       (when-goals
        (print-on-separate-lines (goal-names (goals t)) nil (proofs-co state)
                                 state))))

(defun modified-error-triple-for-sequence (erp val success-expr state)
  (mv-let (new-erp stobjs-out-and-vals state)
          (state-global-let*
           ((pc-erp erp)
            (pc-val val))
           (trans-eval success-expr :sequence state t))

; Note: Success-expr is typically an expression involving STATE, which
; accesses erp and val via (@ erp) and (@ val).  It may modify STATE.
; It may, indeed, talk about single-threaded objects!  It may even
; modify them, leaving their modified values in the modified state.
; But it is expected to return at least two results, and the first two
; must not be stobjs.

          (let ((stobjs-out (car stobjs-out-and-vals))
                (vals (cdr stobjs-out-and-vals)))
            (if new-erp
                (mv new-erp nil state)
              (if (or (< (length stobjs-out) 2)
                      (car stobjs-out)
                      (cadr stobjs-out))
                  (pprogn (io? proof-checker nil state
                               (vals success-expr)
                               (fms0 "~|WARNING -- evaluation of ~
                                      `success-expr' argument to ~
                                      :SEQUENCE, ~x0, has been ~
                                      ignored because it returned a ~
                                      single-threaded object in one ~
                                      of its first two values or ~
                                      returned fewer than two values. ~
                                      The value(s) returned was ~
                                      (were):~%~ ~ ~x1.~%"
                                     (list (cons #\0 success-expr)
                                           (cons #\2 vals))))
                          (mv erp val state))
                (mv (car vals) (cadr vals) state))))))

(define-pc-meta sequence
  (instr-list &optional
              strict-flg protect-flg success-expr no-prompt-flg no-restore-flg)

  ;; Note:  the reason I use state globals instead of a lexical LET for
  ;; the success-expr argument is that I don't want to worry about the
  ;; translator failing because erp and val aren't declared ignored when
  ;; they should be.

  ;; This is the only place where the pc-prompt gets lengthened.
  ;; Also note that we always lengthen the prompt, but we only do the printing
  ;; if no-prompt-flg is nil AND pc-print-prompt-and-instr-flg is non-nil.
  (if (not (true-listp instr-list))
      (pprogn (print-no-change
               "The first argument to the SEQUENCE command must be ~
                a true list, but~%~ ~ ~x0~| is not."
               (list (cons #\0 instr-list)))
              (mv t nil state))
    (state-global-let*
     ((pc-prompt (string-append (pc-prompt-depth-prefix)
                                (pc-prompt))))
     (let ((saved-old-ss (old-ss))
           (saved-ss (state-stack)))
       (mv-let (erp val state)
               (pc-main-loop instr-list
                             (if strict-flg '(signal value) '(signal))
                             t
                             (and (null no-prompt-flg)
                                  (pc-print-prompt-and-instr-flg))
                             state)
               (mv-let (erp val state)
                       (if success-expr
                           (modified-error-triple-for-sequence erp val success-expr state)
                         (mv erp val state))
                       (if (and protect-flg
                                (or erp (null val)))
                           (pprogn (print-no-change
                                    "SEQUENCE failed, with protection on.  ~
                                     Reverting back to existing state of the ~
                                     proof-checker.~|")
                                   ;; **** consider improving message above, say by printing
                                   ;; entire instruction with appropriate evisceration
                                   (pc-assign state-stack saved-ss)
                                   (pc-assign old-ss saved-old-ss)
                                   (mv erp val state))
                         (pprogn (if no-restore-flg
                                     state
                                   (pc-assign old-ss saved-ss))
                                 (mv erp val state)))))))))

(define-pc-macro negate (&rest instr-list)
  (value (list :sequence instr-list nil nil
               '(mv nil
                    (if (or (f-get-global 'pc-erp state)
                            (null (f-get-global 'pc-val state)))
                        t
                      nil)))))

(define-pc-macro succeed (&rest instr-list)

  ;; I won't make this atomic, since I view this as just a sequencer
  ;; command that should ultimately "disappear" in favor of its arguments.

  (mv nil
      (list :sequence
            instr-list nil nil '(mv nil t))
      state))

(define-pc-macro do-all (&rest instr-list)
  (mv nil (list :sequence instr-list)
      state))

(define-pc-macro do-strict (&rest instr-list)
  (mv nil (list :sequence instr-list t)
      state))

(define-pc-macro do-all-no-prompt (&rest instr-list)
  (mv nil (list :sequence instr-list nil nil nil t t)
      state))

(define-pc-macro th (&optional hyps-indices govs-indices)
  (declare (ignore hyps-indices govs-indices))

  (when-goals-trip
   (value `(do-all-no-prompt (hyps ,@args)
                             (lisp (io? proof-checker nil state
                                        nil
                                        (fms0 "~%The current subterm is:~%")))
                             p))))

(define-pc-macro protect (&rest instr-list)
  (mv nil (list :sequence instr-list t t) state))

(defun extract-goal (name goals)
  ;; returns (goal rest-goals) if goal is found, else (nil ...).
  (if (consp goals)
      (if (equal (access goal (car goals) :goal-name) name)
          (mv (car goals) (cdr goals))
        (mv-let (goal rest-goals)
                (extract-goal name (cdr goals))
                (mv goal (cons (car goals) rest-goals))))
    (mv nil goals)))

(define-pc-primitive change-goal (&optional name end-flg)
  (cond
   ((null goals)
    (pprogn (print-all-goals-proved-message state)
            (mv nil state)))
   ((null (cdr goals))
    (print-no-change2 "The current goal is the only unproved goal."))
   ((null name)
    (pprogn (io? proof-checker nil state
                 (goals)
                 (fms0 "~|Now proving ~X0n.~%"
                       (list (cons #\0 (access goal (cadr goals) :goal-name))
                             (cons #\n nil))))
            (mv (change-pc-state pc-state
                                 :goals
                                 (if end-flg
                                     (cons (cadr goals)
                                           (append (cddr goals) (list (car goals))))
                                   (list* (cadr goals) (car goals) (cddr goals))))
                state)))
   ((equal name goal-name)
    (print-no-change2 "The current goal is already ~x0."
                      (list (cons #\0 name))))
   (t
    (mv-let (gl rest-goals)
            (extract-goal name (cdr goals))
            (if gl
                (mv (change-pc-state pc-state
                                     :goals
                                     (if end-flg
                                         (cons gl (append rest-goals (list (car goals))))
                                       (cons gl (cons (car goals) rest-goals))))
                    state)
              (print-no-change2 "There is no unproved goal named ~x0."
                                (list (cons #\0 name))))))))

(define-pc-macro cg (&optional name)
  (value `(change-goal ,name t)))

(defun change-by-position (lst index new)
  (declare (xargs :guard (and (true-listp lst)
                              (integerp index)
                              (<= 0 index)
                              (< index (length lst)))))
  (if (equal index 0)
      (cons new (cdr lst))
    (cons (car lst)
          (change-by-position (cdr lst) (1- index) new))))

(define-pc-primitive contrapose (&optional n)
  (let ((n (if args n 1)))
    (if hyps
        (if current-addr
            (print-no-change2 "You must be at the top of the conclusion to apply ~
                               the CONTRAPOSE command.  Try TOP first.")
          (if (and (integerp n) (< 0 n) (<= n (length hyps)))
              (mv (change-pc-state
                   pc-state
                   :goals
                   (cons (change goal (car goals)
                                 :hyps (change-by-position hyps (1- n) (dumb-negate-lit conc))
                                 :conc (dumb-negate-lit (nth (1- n) hyps)))
                         (cdr goals)))
                  state)
            (print-no-change2 "The argument to CONTRAPOSE must be a positive integer ~
                               that does not exceed the length of the list of top-level ~
                               hypotheses.  The argument ~x0 fails to meet this requirement."
                              (list (cons #\0 n)))))
      (print-no-change2 "There are no top-level hypotheses."))))

(define-pc-macro contradict (&optional n)
  (declare (ignore n))
  (value (cons :contrapose args)))

(define-pc-atomic-macro pro ()
  (value '(quiet (repeat promote))))

(define-pc-atomic-macro nx ()
  (when-goals-trip
   (let ((current-addr (current-addr t)))
     (if current-addr
         (value `(protect up ,(1+ (car (last current-addr)))))
       (pprogn (print-no-change "NX failed:  already at the top!")
               (value :fail))))))

(define-pc-atomic-macro bk ()
  (when-goals-trip
   (let ((current-addr (current-addr t)))
     (if current-addr
         (let ((n (car (last current-addr))))
           (if (equal n 1)
               (pprogn (print-no-change "BK failed:  already at the first argument!")
                       (value :fail))
             (value `(do-strict up ,(1- n)))))
       (pprogn (print-no-change "BK failed:  already at the top!")
               (value :fail))))))

(define-pc-help p-top ()
  (when-goals
   (let ((conc (conc t))
         (current-addr (current-addr t))
         (stars (intern$ "***" (f-get-global 'current-package state))))
     (io? proof-checker nil state
          (state-stack current-addr conc stars)
          (fms0 "~|~y0~|"
                (list (cons #\0
                            (untrans0
                             (deposit-term conc
                                           current-addr
                                           (list stars
                                                 (fetch-term conc current-addr)
                                                 stars))
                             t
                             (abbreviations t)))))))))

(define-pc-macro repeat (instr)
  (value `(succeed (repeat-rec ,instr))))

(define-pc-macro repeat-rec (instr)
  (value `(do-strict ,instr (repeat-rec ,instr))))

(defmacro define-pc-bind (name args &optional doc-string declare-form)
  (mv-let (doc-string declare-form)
          (if (and (null declare-form)
                   (not (stringp doc-string)))
              (mv nil doc-string)
            (mv doc-string declare-form))
          `(define-pc-meta ,name (&rest instr-list)
             ,@ (and doc-string (list doc-string))
             ,@(and declare-form (list declare-form))
             (state-global-let*
              (,args)
              (pc-main-loop instr-list nil t
                            (pc-print-prompt-and-instr-flg)
                            state)))))

;; ****** Fix the documentation and code below once I can turn off
;; prover IO.
(define-pc-bind quiet
  (inhibit-output-lst
   (union-eq '(prove proof-checker proof-tree warning observation)
             (f-get-global 'inhibit-output-lst state))))

(define-pc-bind noise
  (inhibit-output-lst nil))

(defun find-equivalence-hyp-term-no-target (index term hyps equiv w)
  ;; Allows backchaining through IMPLIES.  Returns an appropriate target.
  ;; Thus we are being rather silly here computationally, since we have
  ;; to do the work twice after generating an :equiv command.  But so what?
  (if (consp hyps)
      (mv-let (h c)
              (split-implies (car hyps))
              (if (or (variablep c)
                      (fquotep c)
                      (not (symbolp (ffn-symb c)))
                      (not (refinementp (ffn-symb c) equiv w)))
                  (find-equivalence-hyp-term-no-target
                   (1+ index) term (cdr hyps) equiv w)
                (let* ((x (fargn c 1))
                       (y (fargn c 2))
                       (hyp-to-use (and (subsetp-equal h hyps)
                                        (or (and (equal x term)
                                                 y)
                                            (and (equal y term)
                                                 x)))))
                  (if hyp-to-use
                      (mv index hyp-to-use)
                    (find-equivalence-hyp-term-no-target
                     (1+ index) term (cdr hyps) equiv w)))))
    (mv nil nil)))

(define-pc-atomic-macro if-not-proved (goal-name cmd)

; Requires the current goal to be named goal-name if it isn't already proved.

