/usr/share/acl2-7.2dfsg/books/tools/soft-paper-examples.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | ; SOFT Examples from the ACL2-2015 Workshop paper
;
; Copyright (C) 2015 Kestrel Institute (http://www.kestrel.edu)
;
; License (an MIT license):
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Alessandro Coglio (coglio@kestrel.edu)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This file contains the SOFT ('Second-Order Functions and Theorems') examples
; in the ACL2-2015 Workshop paper "Second-Order Functions and Theorems in ACL2".
; Comments indicate the sections and subsections of the paper.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "ACL2")
(include-book "soft")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 1 Second-Order Functions and Theorems
; 1.1 Function Variables
(defunvar ?f (*) => *)
(defunvar ?p (*) => *)
(defunvar ?g (* *) => *)
; 1.2 Second-Order Functions
; 1.2.1 Plain Functions
; Matt K.: Avoid ACL2(p) error in quad[?f] below pertaining to override hints.
(local (set-waterfall-parallelism nil))
(defun2 quad[?f] (?f) (x)
(?f (?f (?f (?f x)))))
(defun2 all[?p] (?p) (l)
(cond ((atom l) (null l))
(t (and (?p (car l))
(all[?p] (cdr l))))))
(defun2 map[?f_?p] (?f ?p) (l)
(declare (xargs :guard (all[?p] l)))
(cond ((endp l) nil)
(t (cons (?f (car l))
(map[?f_?p] (cdr l))))))
(defun2 fold[?f_?g] (?f ?g) (bt)
(cond ((atom bt) (?f bt))
(t (?g (fold[?f_?g] (car bt))
(fold[?f_?g] (cdr bt))))))
; 1.2.2 Choice Functions
(defchoose2 fixpoint[?f] x (?f) ()
(equal (?f x) x))
; 1.2.3 Quantifier Functions
(defun-sk2 injective[?f] (?f) ()
(forall (x y)
(implies (equal (?f x) (?f y))
(equal x y))))
; 1.3 Instances of Second-Order Functions
(defun wrap (x)
(list x))
(verify-guards wrap) ; omitted from the paper, for brevity
(defun-inst quad[wrap]
(quad[?f] (?f . wrap)))
(defun octetp (x)
(and (natp x) (< x 256)))
(verify-guards octetp) ; omitted from the paper, for brevity
(defun-inst all[octetp]
(all[?p] (?p . octetp)))
(defun-inst map[code-char]
(map[?f_?p] (?f . code-char) (?p . octetp)))
(defun-inst fold[nfix_plus]
(fold[?f_?g] (?f . nfix) (?g . binary-+)))
(defun twice (x)
(* 2 (fix x)))
(verify-guards twice) ; omitted from the paper, for brevity
(defun-inst fixpoint[twice]
(fixpoint[?f] (?f . twice)))
(defun-inst injective[quad[?f]] (?f)
(injective[?f] (?f . quad[?f])))
; 1.4 Second-Order Theorems
(defthm len-of-map[?f_?p]
(equal (len (map[?f_?p] l))
(len l)))
(defthm injective[quad[?f]]-when-injective[?f]
(implies (injective[?f])
(injective[quad[?f]]))
:hints
(("Goal" :use
((:instance
injective[?f]-necc
(x (?f (?f (?f (?f (mv-nth 0 (injective[quad[?f]]-witness)))))))
(y (?f (?f (?f (?f (mv-nth 1 (injective[quad[?f]]-witness))))))))
(:instance
injective[?f]-necc
(x (?f (?f (?f (mv-nth 0 (injective[quad[?f]]-witness))))))