  (if (member-equal goal-name (goal-names (goals t)))
      (if (equal goal-name (goal-name t))
          (value cmd)
        (mv-let
         (erp val state)
         (er soft 'if-not-proved
             "The proof-checker's atomic macro IF-NOT-PROVED requires the ~
              indicated goal to be the current goal.  However, the current ~
              goal is ~p0 while the first argument to IF-NOT-PROVED is ~p1."
             (goal-name t)
             goal-name)
         (declare (ignore erp val))
         (value 'fail)))
    (value :skip)))

(define-pc-atomic-macro = (&optional x y &rest rest-args)
  (when-goals-trip
   (let ((conc (conc t))
         (hyps (hyps t))
         (current-addr (current-addr t))
         (abbreviations (abbreviations t))
         (w (w state))
         (rest-args-1 (if (and rest-args
                               (car rest-args)
                               (not (keywordp (car rest-args))))
                          '(:hints :none)
                        rest-args)))
     (if (not (keyword-value-listp rest-args-1))
         (pprogn (print-no-change
                  "The ``rest-args'' arguments for the = command should be ~
                   empty or a list, either (i) containing one element, an ~
                   atom, or else (ii) of even length with keywords in the odd ~
                   positions.  Thus your command ~p0 is not legal.  See the ~
                   documentation for examples and details."
                  (list (cons #\0 (make-pretty-pc-instr (cons := args)))))
                 (value :fail))
       (mv-let
         (equiv-alist rest-args-1)
         (if (keyword-value-listp rest-args-1)
             (pair-keywords '(:equiv) rest-args-1)
           (mv nil rest-args-1))
         (let ((equiv (or (cdr (assoc-eq :equiv equiv-alist))
                          'equal)))
           (mv-let
             (current-term governors)
             (fetch-term-and-cl conc current-addr nil)
             (cond
              ((eq governors t)
               (value (er hard ':=
                          "Found governors of T inside command ~p0!"
                          (cons := args))))
              ((eq x :&)
               (pprogn (print-no-change
                        "We do not allow the first argument of the = command ~
                         to be the keyword :&, because no other symbol with ~
                         print-name & can be a term (and hence we use it to ~
                         represent the current subterm), but :& is a ~
                         legitimate term and -- we can't be really sure ~
                         whether you intended it to represent the term :& or ~
                         the current subterm.")
                       (value :fail)))
              ((not (member-eq equiv
                               (getpropc 'equal 'coarsenings nil w)))
               (pprogn (print-no-change
                        "The ``equivalence relation'' that you supplied, ~p0, ~
                         is not known to ACL2 as an equivalence relation."
                        (list (cons #\0 equiv)))
                       (value :fail)))
              ((null args)
               (mv-let (found-hyp new)
                 (find-equivalence-hyp-term-no-target
                  1 current-term
                  (flatten-ands-in-lit-lst (append hyps governors))
                  equiv w)
                 (if found-hyp
                     (pprogn
                      (io? proof-checker nil state
                           (found-hyp)
                           (fms0 "Using hypothesis #~x0.~%"
                                 (list (cons #\0 found-hyp))))
                      (value (list :equiv current-term new)))
                   (pprogn (print-no-change
                            "There is no hypothesis or governor that equates ~
                             the current term ~#0~[under the equivalence ~
                             relation ~p1 ~/~]with anything."
                            (list (cons #\0 (if (eq equiv 'equal) 1 0))
                                  (cons #\1 equiv)))
                           (value :fail)))))
              (t
               ;; so, we have a valid equivalence relation and at least one argument
               (mv-let
                 (rest-args-alist tail)
                 (pair-keywords '(:otf-flg :hints) rest-args-1)
                 (declare (ignore rest-args-alist))
                 (if tail
                     (pprogn
                      (print-no-change
                       "The only keywords allowed in the arguments to the = ~
                        command are :otf-flg, :hints, and :equiv.  Your ~
                        instruction ~p1 violates this requirement."
                       (list (cons #\1
                                   (make-pretty-pc-instr (cons := args)))))
                      (value :fail))
                   (er-let*
                       ((old (if (or (null (cdr args))
                                     (and (symbolp x)
                                          (eq (intern-in-keyword-package x) :&)))
                                 (value current-term)
                               (trans0 x abbreviations ':=)))
                        (new (if (null (cdr args))
                                 (trans0 x abbreviations ':=)
                               (trans0 y abbreviations ':=))))
                     (value (list :protect
                                  (list* :claim
                                         (if governors
                                             (fcons-term* 'implies (conjoin
                                                                    governors)
                                                          (list equiv old new))
                                           (list equiv old new))
                                         :do-not-flatten t
                                         rest-args-1)
                                  (list :equiv old new equiv)
                                  (list :if-not-proved
                                        (goal-name t)
                                        :drop-last)))))))))))))))

(define-pc-macro set-success (instr form)
  (value `(sequence (,instr) nil nil ,form)))

(define-pc-macro orelse (instr1 instr2)
  (value `(negate (do-strict (negate ,instr1) (negate ,instr2)))))

(defun applicable-rewrite-rules (current-term conc current-addr target-name-or-rune
                                              target-index ens wrld)

; Returns a list of sar records.  This list represents rules that can rewrite
; the current-term, each paired with the appropriate substitution and index,
; but filtered so that only those corresponding to target-name-or-rune are
; included (if non-NIL).  If target-index is NIL then we get all such rules;
; otherwise we get a list with at most one rule, namely the one corresponding
; to that index.

  (declare (xargs :guard (not (or (variablep current-term)
                                  (fquotep current-term)
                                  (flambdap (ffn-symb current-term))))))
  (applicable-rewrite-rules1
   current-term
   (geneqv-at-subterm-top conc current-addr ens wrld)
   (getpropc (ffn-symb current-term) 'lemmas nil wrld)
   1 target-name-or-rune target-index wrld))

(define-pc-help show-rewrites (&optional rule-id enabled-only-flg)
  (when-goals
   (let ((conc (conc t))
         (current-addr (current-addr t))
         (w (w state)))
     (let ((ens (make-pc-ens (pc-ens t) state))
           (current-term (fetch-term conc current-addr))
           (abbreviations (abbreviations t))
           (term-id-iff (term-id-iff conc current-addr t))
           (all-hyps (union-equal (hyps t) (governors conc current-addr))))
       (show-rewrites-linears-fn
        'show-rewrites rule-id enabled-only-flg ens current-term
        abbreviations term-id-iff all-hyps
        (geneqv-at-subterm-top conc current-addr ens w)
        nil state)))))

(define-pc-macro sr (&rest args)
  (value (cons :show-rewrites args)))

(define-pc-help show-linears (&optional rule-id enabled-only-flg)
  (when-goals
   (let ((conc (conc t))
         (current-addr (current-addr t))
         (w (w state)))
     (let ((ens (make-pc-ens (pc-ens t) state))
           (current-term (fetch-term conc current-addr))
           (abbreviations (abbreviations t))
           (term-id-iff (term-id-iff conc current-addr t)) ; irrelevant?
           (all-hyps (union-equal (hyps t) (governors conc current-addr))))
       (show-rewrites-linears-fn
        'show-linears rule-id enabled-only-flg ens current-term
        abbreviations term-id-iff all-hyps
        (geneqv-at-subterm-top conc current-addr ens w) ; irrelevant?
        nil state)))))

(define-pc-macro sls (&rest args)
  (value (cons :show-linears args)))

(define-pc-macro pl (&optional x)
  (cond (x (value `(lisp (pl ',x))))
        ((null (goals))
         (pprogn (print-all-goals-proved-message state)
                 (value 'skip)))
        (t (let* ((conc (conc t))
                  (current-addr (current-addr t))
                  (current-term (fetch-term conc current-addr)))
             (cond ((or (variablep current-term)
                        (fquotep current-term)
                        (flambda-applicationp current-term))
                    (er soft 'pl
                        "The current subterm is not the application of a ~
                         function symbol."))
                   (t (value `(lisp (pl ',(ffn-symb current-term))))))))))

(define-pc-macro pr (&optional x)
  (cond (x (value `(lisp (pr ',x))))
        ((null (goals))
         (pprogn (print-all-goals-proved-message state)
                 (value 'skip)))
        (t (let* ((conc (conc t))
                  (current-addr (current-addr t))
                  (current-term (fetch-term conc current-addr)))
             (cond ((or (variablep current-term)
                        (fquotep current-term)
                        (flambda-applicationp current-term))
                    (er soft 'pr
                        "The current subterm is not the application of a ~
                         function symbol."))
                   (t (value `(lisp (pr ',(ffn-symb current-term))))))))))

(define-pc-help show-type-prescriptions (&optional rule-id)
  (when-goals
   (let ((conc (conc t))
         (current-addr (current-addr t)))
     (let ((ens (make-pc-ens (pc-ens t) state))
           (current-term (fetch-term conc current-addr))
           (abbreviations (abbreviations t))
           (all-hyps (union-equal (hyps t) (governors conc current-addr))))
       (show-type-prescription-rules current-term rule-id abbreviations
                                     all-hyps ens state)))))

(define-pc-macro st (&rest args)
  (value (cons :show-type-prescriptions args)))

(defun translate-subst-abb1 (sub abbreviations state)
  ;; Here sub is a list of doublets (variable form)
  ;; and we return a triple (erp val state).  If the erp is non-nil then
  ;; we use it to decode the message returned in the value component.
  ;; We'll assume that #\s is bound to the original substitution.
  ;;   We should check somewhere else that sub is an alistp.
  ;; We have to pass in and return state because of the call to translate.
  (declare (xargs :guard (symbol-alistp sub)))
  (if (consp sub)
      (mv-let (erp term state)
              (trans0 (cadar sub) abbreviations 'translate-subst-abb1)
              (if erp
                  (mv "~|Translation error for ~x0 caused error in ~
                       translating ~xs.~|"
                      (list (cons #\0 (cadar sub)))
                      state)
                (mv-let (erp val state)
                        (translate-subst-abb1 (cdr sub) abbreviations state)
                        (if erp
                            (mv erp val state)
                          (mv nil (cons (cons (caar sub) term) val) state)))))
    (mv nil nil state)))

(defun single-valued-symbolp-alistp (alist)
  (declare (xargs :guard (symbol-alistp alist)))
  (if alist
      (and (not (assoc-eq (caar alist) (cdr alist)))
           (single-valued-symbolp-alistp (cdr alist)))
    t))

(defun check-cars-are-variables (alist state)
  ;; return T if there's a problem
  (declare (xargs :guard (symbol-alistp alist)))
  (if alist
      (mv-let (erp val state)
              (trans0 (caar alist) nil)
              (if (or erp
                      (not (eq val (caar alist))))
                  (pprogn
                   (io? proof-checker nil state
                        (alist)
                        (fms0 "~|A substitution must be an alist whose CARs ~
                               are variables, but the entry ~x0 violates this ~
                               property.~|"
                              (list (cons #\0 (caar alist)))))
                   (mv t state))
                (check-cars-are-variables (cdr alist) state)))
    (mv nil state)))

(defun translate-subst-abb (sub abbreviations state)
  (cond
   ((not (true-listp sub))
    (pprogn (io? proof-checker nil state
                 (sub)
                 (fms0 "~|A substitution must be a true (null-terminated) ~
                        list, but~%~x0 is not.~|"
                       (list (cons #\0 sub))))
            (mv t nil state)))
   ((not (and (symbol-alistp sub)
              (single-valued-symbolp-alistp sub)))
    (pprogn (io? proof-checker nil state
                 (sub)
                 (fms0 "~|A substitution must be an alist of pairs without ~
                        duplicate keys, but ~x0 is not.~|"
                       (list (cons #\0 sub))))
            (mv t nil state)))
   (t
    (mv-let (erp state)
            (check-cars-are-variables sub state)
            (if erp
                (mv t nil state)
              (mv-let (erp val state)
                      (translate-subst-abb1 sub abbreviations state)
                      (if erp
                          (pprogn (io? proof-checker nil state
                                       (val sub erp)
                                       (fms0 erp (cons (cons #\s sub) val)))
                                  (mv t nil state))
                        (mv nil val state))))))))

(defun make-rewrite-instr (lemma-id raw-subst instantiate-free)
  (list* (make-pretty-pc-command :rewrite)
         lemma-id
         (cond (instantiate-free (list raw-subst instantiate-free))
               (raw-subst (list raw-subst))
               (t nil))))

(define-pc-primitive rewrite (&optional rule-id raw-sub instantiate-free)

; Warning: Keep this in sync with the proof-checker apply-linear command.

  (mv-let
   (erp sub state)
   (translate-subst-abb raw-sub abbreviations state)
   (if erp
       (print-no-change2 "~x0 failed."
                         (list (cons #\0 (cons :rewrite args))))
     (let ((name (and (symbolp rule-id) rule-id))
           (rune (and (consp rule-id)
                      (member-eq (car rule-id) '(:rewrite :definition))
                      rule-id))
           (index (if (and (integerp rule-id) (< 0 rule-id))
                      rule-id
                    (if rule-id
                        nil
                      1)))
           (pc-ens (make-pc-ens pc-ens state))
           (w (w state))
           (current-term (fetch-term conc current-addr))
           (assumptions (union-equal hyps (governors conc current-addr))))
       (cond
        ((or (variablep current-term)
             (fquotep current-term)
             (flambdap (ffn-symb current-term)))
         (print-no-change2
          "It is only possible to apply rewrite rules to terms that are not ~
           variables, (quoted) constants, or applications of lambda ~
           expressions.  However, the current term is:~%~ ~ ~y0.~|"
          (list (cons #\0 current-term))))
        ((not (or name index rune))
         (print-no-change2
          "The rule-id argument to REWRITE must be a name, a positive ~
           integer, or a :rewrite or :definition rune, but ~x0 is none of ~
           these.~|"
          (list (cons #\0 rule-id))))
        (t
         (mv-let
          (flg hyps-type-alist ttree)
          (hyps-type-alist assumptions pc-ens w state)
          (declare (ignore ttree))
          (if flg
              (print-no-change2
               "Contradiction in the hypotheses!~%The S command should ~
                complete this goal.~|")
            (let ((app-rewrite-rules
                   (applicable-rewrite-rules
                    current-term conc current-addr (or name rune) index
                    pc-ens w)))
              (if (null app-rewrite-rules)
                  (if (and index (> index 1))
                      (print-no-change2
                       "There are fewer than ~x0 applicable rewrite rules.~%"
                       (list (cons #\0 index)))
                    (print-no-change2
                     "There are no applicable rewrite rules.~%"))
                (let* ((sar (car app-rewrite-rules))
                       (lemma (access sar sar :lemma))
                       (start-alist (access sar sar :alist))
                       (alist (append start-alist sub))
                       (rhs (access rewrite-rule lemma :rhs))
                       (lemma-hyps (access rewrite-rule lemma :hyps))
                       (lemma-rune (access rewrite-rule lemma :rune))
                       (lemma-name (base-symbol lemma-rune))
                       (lemma-id (if (cddr lemma-rune) lemma-rune lemma-name))
                       (non-free (union-eq (intersection-domains sub
                                                                 start-alist)
                                           (set-difference-eq
                                            (strip-cars sub)
                                            (append (all-vars rhs)
                                                    (all-vars1-lst lemma-hyps
                                                                   nil))))))
                  (if non-free
                      (print-no-change2
                       "The variable~#0~[~/~/s~] ~&1 supplied by the ~
                        substitution in this instruction ~#0~[~/is~/are~] not ~
                        free for instantiation in the current context.~|"
                       (list (cons #\0 (zero-one-or-more (length non-free)))
                             (cons #\1 non-free)))
                    (mv-let
                     (subst-hyps unify-subst ttree2)
                     (unrelieved-hyps lemma-rune lemma-hyps alist
                                      hyps-type-alist instantiate-free w
                                      state pc-ens nil)
                     (pprogn
                      (let ((extra-alist (alist-difference-eq unify-subst
                                                              alist)))
                        (if extra-alist
                            (io? proof-checker nil state
                                 (abbreviations extra-alist sub
                                                lemma-id)
                                 (fms0 "~|Rewriting with ~x0 under the ~
                                        following extension of the ~
                                        substitution generated by matching ~
                                        that rewrite rule with the current ~
                                        term~#1~[ (after extending it with ~
                                        the substitution ~x2 supplied in the ~
                                        instruction)~/~]:~|~x3.~|"
                                       (list (cons #\0 lemma-id)
                                             (cons #\1 (if sub 0 1))
                                             (cons #\2 sub)
                                             (cons #\3 (untranslate-subst-abb
                                                        extra-alist
                                                        abbreviations
                                                        state)))))
                          (io? proof-checker nil state
                               (lemma-id)
                               (fms0 "~|Rewriting with ~x0.~|"
                                     (list (cons #\0 lemma-id))))))
                      (let ((runes (all-runes-in-ttree ttree2 nil)))
                        (if runes
                            (io? proof-checker nil state
                                 (runes)
                                 (fms0 "~|--NOTE-- Using the following runes ~
                                        in addition to the indicated rule:~%  ~
                                        ~x0.~|"
                                       (list (cons #\0 runes))))
                          state))
                      (let ((new-goals
                             (make-new-goals-fixed-hyps subst-hyps
                                                        assumptions
                                                        goal-name
                                                        depends-on)))
                        (mv-let
                         (changed-goal state)
                         (deposit-term-in-goal
                          (car goals) conc current-addr
                          (sublis-var unify-subst
                                      (access rewrite-rule lemma :rhs))
                          state)
                         (mv
                          (change-pc-state
                           pc-state
                           :instruction
                           (make-rewrite-instr lemma-id raw-sub
                                               instantiate-free)
                           :goals
                           (cons (change goal changed-goal
                                         :depends-on
                                         (+ depends-on (length new-goals)))
                                 (append new-goals (cdr goals)))
                           :local-tag-tree
                           (push-lemma lemma-rune ttree2))
                          state)))))))))))))))))

(defun applicable-linear-rules (current-term target-name-or-rune
                                             target-index wrld)

; See applicable-rewrite-rules for the analogous function for rewrite rules.

  (declare (xargs :guard (not (or (variablep current-term)
                                  (fquotep current-term)
                                  (flambdap (ffn-symb current-term))))))
  (applicable-linear-rules1
   current-term
   (getpropc (ffn-symb current-term) 'linear-lemmas nil wrld)
   1 target-name-or-rune target-index))

(defun make-linear-instr (lemma-id raw-subst instantiate-free)
  (list* (make-pretty-pc-command :linear)
         lemma-id
         (cond (instantiate-free (list raw-subst instantiate-free))
               (raw-subst (list raw-subst))
               (t nil))))

(define-pc-primitive apply-linear (&optional rule-id raw-sub instantiate-free)

; Warning: Keep this in sync with the proof-checker rewrite command.

  (mv-let
   (erp sub state)
   (translate-subst-abb raw-sub abbreviations state)
   (if erp
       (print-no-change2 "~x0 failed."
                         (list (cons #\0 (cons :rewrite args))))
     (let ((name (and (symbolp rule-id) rule-id))
           (rune (and (consp rule-id)
                      (member-eq (car rule-id) '(:linear))
                      rule-id))
           (index (if (and (integerp rule-id) (< 0 rule-id))
                      rule-id
                    (if rule-id
                        nil
                      1)))
           (pc-ens (make-pc-ens pc-ens state))
           (w (w state))
           (current-term (fetch-term conc current-addr))
           (assumptions (union-equal hyps (governors conc current-addr))))
       (cond
        ((or (variablep current-term)
             (fquotep current-term)
             (flambdap (ffn-symb current-term)))
         (print-no-change2
          "It is only possible to apply linear rules to terms that are not ~
           variables, (quoted) constants, or applications of lambda ~
           expressions.  However, the current term is:~%~ ~ ~y0.~|"
          (list (cons #\0 current-term))))
        ((not (or name index rune))
         (print-no-change2
          "The rule-id argument to REWRITE must be a name, a positive ~
           integer, or a :linear rune, but ~x0 is none of these.~|"
          (list (cons #\0 rule-id))))
        (t
         (mv-let
          (flg hyps-type-alist ttree)
          (hyps-type-alist assumptions pc-ens w state)
          (declare (ignore ttree))
          (if flg
              (print-no-change2
               "Contradiction in the hypotheses!~%The S command should ~
                complete this goal.~|")
            (let ((app-linear-rules
                   (applicable-linear-rules
                    current-term (or name rune) index w)))
              (if (null app-linear-rules)
                  (if (and index (> index 1))
                      (print-no-change2
                       "There are fewer than ~x0 applicable linear rules.~%"
                       (list (cons #\0 index)))
                    (print-no-change2 "There are no applicable linear rules.~%"))
                (let* ((sar (car app-linear-rules))
                       (lemma (access sar sar :lemma))
                       (start-alist (access sar sar :alist))
                       (alist (append start-alist sub))
                       (lemma-concl (access linear-lemma lemma :concl))
                       (lemma-hyps (access linear-lemma lemma :hyps))
                       (lemma-rune (access linear-lemma lemma :rune))
                       (lemma-name (base-symbol lemma-rune))
                       (lemma-id (if (cddr lemma-rune) lemma-rune lemma-name))
                       (non-free (union-eq (intersection-domains sub
                                                                 start-alist)
                                           (set-difference-eq
                                            (strip-cars sub)
                                            (append (all-vars lemma-concl)
                                                    (all-vars1-lst lemma-hyps
                                                                   nil))))))
                  (if non-free
                      (print-no-change2
                       "The variable~#0~[~/~/s~] ~&1 supplied by the ~
                        substitution in this instruction ~#0~[~/is~/are~] not ~
                        free for instantiation in the current context.~|"
                       (list (cons #\0 (zero-one-or-more (length non-free)))
                             (cons #\1 non-free)))
                    (mv-let
                     (subst-hyps unify-subst ttree2)
                     (unrelieved-hyps lemma-rune lemma-hyps alist
                                      hyps-type-alist instantiate-free w
                                      state pc-ens nil)
                     (pprogn
                      (let ((extra-alist (alist-difference-eq unify-subst
                                                              alist)))
                        (if extra-alist
                            (io? proof-checker nil state
                                 (abbreviations extra-alist sub
                                                lemma-id)
                                 (fms0 "~|Apply linear rule ~x0 under the ~
                                        following extension of the the ~
                                        substitution generated by matching ~
                                        that rule's trigger term with the ~
                                        current term ~#1~[ (after extending ~
                                        it with the substitution ~x2 supplied ~
                                        in the instruction)~/~]:  ~x3.~|"
                                       (list (cons #\0 lemma-id)
                                             (cons #\1 (if sub 0 1))
                                             (cons #\2 sub)
                                             (cons #\3 (untranslate-subst-abb
                                                        extra-alist
                                                        abbreviations
                                                        state)))))
                          (io? proof-checker nil state
                               (lemma-id)
                               (fms0 "~|Applying linear rule ~x0.~|"
                                     (list (cons #\0 lemma-id))))))
                      (let ((runes (all-runes-in-ttree ttree2 nil)))
                        (if runes
                            (io? proof-checker nil state
                                 (runes)
                                 (fms0 "~|--NOTE-- Using the following runes ~
                                        in addition to the indicated rule:~%  ~
                                        ~x0.~|"
                                       (list (cons #\0 runes))))
                          state))
                      (let ((new-goals
                             (make-new-goals-fixed-hyps subst-hyps
                                                        assumptions
                                                        goal-name
                                                        depends-on)))
                        (let ((changed-goal
                               (change goal (car goals)
                                       :hyps
                                       (append hyps
                                               (list
                                                (sublis-var unify-subst
                                                            lemma-concl)))
                                       :depends-on
                                       (+ depends-on (length new-goals)))))
                          (mv
                           (change-pc-state
                            pc-state
                            :instruction
                            (make-linear-instr lemma-id raw-sub
                                               instantiate-free)
                            :goals
                            (cons changed-goal
                                  (append new-goals (cdr goals)))
                            :local-tag-tree
                            (push-lemma lemma-rune ttree2))
                           state)))))))))))))))))