(y (?f (?f (?f (mv-nth 1 (injective[quad[?f]]-witness)))))))
(:instance
injective[?f]-necc
(x (?f (?f (mv-nth 0 (injective[quad[?f]]-witness)))))
(y (?f (?f (mv-nth 1 (injective[quad[?f]]-witness))))))
(:instance
injective[?f]-necc
(x (?f (mv-nth 0 (injective[quad[?f]]-witness))))
(y (?f (mv-nth 1 (injective[quad[?f]]-witness)))))
(:instance
injective[?f]-necc
(x (mv-nth 0 (injective[quad[?f]]-witness)))
(y (mv-nth 1 (injective[quad[?f]]-witness))))))))
(defunvar ?io (* *) => *)
(defun-sk2 atom-io[?f_?io] (?f ?io) ()
(forall x (implies (atom x)
(?io x (?f x))))
:rewrite :direct)
(defun-sk2 consp-io[?g_?io] (?g ?io) ()
(forall (x y1 y2)
(implies (and (consp x)
(?io (car x) y1)
(?io (cdr x) y2))
(?io x (?g y1 y2))))
:rewrite :direct)
(defthm fold-io[?f_?g_?io]
(implies (and (atom-io[?f_?io])
(consp-io[?g_?io]))
(?io x (fold[?f_?g] x))))
; 1.5 Instances of Second-Order Theorems
(defthm-inst len-of-map[code-char]
(len-of-map[?f_?p] (?f . code-char) (?p . octetp)))
(defun-inst injective[quad[wrap]]
(injective[quad[?f]] (?f . wrap)))
(defun-inst injective[wrap]
(injective[?f] (?f . wrap)))
(defthm-inst injective[quad[wrap]]-when-injective[wrap]
(injective[quad[?f]]-when-injective[?f] (?f . wrap)))
; 2 Use in Program Refinement
; to keep the program refinement example shorter:
(set-verify-guards-eagerness 0) ; omitted from the paper, for brevity
; 2.1 Specifications as Second-Order Predicates
(defun leaf (e bt)
(cond ((atom bt) (equal e bt))
(t (or (leaf e (car bt))
(leaf e (cdr bt))))))
(defunvar ?h (*) => *)
(defun-sk io (x y)
(forall e (iff (member e y)
(and (leaf e x)
(natp e))))
:rewrite :direct)
(defun-sk2 spec[?h] (?h) ()
(forall x (io x (?h x)))
:rewrite :direct)
(defthm natp-of-member-of-output
(implies (and (spec[?h])
(member e (?h x)))
(natp e))
:hints (("Goal" :use (spec[?h]-necc
(:instance io-necc (y (?h x)))))))
; 2.2 Refinement as Second-Order Predicate Strengthening
; Step 1
(defun-sk2 def-?h-fold[?f_?g] (?h ?f ?g) ()
(forall x (equal (?h x)
(fold[?f_?g] x)))
:rewrite :direct)
(defun2 spec1[?h_?f_?g] (?h ?f ?g) ()
(and (def-?h-fold[?f_?g])
(spec[?h])))
(defthm step1
(implies (spec1[?h_?f_?g])
(spec[?h]))
:hints (("Goal" :in-theory '(spec1[?h_?f_?g]))))
; Step 2
(defun-inst atom-io[?f] (?f)
(atom-io[?f_?io] (?io . io)))
(defun-inst consp-io[?g] (?g)
(consp-io[?g_?io] (?io . io)))
(defthm-inst fold-io[?f_?g]
(fold-io[?f_?g_?io] (?io . io)))
(defun2 spec2[?h_?f_?g] (?h ?f ?g) ()
(and (def-?h-fold[?f_?g])
(atom-io[?f])
(consp-io[?g])))
(defthm step2
(implies (spec2[?h_?f_?g])
(spec1[?h_?f_?g]))
:hints (("Goal" :in-theory '(spec1[?h_?f_?g]
spec2[?h_?f_?g]
spec[?h]
def-?h-fold[?f_?g]-necc
fold-io[?f_?g]))))
; Step 3
(defun f (x)
(if (natp x)
(list x)
nil))
(defun-inst atom-io[f]
(atom-io[?f] (?f . f)))
(defthm atom-io[f]!