(define-pc-macro al (&rest args)
  (value (cons :apply-linear args)))

(define-pc-macro doc (&optional name)
  (let ((name (or name (make-official-pc-command 'doc))))
    (cond ((and (equal (assoc-eq :doc (ld-keyword-aliases state))
                       '(:DOC 1 XDOC))
                (function-symbolp 'colon-xdoc-initialized (w state)))
           (value `(lisp (if (colon-xdoc-initialized state)
                             (xdoc ',name)
                           (pprogn
                            (fms0 "Note: Using built-in :doc command.  To use ~
                                   :xdoc command, exit the proof-checker and ~
                                   run :doc in the top-level loop.~|~%")
                            (doc ',name))))))
          (t (value `(lisp (doc ',name)))))))

(define-pc-macro help (&optional name)
  (cond ((not (symbolp name))
         (pprogn
          (print-no-change "The argument for :HELP requires a symbol, but ~x0 ~
                            is not a symbol."
                           (list (cons #\0 name)))
          (value :fail)))
        (t (let ((name (if (equal (symbol-name name) "ALL")
                           'proof-checker-commands
                         (make-official-pc-command (or name 'help)))))
             (value `(doc ,name))))))

(defun pc-rewrite*-1
  (term type-alist geneqv iff-flg wrld rcnst old-ttree pot-lst normalize-flg
        rewrite-flg ens state repeat backchain-limit step-limit)

; This function may be called with a pot-lst of nil in the proof-checker, but
; need not be can figure out a good way to do linear there.  Also, note that
; rcnst can be anything (and is ignored) if rewrite-flg is not set.

  (mv-let (nterm old-ttree)
          (if normalize-flg
              (normalize term iff-flg type-alist ens wrld old-ttree)
            (mv term old-ttree))
          (sl-let (newterm ttree)
                  (if rewrite-flg
                      (let ((gstack nil))
                        (rewrite-entry
                         (rewrite nterm nil 'proof-checker)
                         :pequiv-info nil
                         :rdepth (rewrite-stack-limit wrld)
                         :step-limit step-limit
                         :obj '?
                         :fnstack nil
                         :ancestors nil
                         :simplify-clause-pot-lst pot-lst
                         :rcnst (change rewrite-constant rcnst
                                        :current-literal
                                        (make current-literal
                                              :atm nterm
                                              :not-flg nil))
                         :gstack gstack
                         :ttree old-ttree))
                    (mv 0 ; irrelevant step-limit
                        nterm old-ttree))
                  (declare (ignorable step-limit))
                  (cond
                   ((equal newterm nterm)
                    (mv step-limit newterm old-ttree state))
                   ((<= repeat 0)
                    (mv step-limit newterm ttree state))
                   (t
                    (pc-rewrite*-1 newterm type-alist geneqv iff-flg wrld rcnst
                                   ttree
                                   pot-lst normalize-flg rewrite-flg ens state
                                   (1- repeat) backchain-limit step-limit))))))

(defun pc-rewrite*
  (term type-alist geneqv iff-flg wrld rcnst old-ttree pot-lst normalize-flg
        rewrite-flg ens state repeat backchain-limit step-limit)
  (sl-let
   (newterm ttree state)
   (catch-step-limit
    (pc-rewrite*-1 term type-alist geneqv iff-flg wrld rcnst old-ttree pot-lst
                   normalize-flg rewrite-flg ens state repeat backchain-limit
                   step-limit))
   (cond ((eql step-limit -1)
          (mv step-limit term old-ttree state))
         (t
          (mv step-limit newterm ttree state)))))

(defun make-goals-from-assumptions (assumptions conc hyps current-addr goal-name start-index)
  (if assumptions
      (cons (make goal
                  :conc conc
                  :hyps (cons (dumb-negate-lit (car assumptions)) hyps)
                  :current-addr current-addr
                  :goal-name (cons goal-name start-index)
                  :depends-on 1)
            (make-goals-from-assumptions (cdr assumptions)
                                         conc hyps current-addr goal-name
                                         (1+ start-index)))
    nil))

(defun make-new-goals-from-assumptions (assumptions goal)
  (and assumptions
       (make-goals-from-assumptions
        assumptions
        (access goal goal :conc)
        (access goal goal :hyps)
        (access goal goal :current-addr)
        (access goal goal :goal-name)
        (access goal goal :depends-on))))

(defconst *default-s-repeat-limit* 10)

(define-pc-primitive s (&rest args)
  (cond
   ((not (keyword-value-listp args))
    (print-no-change2
     "The argument list to S must be a KEYWORD-VALUE-LISTP, i.e. a list of ~
      the form (:kw-1 val-1 ... :kw-n val-n), where each of the arguments ~
      :kw-i is a keyword.  Your argument list ~x0 does not have this ~
      property.  Try (HELP S)."
     (list (cons #\0 args))))
   (t
    (let ((comm (make-official-pc-command 's))
          (w (w state))
          (current-term (fetch-term conc current-addr))
          (assumptions (union-equal hyps (governors conc current-addr))))
      (let ((pc-ens (make-pc-ens pc-ens state)))
        (mv-let
         (bcl-alist rst)
         (pair-keywords '(:backchain-limit :normalize :rewrite :repeat) args)
         (let ((local-backchain-limit
                (or (cdr (assoc-eq :backchain-limit bcl-alist)) 0))

; IF-normalization and rewriting will happen by default

               (normalize
                (let ((pair (assoc-eq :normalize bcl-alist)))
                  (if pair (cdr pair) t)))
               (rewrite
                (let ((pair (assoc-eq :rewrite bcl-alist)))
                  (if pair (cdr pair) t)))
               (repeat
                (let ((pair (assoc-eq :repeat bcl-alist)))
                  (if pair
                      (if (equal (cdr pair) t)
                          *default-s-repeat-limit*
                        (cdr pair))
                    0))))
           (cond
            ((not (natp repeat))
             (print-no-change2
              "The :REPEAT argument provided to S (or a command that invoked ~
               S), which was ~x0, is illegal. ~ It must be T or a natural ~
               number."
              (list (cons #\0 repeat))))
            ((not (natp local-backchain-limit))
             (print-no-change2
              "The :BACKCHAIN-LIMIT argument provided to S (or a command that ~
               invoked S), which was ~x0, is illegal.  It must be NIL or a ~
               natural number."
              (list (cons #\0 local-backchain-limit))))
            ((not (or normalize rewrite))
             (print-no-change2 "You may not specify in the S command that ~
                                neither IF normalization nor rewriting is to ~
                                take place."))
            ((and (null rewrite)
                  (or (assoc-eq :backchain-limit bcl-alist)
                      (assoc-eq :repeat bcl-alist)
                      rst))
             (print-no-change2 "When the :REWRITE NIL option is specified, it ~
                                is not allowed to provide arguments other than ~
                                :NORMALIZE T.  The argument list ~x0 violates ~
                                this requirement."
                               (list (cons #\0 args))))
            (t
             (mv-let
              (key-alist new-rst)
              (pair-keywords '(:in-theory :hands-off :expand) rst)
              (declare (ignore key-alist))
              (cond
               (new-rst
                (print-no-change2
                 "The arguments to the S command must all be &KEY arguments, ~
                  which should be among ~&0.  Your argument list ~x1 violates ~
                  this requirement."
                 (list (cons #\0 '(:rewrite :normalize :backchain-limit
                                            :repeat :in-theory :hands-off
                                            :expand))
                       (cons #\1 args))))
               (t
                (mv-let
                 (erp hint-settings state)
                 (translate-hint-settings
                  comm "Goal" rst
                  (if args (cons comm (car args)) comm)
                  w state)
                 (cond
                  (erp (print-no-change2 "S failed."))
                  (t
                   (mv-let
                    (flg hyps-type-alist ttree)
                    (hyps-type-alist assumptions pc-ens w state)
                    (cond
                     (flg
                      (cond
                       ((or (null current-addr) ; optimization
                            (equal assumptions hyps)
                            (mv-let (flg hyps-type-alist ttree)
                                    (hyps-type-alist hyps pc-ens w state)
                                    (declare (ignore hyps-type-alist
                                                     ttree))
                                    flg))
                        (pprogn
                         (io? proof-checker nil state
                              nil
                              (fms0 "~|Goal proved:  Contradiction in the ~
                                     hypotheses!~|"))
                         (mv (change-pc-state
                              pc-state
                              :goals
                              (cond ((tagged-objects 'assumption ttree)

; See the comment in define-pc-primitive about leaving the top goal on the top
; of the :goals stack.

                                     (cons (change goal (car goals)
                                                   :conc *t*)
                                           (cdr goals)))
                                    (t (cdr goals)))
                              :local-tag-tree ttree)
                             state)))
                       (t
                        (print-no-change2
                         "A contradiction was found in the current context ~
                          using both the top-level hypotheses and the IF ~
                          tests governing the current term, but not using the ~
                          top-level hypotheses alone.  You may want to issue ~
                          the TOP command and then issue s-prop to prune some ~
                          branches of the conclusion."))))
                     (t
                      (let* ((base-rcnst
                              (and rewrite
                                   (change
                                    rewrite-constant
                                    *empty-rewrite-constant*
                                    :current-enabled-structure pc-ens
                                    :force-info t))))
                        (mv-let
                         (erp local-rcnst state)
                         (if rewrite
                             (load-hint-settings-into-rcnst
                              hint-settings
                              base-rcnst
                              nil w 'acl2-pc::s state)
                           (value nil))
                         (pprogn
                          (if erp
                              (io? proof-checker nil state
                                   nil
                                   (fms0 "~|Note: Ignoring the above theory ~
                                          invariant error.  Proceeding...~|"))
                            state)
                          (if rewrite
                              (maybe-warn-about-theory-from-rcnsts
                               base-rcnst local-rcnst :s pc-ens w state)
                            state)
                          (sl-let
                           (new-term new-ttree state)
                           (pc-rewrite*
                            current-term
                            hyps-type-alist
                            (geneqv-at-subterm-top conc current-addr
                                                   pc-ens w)
                            (term-id-iff conc current-addr t)
                            w local-rcnst nil nil normalize rewrite
                            pc-ens state repeat local-backchain-limit
                            (initial-step-limit w state))
                           (pprogn
                            (f-put-global 'last-step-limit step-limit state)
                            (if (equal new-term current-term)
                                (print-no-change2
                                 "No simplification took place.")
                              (pprogn
                               (mv-let
                                (new-goal state)
                                (deposit-term-in-goal
                                 (car goals)
                                 conc current-addr new-term state)
                                (mv (change-pc-state
                                     pc-state
                                     :goals
                                     (cons new-goal (cdr goals))
                                     :local-tag-tree new-ttree)
                                    state)))))))))))))))))))))))))))

;; The proof-checker's enabled state will be either the global enabled
;; state or else a local one.  The proof-checker command :IN-THEORY
;; takes zero or one arguments, the former specifying ``use the global
;; enabled state'' and the latter specifying ``create a local enabled
;; state from the current proof-checker enabled state by evaluating
;; the theory form that is given.''  This is an easy design to
;; implement:  we'll use NIL in the pc-ens component of the pc-state
;; to mean that we should use the global state, and otherwise we'll
;; store an enabled structure with a root name particular to Pc-ACL2.
;; A subtlety is that (in-theory (current-theory :here)) is not quite
;; equivalent to (in-theory).  The difference is that the former
;; stores a copy of the current global enabled state in the current
;; proof-checker state, and that's what will stay there even if the
;; global state is changed, while the latter stores NIL in the current
;; proof-checker state, which means that we'll use whatever is the
;; current global enabled state at the time.

;; I expect that this design will be pretty robust, in the sense that
;; it won't cause hard errors even when the user makes global changes
;; to the ACL2 world and then re-enters an interactive verification.
;; That's because the index-of-last-enabling component of an enabled
;; structure always protects it against inappropriate AREF1 calls
;; in ENABLED-NUMEP.

(defun build-pc-enabled-structure-from-ens (new-suffix ens)
  (let* ((new-name-root
          '(#\P #\C #\- #\E #\N #\A #\B
            #\L #\E #\D #\- #\A #\R #\R #\A #\Y #\-))
         (new-name (intern (coerce
                            (append new-name-root
                                    (explode-nonnegative-integer new-suffix
                                                                 10
                                                                 nil))
                            'string)
                           "ACL2"))
         (old-name (access enabled-structure ens :array-name))
         (old-alist (access enabled-structure ens :theory-array)))
    (change enabled-structure
            ens
            :theory-array
            (cons (list :header
                        :dimensions (dimensions old-name old-alist)
                        :maximum-length (maximum-length old-name old-alist)
                        :default (default old-name old-alist)
                        :name new-name)
                  (cdr old-alist))
            :array-name new-name
            :array-length (access enabled-structure ens :array-length)
            :array-name-root new-name-root
            :array-name-suffix new-suffix)))

(define-pc-primitive in-theory (&optional theory-expr)
  (let ((w (w state))
        (ens (ens state)))
    (if args
        (mv-let
         (erp hint-setting state)
         (translate-in-theory-hint theory-expr t 'acl2-pc::in-theory w
                                   state)
         (if erp
             (print-no-change2 "bad theory expression.")
           (let* ((new-suffix (pc-value next-pc-enabled-array-suffix))
                  (new-pc-ens1
                   (build-pc-enabled-structure-from-ens new-suffix ens)))
             (mv-let
              (erp new-pc-ens2 state)
              (load-theory-into-enabled-structure
               ;; this call compresses the appropriate array
               theory-expr hint-setting nil new-pc-ens1 nil nil w
               'acl2-pc::in-theory state)
              (cond
               (erp (print-no-change2 "bad theory expression."))
               (t
                (pprogn
                 (pc-assign next-pc-enabled-array-suffix (1+ new-suffix))
                 (maybe-warn-about-theory-simple
                  ens new-pc-ens2 :in-theory w state)
                 (mv (change-pc-state pc-state :pc-ens new-pc-ens2)
                     state))))))))
      (if (null pc-ens)
          (print-no-change2 "The proof-checker enabled/disabled state is ~
                             already set to agree with the global state, so ~
                             your IN-THEORY command is redundant.")
        (mv (change-pc-state pc-state :pc-ens nil)
            state)))))

(define-pc-atomic-macro s-prop (&rest names)
  (value `(s :in-theory ,(if names
                             `(union-theories ',names
                                              (theory 'minimal-theory))
                           '(theory 'minimal-theory)))))

(define-pc-atomic-macro x (&rest args)
  (value `(do-strict (expand t) (succeed (s ,@args)))))

;; It was tempting to use the rewrite command to implement expand, but
;; this didn't really allow for expanding to keep lambdas or for the
;; issue of how to deal with guards.  So I'll keep :definition rules
;; separate from :rewrite rules.

(define-pc-primitive expand (&optional
                             ;; nil means eliminate the lambda:
                             do-not-expand-lambda-flg)
  (let ((w (w state))
        (term (fetch-term conc current-addr)))
    (cond
     ((or (variablep term)
          (fquotep term))
      (print-no-change2
       "It is impossible to expand a variable or a constant."))
     ((and do-not-expand-lambda-flg
           (flambdap (ffn-symb term)))
      (print-no-change2
       "Expansion of lambda terms is disabled when do-not-expand-lambda-flg = ~
        t."))
     (t
      (let* ((fn (ffn-symb term))
             (def-body (and (not (flambdap fn))
                            (def-body fn w)))
             (formals (access def-body def-body :formals))
             (body (if (flambdap fn)
                       (lambda-body fn)
                     (and def-body
                          (latest-body (fcons-term fn formals)
                                       (access def-body def-body
                                               :hyp)
                                       (access def-body def-body
                                               :concl))))))
        (if (null body)
            (prog2$ (if (flambdap fn)
                        (er hard 'acl2-pc::expand
                            "Found null body for lambda in term ~x0~|Please ~
                             contact the ACL2 implementors."
                            term)
                      t)
                    (print-no-change2
                     "Expansion failed.  Apparently function ~x0 is ~
                      constrained, not defined."
                     (list (cons #\0 fn))))
          (let ((new-term
                 (cond
                  (do-not-expand-lambda-flg ; hence not (flambdap fn)
                   (fcons-term (make-lambda formals body)
                               (fargs term)))
                  (t
                   (subcor-var (if (flambdap fn)
                                   (lambda-formals fn)
                                 formals)
                               (fargs term)
                               body)))))
            (mv-let (new-goal state)
                    (deposit-term-in-goal
                     (car goals) conc current-addr
                     new-term
                     state)
                    (mv (change-pc-state
                         pc-state
                         :goals
                         (cons new-goal (cdr goals))
                         :local-tag-tree
                         (if (flambdap fn)
                             nil
                           (push-lemma? (access def-body def-body
                                                :rune)
                                        nil)))
                        state)))))))))

(define-pc-atomic-macro x-dumb ()
  (value `(expand t)))

;; **** consider unwinding the effect if there is no change
(define-pc-macro bookmark (tag &rest instr-list)
  (value `(do-all (comment :begin ,tag)
                  ,@instr-list
                  (comment :end ,tag))))

(defun change-last (lst val)
  (if (consp lst)
      (if (consp (cdr lst))
          (cons (car lst)
                (change-last (cdr lst) val))
        (list val))
    lst))

(defun assign-event-name-and-rule-classes (event-name rule-classes state)
  (let* ((state-stack (state-stack))
         (triple (event-name-and-types-and-raw-term state-stack))
         (old-event-name (car triple))
         (old-rule-classes (cadr triple))
         (old-raw-term (caddr triple)))
    (pc-assign state-stack
               (change-last state-stack
                            (change pc-state
                                    (car (last state-stack))
                                    :instruction
                                    (list :start
                                          (list (or event-name old-event-name)
                                                (or rule-classes old-rule-classes)
                                                old-raw-term)))))))

(defun save-fn (name ss-alist state)
  (pprogn
   (assign-event-name-and-rule-classes name nil state)
   (pc-assign
    ss-alist
    (put-assoc-eq name
                  (cons (state-stack) (old-ss))
                  ss-alist))))

(define-pc-macro save (&optional name do-it-flg)
  (cond
   ((not (symbolp name))
    (pprogn
     (print-no-change
      "The first argument supplied to ~x0 must be a symbol, but ~x1 is not a ~
       symbol.~@2"
      (list (cons #\0 :save)
            (cons #\1 name)
            (cons #\2
                  (cond ((and (consp name)
                              (eq (car name) 'quote)
                              (consp (cdr name))
                              (symbolp (cadr name))
                              (null (cddr name)))
                         (msg "  Perhaps you intended to submit the form ~x0."
                              `(:save ,(cadr name)
                                      ,@(and do-it-flg
                                             (list do-it-flg)))))
                        (t "")))))
     (value :fail)))
   (t
    (let ((name (or name (car (event-name-and-types-and-raw-term state-stack))))
          (ss-alist (ss-alist)))
      (if name
          (mv-let
           (erp reply state)
           (if (and (assoc-eq name ss-alist)
                    (null do-it-flg))
               (acl2-query 'acl2-pc::save
                           '("The name ~x0 is already associated with a ~
                              state-stack.  Do you really want to overwrite ~
                              that existing value?"
                             :y t :n nil)
                           (list (cons #\0 name))
                           state)
             (mv nil t state))
           (declare (ignore erp))
           (if reply
               (pprogn (save-fn name ss-alist state)
                       (value :succeed))
             (pprogn (print-no-change "save aborted.")
                     (value :fail))))
        (pprogn (print-no-change
                 "You can't SAVE with no argument, because you didn't ~
                  originally enter VERIFY using an event name.  Try (SAVE ~
                  <event_name>) instead.")
                (value :fail)))))))

(defmacro retrieve (&optional name)
  `(retrieve-fn ',name state))