(atom-io[f]))
(defun-sk2 def-?f (?f) ()
(forall x (equal (?f x) (f x)))
:rewrite :direct)
(defun2 spec3[?h_?f_?g] (?h ?f ?g) ()
(and (def-?h-fold[?f_?g])
(def-?f)
(consp-io[?g])))
(defthm step3-lemma
(implies (def-?f)
(atom-io[?f]))
:hints (("Goal" :in-theory '(atom-io[?f]
atom-io[f]-necc
atom-io[f]!
def-?f-necc))))
(defthm step3
(implies (spec3[?h_?f_?g])
(spec2[?h_?f_?g]))
:hints (("Goal" :in-theory '(spec2[?h_?f_?g]
spec3[?h_?f_?g]
step3-lemma))))
; Step 4
(defun g (y1 y2)
(append y1 y2))
(defun-inst consp-io[g]
(consp-io[?g] (?g . g)))
(defthm member-of-append
(iff (member e (append y1 y2))
(or (member e y1)
(member e y2))))
(defthm consp-io[g]-lemma
(implies (and (consp x)
(io (car x) y1)
(io (cdr x) y2))
(io x (g y1 y2)))
:hints (("Goal"
:in-theory (disable io)
:expand (io x (append y1 y2)))))
(defthm consp-io[g]!
(consp-io[g])
:hints (("Goal" :in-theory (disable g))))
(defun-sk2 def-?g (?g) ()
(forall (y1 y2)
(equal (?g y1 y2) (g y1 y2)))
:rewrite :direct)
(defun2 spec4[?h_?f_?g] (?h ?f ?g) ()
(and (def-?h-fold[?f_?g])
(def-?f)
(def-?g)))
(defthm step4-lemma
(implies (def-?g)
(consp-io[?g]))
:hints (("Goal" :in-theory '(consp-io[?g]
consp-io[g]-necc
consp-io[g]!
def-?g-necc))))
(defthm step4
(implies (spec4[?h_?f_?g])
(spec3[?h_?f_?g]))
:hints (("Goal" :in-theory '(spec3[?h_?f_?g]
spec4[?h_?f_?g]
step4-lemma))))
; Step 5
(defun-inst h
(fold[?f_?g] (?f . f) (?g . g)))
(defun-sk2 def-?h (?h) ()
(forall x (equal (?h x) (h x)))
:rewrite :direct)
(defun2 spec5[?h_?f_?g] (?h ?f ?g) ()
(and (def-?h)
(def-?f)
(def-?g)))
(defthm step5-lemma
(implies (and (def-?f)
(def-?g))
(equal (h x) (fold[?f_?g] x)))
:hints (("Goal" :in-theory '(h fold[?f_?g] def-?f-necc def-?g-necc))))
(defthm step5
(implies (spec5[?h_?f_?g])
(spec4[?h_?f_?g]))
:hints (("Goal" :in-theory '(spec4[?h_?f_?g]
spec5[?h_?f_?g]
def-?h-fold[?f_?g]
def-?h-necc
step5-lemma))))
(defthm chain[?h_?f_?g]
(implies (spec5[?h_?f_?g])
(spec[?h]))
:hints (("Goal" :in-theory '(step1 step2 step3 step4 step5))))
(defun-inst def-h
(def-?h (?h . h))
:rewrite :default)
(defun-inst def-f
(def-?f (?f . f))
:rewrite :default)
(defun-inst def-g
(def-?g (?g . g))
:rewrite :default)
(defun-inst spec5[h_f_g]
(spec5[?h_?f_?g] (?h . h) (?f . f) (?g . g)))
(defun-inst spec[h]
(spec[?h] (?h . h)))
(defthm-inst chain[h_f_g]
(chain[?h_?f_?g] (?h . h) (?f . f) (?g . g)))
(defthm spec5[h_f_g]!
(spec5[h_f_g])
:hints (("Goal" :in-theory '(spec5[h_f_g]))))
(defthm spec[h]!
(spec[h])
:hints (("Goal" :in-theory '(chain[h_f_g] spec5[h_f_g]!))))
|