(define-pc-macro retrieve ()
  (pprogn (print-no-change "RETRIEVE can only be used ouside the ~
                            interactive loop.  Please exit first.  To ~
                            save your state upon exit, use EX rather than EXIT.")
          (value :fail)))

(defun unsave-fn (name state)
  (pc-assign ss-alist
             (delete-assoc-eq name (ss-alist))))

(defmacro unsave (name)
  `(unsave-fn ',name state))

(define-pc-help unsave (&optional name)
  (let ((name (or name (car (event-name-and-types-and-raw-term state-stack)))))
    (if (null name)
        (print-no-change "You must specify a name to UNSAVE, because you didn't ~
                          originally enter VERIFY using an event name.")
      (if (assoc-eq name (ss-alist))
          (pprogn (unsave-fn name state)
                  (io? proof-checker nil state
                       (name)
                       (fms0 "~|~x0 removed from saved state-stack alist.~%"
                             (list (cons #\0 name)))))
        (print-no-change "~|~x0 is does not have a value on the saved ~
                          state-stack alist.~%"
                         (list (cons #\0 name)))))))

(defun show-retrieved-goal (state-stack state)
  (let ((raw-term (caddr (event-name-and-types-and-raw-term state-stack))))
    (assert$ raw-term
             (fmt-abbrev "~|~%Resuming proof attempt for~|~y0."
                         (list (cons #\0 raw-term))
                         0
                         (proofs-co state)
                         state
                         "~%"))))

(defun retrieve-fn (name state)
  (let ((ss-alist (ss-alist)))
    (cond
     ((f-get-global 'in-verify-flg state)
      (er soft 'retrieve
          "You are apparently already inside the VERIFY interactive loop.  It is ~
           illegal to enter such a loop recursively."))
     ((null ss-alist)
      (pprogn (io? proof-checker nil state
                   nil
                   (fms0 "Sorry -- there is no saved interactive proof to ~
                          re-enter! Perhaps you meant (VERIFY) rather than ~
                          (RETRIEVE).~|"))
              (value :invisible)))
     ((null name)
      (if (equal (length ss-alist) 1)
          (retrieve-fn (caar ss-alist) state)
        (pprogn (io? proof-checker nil state
                     (ss-alist)
                     (fms0 "Please specify an interactive verification to ~
                            re-enter.  Your options are ~&0.~%(Pick one of the ~
                            above:) "
                           (list (cons #\0 (strip-cars ss-alist)))))
                (mv-let (erp val state)
                        (state-global-let*
                         ((infixp nil))
                         (read-object *standard-oi* state))
                        (declare (ignore erp))
                        (retrieve-fn val state)))))
     ((not (symbolp name))
      (er soft 'retrieve
          "The argument supplied to ~x0 must be a symbol, but ~x1 is not a ~
           symbol.~@2"
          'retrieve
          name
          (cond ((and (consp name)
                      (eq (car name) 'quote)
                      (consp (cdr name))
                      (symbolp (cadr name))
                      (null (cddr name)))
                 (msg "  Perhaps you intended to submit the form ~x0."
                      `(retrieve ,(cadr name))))
                (t ""))))
     (t
      (let* ((ss-pair (cdr (assoc-eq name ss-alist)))
             (saved-ss (car ss-pair))
             (saved-old-ss (cdr ss-pair)))
        (if saved-ss
            (pprogn (pc-assign old-ss saved-old-ss)
                    (pc-assign state-stack saved-ss)
                    (show-retrieved-goal saved-ss state)
                    (verify))
          (pprogn (io? proof-checker nil state
                       (name)
                       (fms0 "~|Sorry -- There is no interactive proof saved ~
                              under the name ~x0.~|"
                             (list (cons #\0 name))))
                  (value :invisible))))))))

(defun print-all-goals (goals state)
  (if (null goals)
      state
    (pprogn (print-pc-goal (car goals))
            (print-all-goals (cdr goals) state))))

(define-pc-help print-all-goals ()
  (print-all-goals (goals t) state))

(defmacro print-conc (&optional acl2::goal)
  `(let ((goal ,(or goal '(car (access pc-state (car (state-stack)) :goals)))))
     (io? proof-checker nil state
          (goal)
          (if goal
              (fms0
               "~%-------  ~x3  -------~|~q0~|"
               (list
                (cons #\0 (untranslate (access goal goal :conc) t (w state)))
                (cons #\3 (access goal goal :goal-name))))
            (fms0 "~%No goal in CAR of state-stack.~|")))))

(defun print-all-concs (goals state)
  (declare (xargs :mode :program :stobjs state))
  (if (null goals)
      state
    (pprogn (print-conc (car goals))
            (print-all-concs (cdr goals) state))))

(define-pc-help print-all-concs ()
  (print-all-concs (acl2::goals t) state))

(defun gen-var-marker (x)
  (or (null x)
      (and (integerp x)
           (>= x 0))))

(defun translate-generalize-alist-1 (alist state-vars abbreviations state)
  ;; Takes an alist with doublets of the form (term var) and
  ;; returns an alist of the form (translated-term . var).
  ;; Returns an error triple.  However, no attempt is made in this
  ;; pass to generate new variable names for "variables" that are
  ;; actually natural numbers or NIL.  We'll wait to collect the new
  ;; variable names first.
  ;;    We'll wait to check for duplicate variables till after this phase.
  (cond
   ((null alist)
    (value nil))
   ((and (true-listp (car alist))
         (eql (length (car alist)) 2))
    (er-let*
     ((term (translate-abb
             (caar alist)
             abbreviations
             'translate-generalize-alist
             state))
      (var (if (gen-var-marker (cadar alist))
               (value (cadar alist))
             ;; I could call translate directly here
             (translate-abb
              (cadar alist)
              nil
              'translate-generalize-alist
              state))))
     (cond
      ((member-eq var state-vars)
       (er soft :generalize
           "The variable ~x0 already appears in the current goals of ~
            the proof-checker state, and hence is not legal as a ~
            generalization variable."
           var))
      ((or (variablep var) (gen-var-marker var))
       ;; The second disjunct above is actually subsumed by the first,
       ;; but I'll leave it in for clarity.
       (mv-let
        (erp val state)
        (translate-generalize-alist-1 (cdr alist) state-vars abbreviations state)
        (if erp
            (mv erp val state)
          (value (cons (cons term var) val)))))
      (t
       (er soft :generalize
           "The second element of each doublet ~
            given to the GENERALIZE command must be a variable or ~
            natural number, but ~x0 is neither."
           (cadar alist))))))
   (t
    (er soft :generalize
        "Each argument to the GENERALIZE command must be a list of ~
         length 2, but ~x0 is not."
        (car alist)))))

(defun non-gen-var-markers (alist)
  ;; gets all the non-gen-var-markers from the cdrs of alist
  (if (consp alist)
      (if (gen-var-marker (cdar alist))
          (non-gen-var-markers (cdr alist))
        (cons (cdar alist)
              (non-gen-var-markers (cdr alist))))
    nil))

(defun find-duplicate-generalize-entries (alist var)
  (declare (xargs :guard (true-listp alist)))
  (if alist
      (if (eq (cadar alist) var)
          (cons (car alist)
                (find-duplicate-generalize-entries (cdr alist) var))
        (find-duplicate-generalize-entries (cdr alist) var))
    nil))

(defun translate-generalize-alist-2 (alist avoid-list)
  (declare (xargs :guard (true-listp alist)))
  (if alist
      (if (gen-var-marker (cdar alist))
          (let ((new-var (genvar 'genvar "_" (cdar alist) avoid-list)))
            (cons (cons (caar alist) new-var)
                  (translate-generalize-alist-2 (cdr alist) (cons new-var avoid-list))))
        (cons (car alist)
              (translate-generalize-alist-2 (cdr alist) avoid-list)))
    nil))

(defun translate-generalize-alist (alist state-vars abbreviations state)
  (er-let*
   ((alist1 (translate-generalize-alist-1 alist state-vars abbreviations state)))
   (let ((new-vars (non-gen-var-markers alist1)))
     (if (no-duplicatesp-equal new-vars)
         (value (translate-generalize-alist-2 alist1 (append new-vars state-vars)))
       (let* ((bad-var (car (duplicates new-vars)))
              (dup-entries
               (find-duplicate-generalize-entries alist bad-var)))
         (if (cdr dup-entries)
             (er soft 'acl2-pc::generalize
                 "The pairs ~&0 have the same variable, ~x1, and hence your ~
                  GENERALIZE instruction is illegal."
                 dup-entries bad-var)
           (value (er hard 'acl2-pc::generalize
                      "Bad call to translate-generalize-alist on ~%  ~x0."
                      (list alist state-vars abbreviations)))))))))

(defun all-vars-goals (goals)
  (if (consp goals)
      (union-eq (all-vars (access goal (car goals) :conc))
                (union-eq (all-vars1-lst (access goal (car goals) :hyps) nil)
                          (all-vars-goals (cdr goals))))
    nil))

(defun pc-state-vars (pc-state)
  (union-eq (all-vars1-lst (strip-cdrs (access pc-state pc-state :abbreviations)) nil)
            (all-vars-goals (access pc-state pc-state :goals))))

(define-pc-primitive generalize (&rest args)
  (cond
   (current-addr
    (print-no-change2
     "Generalization may only be applied at the top of the current goal.  Try TOP first."))
   ((null args)
    (print-no-change2
     "GENERALIZE requires at least one argument."))
   (t
    (mv-let
     (erp alist state)
     (translate-generalize-alist
      args (pc-state-vars pc-state) abbreviations state)
     (if erp
         (print-no-change2 "GENERALIZE failed.")
       (mv (change-pc-state
            pc-state
            ;; perhaps we should also adjust abbreviations, but I think that's
            ;; too complicated (for the user) -- it's simpler to tell him that
            ;; abbreviations are to be taken literally
            :goals
            (cons (change goal (car goals)
                          :hyps (sublis-expr-lst alist
                                                 (access goal (car goals) :hyps))
                          :conc (sublis-expr alist
                                             (access goal (car goals) :conc)))
                  (cdr goals)))
           state))))))

(define-pc-atomic-macro use (&rest args)
  (value `(prove :hints
                 (("Goal" :use ,args
                   :do-not-induct proof-checker
                   :do-not *do-not-processes*))
                 :otf-flg t)))

(define-pc-atomic-macro clause-processor (&rest cl-proc-hints)
  (value `(:prove :hints
                  (("Goal"
                    :clause-processor (,@cl-proc-hints)
                    :do-not-induct proof-checker
                    :do-not *do-not-processes*))
                  :otf-flg t)))

(define-pc-macro cl-proc (&rest cl-proc-hints)
  (value `(:clause-processor ,@cl-proc-hints)))

(define-pc-atomic-macro retain (arg1 &rest rest-args)
  (declare (ignore arg1 rest-args))
  (when-goals-trip
   (let* ((hyps (hyps t))
          (bad-nums (non-bounded-nums args 1 (length hyps))))
     (if bad-nums
         (pprogn (print-no-change
                  "The following are not in-range hypothesis numbers:  ~&0."
                  (list (cons #\0 bad-nums)))
                 (mv t nil state))
       (let ((retained-hyps (set-difference-eq (fromto 1 (length hyps)) args)))
         (if retained-hyps
             (value (cons :drop retained-hyps))
           (pprogn (print-no-change "All hypotheses are to be retained.")
                   (mv t nil state))))))))

(define-pc-atomic-macro reduce (&rest hints)
  (if (alistp hints)
      (value (list :prove :hints
                   (add-string-val-pair-to-string-val-alist
                    "Goal"
                    :do-not-induct
                    'proof-checker
                    hints)
                   :otf-flg t))
    (pprogn (print-no-change
             "A REDUCE instruction must be of the form~%~ ~ ~
              (:REDUCE (goal_name_1 ...) ... (goal_name_n ...)),~%and hence ~
              your instruction,~%~ ~ ~x0,~%is not legal."
             (list (cons #\0 (cons :reduce hints))))
            (value :fail))))

(define-pc-macro run-instr-on-goal (instr goal-name)
  (when-goals-trip
   (if (equal goal-name (goal-name t))
       (value instr)
     (value `(protect (change-goal ,goal-name) ,instr)))))

(defun run-instr-on-goals-guts (instr goal-names)
  (declare (xargs :guard (true-listp goal-names)))
  (if goal-names
      (cons `(run-instr-on-goal ,instr ,(car goal-names))
            (run-instr-on-goals-guts instr (cdr goal-names)))
    nil))

(define-pc-macro run-instr-on-new-goals (instr existing-goal-names
                                               &optional must-succeed-flg)
  (value (cons 'do-strict
               (run-instr-on-goals-guts
                (if must-succeed-flg instr (list :succeed instr))
                (set-difference-equal (goal-names (goals t))
                                      existing-goal-names)))))

(define-pc-macro then (instr &optional completion must-succeed-flg)
  (value (list 'do-strict
               instr
               (list 'run-instr-on-new-goals
                     (or completion :reduce)
                     (goal-names (goals t))
                     must-succeed-flg))))

(define-pc-macro nil ()
  (value 'exit))

;; OK, here's a plan for free variables.  When the user thinks that
;; maybe he wants to introduce a free variable, he declares the
;; variable to be free at the time he wants to introduce it.  What
;; this really does is to introduce an abbreviation &v for (hide x),
;; where x is that variable.  Then if later in the proof he wants to
;; instantiate x with trm, then what happens is that the
;; add-abbreviation command is changed so that &v instead abbreviates
;; (hide trm).  The instructions are then replayed (or not, if the
;; user wants to cheat at this point -- or perhaps there's a fast
;; heuristic test on suitability of the PUT).

(define-pc-atomic-macro free (var)
  (er-let* ((var (trans0 var nil :free)))
           (if (variablep var)
               (value `(add-abbreviation ,var (hide ,var)))
             (pprogn (print-no-change
                      "The FREE command requires an argument that is a variable, ~
                       which ~x0 is not."
                      (list (cons #\0 var)))
                     (value :fail)))))

(define-pc-macro replay (&optional n replacement-instr)
  ;; So that I can use instructions-of-state-stack, I'll make
  ;; n 1-bigger than it ought to be.
  (if (or (null n) (and (integerp n) (> n 0)))
      (let* ((len (length state-stack))
             (n (and n (min (1+ n) len)))
             (instrs (instructions-of-state-stack
                      (if n (take n state-stack) state-stack)
                      nil)))
        (value `(do-strict (undo ,(1- (or n len)))
                           ,@(if replacement-instr
                                 (cons replacement-instr (cdr instrs))
                               instrs))))
    (pprogn (print-no-change "The optional argument to the REPLAY command ~
                              must be a positive integer, but ~x0 is not!"
                             (list (cons #\0 n)))
            (value :fail))))

(defun instr-name (instr)
  ;; assumes that instr is an official (stored) instruction
  (if (atom instr)
      instr
    (car instr)))

(defun pc-free-instr-p (var pc-state)
  (let ((instr (access pc-state pc-state :instruction)))
    (and (eq (instr-name instr) :free)
         (eq (cadr instr) var))))

(defun find-possible-put (var state-stack)
  ;; ***** Should beef this up sometime with heuristics for catching
  ;; when GENERALIZE or PROVE, for example, makes var "non-free" after all.
  ;; Attempts to find index (for undoing) of FREE command that introduced var, and if
  ;; it can't, then returns nil.
  (if state-stack
      (if (pc-free-instr-p var (car state-stack))
          1
        (let ((n (find-possible-put var (cdr state-stack))))
          (and n (1+ n))))
    nil))

(define-pc-macro put (var expr)
  (let ((n (find-possible-put var state-stack)))
    (if n
        (value `(do-strict (replay ,n
                                   (add-abbreviation ,var ,expr))
                           (remove-abbreviations ,var)))
      (pprogn (print-no-change "There is no FREE command for ~x0."
                               (list (cons #\0 var)))
              (value :fail)))))

(define-pc-macro reduce-by-induction (&rest hints)
  (if (alistp hints)
      (value (cons :reduce
                   (add-string-val-pair-to-string-val-alist
                    "Goal"
                    :induct
                    t
                    hints)))
    (pprogn (print-no-change
             "A REDUCE-BY-INDUCTION instruction must be of the form~%~ ~ ~
              (:REDUCE-BY-INDUCTION (goal_name_1 ...) ... (goal_name_n ...)),~%and hence ~
              your instruction,~%~ ~ ~x0,~%is not legal."
             (list (cons #\0 (cons :reduce-by-induction hints))))
            (value :fail))))

(define-pc-macro r (&rest args)
  (value (cons :rewrite args)))

(define-pc-atomic-macro sl (&optional backchain-limit)
  (value (if backchain-limit
             `(s :backchain-limit ,backchain-limit
                 :in-theory (union-theories (theory 'minimal-theory)
                                            (set-difference-theories
                                             (current-theory :here)
                                             (function-theory :here))))
           `(s :in-theory (union-theories (theory 'minimal-theory)
                                          (set-difference-theories
                                           (current-theory :here)
                                           (function-theory :here)))))))

(define-pc-atomic-macro elim ()
  (value (list :prove :otf-flg t
               :hints
               '(("Goal" :do-not-induct proof-checker
                  :do-not (set-difference-eq *do-not-processes*
                                             '(eliminate-destructors)))))))

(define-pc-macro ex ()
  (value '(do-strict save exit)))

(defun save-fc-report-settings ()
  (declare (xargs :guard t))
  (wormhole-eval
   'fc-wormhole
   '(lambda (whs)
      (let* ((data (wormhole-data whs))
             (criteria (cdr (assoc-eq :CRITERIA data)))
             (flyp (cdr (assoc-eq :REPORT-ON-THE-FLYP data))))
        (set-wormhole-data
         whs
         (put-assoc-eq :CRITERIA-SAVED criteria
                       (put-assoc-eq :REPORT-ON-THE-FLYP-SAVED flyp
                                     data)))))
   nil))

(defun restore-fc-report-settings ()
  (declare (xargs :guard t))
  (wormhole-eval
   'fc-wormhole
   '(lambda (whs)
      (let* ((data (wormhole-data whs))
             (criteria-saved (cdr (assoc-eq :CRITERIA-SAVED data)))
             (flyp-saved (cdr (assoc-eq :REPORT-ON-THE-FLYP-SAVED data))))
        (set-wormhole-data
         whs
         (put-assoc-eq :CRITERIA criteria-saved
                       (put-assoc-eq :REPORT-ON-THE-FLYP flyp-saved
                                     data)))))
   nil))

(define-pc-help type-alist (&optional concl-flg govs-flg fc-report-flg)
  (when-goals
   (let ((conc (conc t))
         (current-addr (current-addr t))
         (w (w state))
         (govs-flg (if (cdr args) govs-flg (not concl-flg))))
     (prog2$
      (and fc-report-flg
           (prog2$ (save-fc-report-settings)
                   (prog2$ (wormhole-eval ; (set-fc-criteria t) without state
                            'fc-wormhole
                            '(lambda (whs)
                               (set-wormhole-data
                                whs
                                (put-assoc-eq :CRITERIA
                                              '((t t t))
                                              (wormhole-data whs))))
                            nil)
                           (set-fc-report-on-the-fly t))))
      (mv-let
       (flg hyps-type-alist ttree)
       (hyps-type-alist
        (cond (concl-flg
               (union-equal (hyps t)
                            (cond (govs-flg
                                   (add-to-set-equal
                                    (dumb-negate-lit conc)
                                    (governors conc current-addr)))
                                  (t (list (dumb-negate-lit conc))))))
              (govs-flg (union-equal (hyps t)
                                     (governors conc current-addr)))
              (t (hyps t)))
        (make-pc-ens (pc-ens t) state)
        w
        state)
       (declare (ignore ttree))
       (prog2$
        (and fc-report-flg (restore-fc-report-settings))
        (if flg
            (io? proof-checker nil state
                 nil
                 (fms0 "*** Contradiction in the hypotheses! ***~%The S ~
                        command should complete this goal.~|"))
          (io? proof-checker nil state
               (hyps-type-alist w)
               (pprogn
                (fms0 "~|Current type-alist, including forward chaining:~%")
                (prog2$ (print-type-alist hyps-type-alist w)
                        state))))))))))

(define-pc-help print-main ()
  (print-pc-goal (car (access pc-state (car (last state-stack)) :goals))))

(define-pc-macro pso ()
  (value '(lisp (pso))))

(define-pc-macro psog ()
  (value '(lisp (psog))))

(define-pc-macro pso! ()
  (value '(lisp (pso!))))

(define-pc-macro acl2-wrap (x)
  (value `(lisp ,x)))

(defmacro acl2-wrap (x)

; This is provided for compatibility with an interface of the same name,
; provided for evaluating forms in raw Lisp.

  x)

(define-pc-macro check-proved-goal (goal-name cmd)
  (if (member-equal goal-name (goal-names (goals)))
      (er soft 'check-proved
          "The command ~x0 failed to prove the goal ~x1."
          cmd
          goal-name)
    (value 'succeed)))

(define-pc-macro check-proved (x)
  (when-goals-trip
   (let ((goal-name (goal-name)))
     (value
      `(do-all
        ,x
        (quiet (check-proved-goal ,goal-name ,x)))))))

(define-pc-atomic-macro forwardchain (hypn &optional hints quiet-flg)
  (when-goals-trip
   (let* ((hyps (hyps))
          (len (length hyps)))
     (cond
      ((null hyps)
       (mv-let
         (erp val state)
         (er soft 'forwardchain
             "The are no top-level hypotheses.  Hence it makes no sense to ~
              forward chain here.")
         (declare (ignore erp val))
         (value 'fail)))
      ((and (integerp hypn)
            (< 0 hypn)
            (<= hypn len))
       (let ((hyp (nth (1- hypn) hyps)))
         (case-match hyp
           (('implies ant consequent)
            (let ((instr
                   `(protect
                     (claim ,consequent 0 :do-not-flatten t)
                     (drop ,hypn)
                     ;; Now prove the consequent, leaving the original goal
                     ;; unproved (as the new hypothesis is not necessarily
                     ;; expected to match the conclusion).
                     change-goal
                     (demote ,hypn)
                     (claim ,ant
                            ,@(if hints
                                  '(:hints hints)
                                nil))
                     (demote ,len)
                     (check-proved
                      (s :backchain-limit 0
                         :in-theory (theory 'minimal-theory))))))
              (if quiet-flg
                  (value (list 'quiet instr))
                (value instr))))
           (& (mv-let
                (erp val state)
                (er soft 'forwardchain
                    "The ~n0 hypothesis~|  ~x1~|is not of the form (implies x ~
                     y)."
                    (list hypn)
                    (untrans0 (nth (1- hypn) hyps) t (abbreviations)))
                (declare (ignore erp val))
                (value 'fail))))))
      (t (mv-let
           (erp val state)
           (er soft 'forwardchain
               "The index ~x0 is not a valid index into the hypothesis list.  ~
                The valid indices are the integers from 1 to ~x1."
               hypn len)
           (declare (ignore erp val))
           (value 'fail)))))))

(define-pc-atomic-macro bdd (&rest kw-listp)
  (let ((bdd-hint (if (assoc-keyword :vars kw-listp)
                      kw-listp
                    (list* :vars nil kw-listp))))
    (value `(:prove :hints
                    (("Goal" :bdd ,bdd-hint))))))

(define-pc-macro runes (&optional flg)
  (value `(print (merge-sort-runes
                  (all-runes-in-ttree (,(if flg 'tag-tree 'local-tag-tree))
                                      nil)))))

(define-pc-macro lemmas-used (&optional flg)
  (value `(runes ,flg)))

(defun goal-terms (goals)

; Initially terms is empty, and we return the list of terms represented by
; goals.

  (if (endp goals)
      nil
    (cons (make-implication (access goal (car goals) :hyps)
                            (access goal (car goals) :conc))
          (goal-terms (cdr goals)))))

(defun wrap1-aux1 (kept-goal-names all-goals kept-goals removed-goals)

; Initially, accumulators removed-goals and kept-goals are empty.  We partition
; all-goals into those goals whose names are in kept-goal-names and the rest,
; returning (mv kept-goals1 removed-goals1) where removed-goals1 and
; kept-goals1 extend removed-goals and kept-goals, respectively.  The goals in
; all-goals are returned in the same order as they appear in all-goals.

  (cond
   ((endp all-goals)
    (mv (reverse kept-goals) (reverse removed-goals)))
   ((member-equal (access goal (car all-goals) :goal-name)
                  kept-goal-names)
    (wrap1-aux1 kept-goal-names (cdr all-goals)
                (cons (car all-goals) kept-goals)
                removed-goals))
   (t
    (wrap1-aux1 kept-goal-names (cdr all-goals)
                kept-goals
                (cons (car all-goals) removed-goals)))))

(defun wrap1-aux2 (sym index goals kept-goals removed-goals)
  (if (endp goals)
      (mv (reverse kept-goals) (reverse removed-goals))
    (let* ((goal (car goals))
           (goal-name (access goal goal :goal-name)))
      (if (and (consp goal-name)
               (eq sym (car goal-name))
               (<= index (cdr goal-name)))
          (wrap1-aux2 sym index (cdr goals)
                      kept-goals
                      (cons (car goals) removed-goals))
        (wrap1-aux2 sym index (cdr goals)
                    (cons (car goals) kept-goals)
                    removed-goals)))))

(define-pc-primitive wrap1 (&optional kept-goal-names)
  (let* ((current-goal (car goals))
         (current-goal-name (access goal current-goal :goal-name)))
    (cond
     ((not (true-listp kept-goal-names))
      (print-no-change2
       "The (optional) argument to wrap1 must be a true list of goal names.  ~
        ~x0 is thus illegal."
       (list (cons #\0 kept-goal-names))))
     ((and (null kept-goal-names)
           (not (and (consp current-goal-name)
                     (symbolp (car current-goal-name))
                     (integerp (cdr current-goal-name)))))
      (print-no-change2
       "The current goal's name, ~x0, is not of the form (SYMBOL . N) for ~
        integer N."
       (list (cons #\0 current-goal-name))))
     (t
      (mv-let (kept-goals removed-goals)
        (if kept-goal-names
            (wrap1-aux1 kept-goal-names (cdr goals) nil nil)
          (wrap1-aux2 (car current-goal-name)
                      (cdr current-goal-name)
                      (cdr goals) nil nil))
        (pprogn
         (io? proof-checker nil state
              (current-goal-name removed-goals)
              (if removed-goals
                  (fms0 "~|Conjoining the following goals into the current ~
                         goal, ~x0:~|  ~X1n~%"
                        (list (cons #\0 current-goal-name)
                              (cons #\1 (goal-names removed-goals))
                              (cons #\n nil)))
                (fms0 "~|NOTE (wrap1): There are no goals to conjoin into the ~
                       current goal, but we proceed anyhow.~%")))
         (mv (change-pc-state
              pc-state
              :goals
              (cons (change goal current-goal
                            :conc (conjoin
                                   (goal-terms
                                    (cons current-goal removed-goals)))
                            :hyps nil
                            :current-addr nil)
                    kept-goals))
             state)))))))

(define-pc-atomic-macro wrap (&rest instrs)
  (cond
   ((null instrs)
    (pprogn (print-no-change
             "Wrap takes at least one argument.")
            (value :fail)))
   (t (let ((goal-names (goal-names (goals t))))
        (value
         `(sequence
           ((do-all ,@instrs)
            (quiet (wrap1 ,goal-names))
            (lisp (io? proof-checker nil state
                       ()
                       (let ((new-current-goal-name
                              (access goal (car (goals)) :goal-name))
                             (state-stack (state-stack)))
                         (when-goals
                          (fms0 (if (member-equal new-current-goal-name
                                                  ',goal-names)
                                    "~|~%NOTE: Created no new goals.  Current ~
                                     goal:~%  ~X0n~|"
                                  "~|~%NOTE: Created ONLY one new goal, which ~
                                   is the current goal:~%  ~X0n~|")
                                (list (cons #\0 new-current-goal-name)
                                      (cons #\n nil))))))))
           t nil nil t))))))

(define-pc-atomic-macro wrap-induct (&optional raw-term)
  (value (if raw-term
             `(wrap (induct ,raw-term))
           `(wrap induct))))

(define-pc-macro finish-error (instrs)
  (er soft 'finish
      "~%The following instruction list created at least one subgoal:~|~x0~|"
      instrs))

(define-pc-macro finish (&rest instrs)
  (value `(then (check-proved (do-strict ,@instrs))
                (finish-error ,instrs)
                t)))

(defun show-geneqv (x with-runes-p)
  (cond ((endp x) nil)
        (t (cons (if with-runes-p
                     (list (access congruence-rule (car x) :equiv)
                           (access congruence-rule (car x) :rune))
                   (access congruence-rule (car x) :equiv))
                 (show-geneqv (cdr x) with-runes-p)))))

(define-pc-macro geneqv (&optional with-runes-p)
  (value `(print (show-geneqv
                  (geneqv-at-subterm-top (conc)
                                         (current-addr)
                                         (pc-ens)
                                         (w state))
                  ',with-runes-p))))

; Support for :instructions as hints

(defun goals-to-clause-list (goals)
  (if (endp goals)
      nil
    (cons (append (dumb-negate-lit-lst (access goal (car goals) :hyps))
                  (list (access goal (car goals) :conc)))
          (goals-to-clause-list (cdr goals)))))

(defun proof-checker-clause-list (state)
  (goals-to-clause-list (goals)))

(defun proof-checker-cl-proc (cl instr-list state)
  (let ((ctx 'proof-checker-cl-proc))
    (cond
     ((null cl)
      (er soft ctx
          "There is no legal way to prove a goal of NIL!"))
     (t
      (let ((term (make-implication (dumb-negate-lit-lst (butlast cl 1))
                                    (car (last cl))))
            (wrld (w state))
            (new-pc-depth (1+ (pc-value pc-depth))))
        (er-let* ((new-inhibit-output-lst
                   (cond
                    ((and (consp instr-list)
                          (true-listp (car instr-list))
                          (eq (make-pretty-pc-command (caar instr-list))
                              :COMMENT)
                          (eq (cadar instr-list) 'inhibit-output-lst))
                     (cond ((eq (caddar instr-list) :same)
                            (value (f-get-global 'inhibit-output-lst state)))
                           (t (chk-inhibit-output-lst (caddar instr-list)
                                                      :instructions
                                                      state))))
                    (t (value (union-eq '(prove proof-tree proof-checker)
                                        (f-get-global 'inhibit-output-lst
                                                      state))))))
                  (outputp (value (not (subsetp-eq
                                        '(prove proof-checker proof-tree)
                                        new-inhibit-output-lst)))))
          (state-global-let*
           ((inhibit-output-lst new-inhibit-output-lst)
            (pc-output (f-get-global 'pc-output state)))
           (mv-let
            (erp clause-list state)
            (pprogn (pc-assign pc-depth new-pc-depth)
                    (cond (outputp
                           (io? prove nil state
                                (new-pc-depth)
                                (fms0 "~|~%[[~x0> Executing ~
                                            proof-checker instructions]]~%~%"
                                      (list (cons #\0 new-pc-depth)))))
                          (t state))
                    (pc-assign next-pc-enabled-array-suffix
                               (1+ (pc-value
                                    next-pc-enabled-array-suffix)))
                    (mv-let
                     (erp pc-val state)
                     (pc-main term
                              (untranslate term t wrld)
                              nil ; event-name
                              nil ; rule-classes
                              instr-list
                              '(signal value) ; quit-conditions
                              t ; pc-print-prompt-and-instr-flg, suitable for :pso
                              nil ; in-verify-flg
                              state)
                     (pprogn
                      (cond (outputp (io? prove nil state
                                          (new-pc-depth)
                                          (fms0 "~|~%[[<~x0 Completed ~
                                                 proof-checker ~
                                                 instructions]]~%"
                                                (list (cons #\0 new-pc-depth)))))
                            (t state))
                      (cond ((or erp (null pc-val))
                             (let ((name (intern
                                          (concatenate
                                           'string
                                           "ERROR"
                                           (coerce (explode-atom new-pc-depth
                                                                 10)
                                                   'string))
                                          "KEYWORD")))
                               (pprogn
                                (io? error nil state
                                     (name)
                                     (fms0 "~%Saving proof-checker error ~
                                            state; see :DOC instructions.  To ~
                                            retrieve:~|~x0"
                                           (list (cons #\0 `(retrieve ,name)))))
                                (save-fn name (ss-alist) state)
                                (er soft ctx
                                    "The above :INSTRUCTIONS hint failed.  ~
                                     For a discussion of ``failed'', follow ~
                                     the link to the SEQUENCE command under ~
                                     :DOC proof-checker-commands."))))
                            (t (value (proof-checker-clause-list
                                       state)))))))
            (cond (erp (silent-error state))
                  (t (value clause-list)))))))))))

#+acl2-loop-only
(define-trusted-clause-processor
  proof-checker-cl-proc
  nil)

#+acl2-loop-only
(add-custom-keyword-hint :instructions
                         (splice-keyword-alist
                          :instructions
                          (list :clause-processor
                                (list :function
                                      'proof-checker-cl-proc
                                      :hint
                                      (kwote val)))
                          keyword-alist))