/usr/share/acl2-7.2dfsg/books/tools/flag.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 | ; Make-flag -- Introduce induction scheme for mutually recursive functions.
; Copyright (C) 2008-2010 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original authors: Sol Swords and Jared Davis
; {sswords,jared}@centtech.com
#|| for interactive development, you'll need to ld the package first:
(ld ;; fool dependency scanner
"flag.acl2")
||#
(in-package "FLAG")
(include-book "xdoc/top" :dir :system)
(include-book "std/util/bstar" :dir :system)
(include-book "std/util/support" :dir :system)
(defxdoc make-flag
:parents (mutual-recursion)
:short "Create a flag-based @(see acl2::induction) scheme for a @(see
mutual-recursion)."
:long "<p>The @('make-flag') macro lets you quickly introduce:</p>
<ul>
<li>a \"flag function\" that mimics a @(see mutual-recursion), and</li>
<li>a macro for proving properties by induction according to the flag
function.</li>
</ul>
<p>Generally speaking, writing a corresponding flag function is the first step
toward proving any inductive property about mutually recursive definitions;
more discussion below.</p>
<h3>Using @('make-flag')</h3>
<p>Example:</p>
@({
(make-flag flag-pseudo-termp ; flag function name (optional)
pseudo-termp ; any member of the clique
;; optional arguments:
:flag-mapping ((pseudo-termp . term)
(pseudo-term-listp . list))
:defthm-macro-name defthm-pseudo-termp
:flag-var flag
:hints ((\"Goal\" ...)) ; for the measure theorem
; usually not necessary
)
})
<p>Here @('pseudo-termp') is the name of a function in a mutually recursive
clique. In this case, the clique has two functions, @('pseudo-termp') and
@('pseudo-term-listp'). The name of the newly generated flag function can be
provided explicitly, or else will be formed by sticking @('flag-') on the front
of the clique member's name.</p>
<p>The other arguments are optional:</p>
<ul>
<li>@(':flag-mapping') specifies short names to identify with each of the
functions of the clique. By default we just use the function names themselves,
but it's usually nice to pick shorter names since you'll have to mention them
in the theorems you prove.</li>
<li>@(':defthm-macro-name') lets you name the new macro that will be generated
for proving theorems by inducting with the flag function. By default it is
named @('defthm-[flag-function-name]'), i.e., for the above example, it would
be called @('defthm-flag-psuedo-termp').</li>
<li>@(':flag-var') specifies the name of the variable to use for the flag. By
default it is just called @('flag'), and we rarely change it. To be more
precise, it is @('pkg::flag') where @('pkg') is the package of the new flag
function's name; usually this means you don't have to think about the
package.</li>
<li>@(':ruler-extenders') lets you give a value for the @(see
acl2::ruler-extenders) of the new flag function.</li>
</ul>
<h3>Proving Theorems with @('make-flag')</h3>
<p>To prove an inductive theorem about a mutually-recursive function, you
usually have to effectively prove a single, big, ugly formula that has a
different case about each function in the clique.</p>
<p>Normally, even with the flag function written for you, this would be a
tedious process. Here is an example of how you might prove by induction that
@('pseudo-termp') and @('pseudo-term-listp') return Booleans:</p>
@({
;; ACL2 can prove these are Booleans even without induction due to
;; type reasoning, so for illustration we'll turn these off so that
;; induction is required:
(in-theory (disable (:type-prescription pseudo-termp)
(:type-prescription pseudo-term-listp)
(:executable-counterpart tau-system)))
;; Main part of the proof, ugly lemma with cases. Note that we
;; have to use :rule-classes nil here because this isn't a valid
;; rewrite rule.
(local (defthm crux
(cond ((equal flag 'term)
(booleanp (pseudo-termp x)))
((equal flag 'list)
(booleanp (pseudo-term-listp lst)))
(t
t))
:rule-classes nil
:hints((\"Goal\" :induct (flag-pseudo-termp flag x lst)))))
;; Now we have to re-prove each part of the lemma so that we can use
;; it as a proper rule.
(defthm type-of-pseudo-termp
(booleanp (pseudo-termp x))
:rule-classes :type-prescription
:hints((\"Goal\" :use ((:instance crux (flag 'term))))))
(defthm type-of-pseudo-term-listp
(booleanp (pseudo-term-listp lst))
:rule-classes :type-prescription
:hints((\"Goal\" :use ((:instance crux (flag 'list))))))
})
<p>Obviously this is tedious and makes you say everything twice. Since the
steps are so standard, @('make-flag') automatically gives you a macro to
automate the process. Here's the same proof, done with the new macro:</p>
@({
(defthm-pseudo-termp
(defthm type-of-pseudo-termp
(booleanp (pseudo-termp x))
:rule-classes :type-prescription
:flag term)
(defthm type-of-pseudo-term-listp
(booleanp (pseudo-term-listp lst))
:rule-classes :type-prescription
:flag list))
})
<p>It's worth understanding some of the details of what's going on here.</p>
<p>The macro automatically tries to induct using the induction scheme. But
<color rgb=\"#ff0000\">this only works if you're using the formals of the
flag function as the variable names in the theorems.</color> In the case of
@('pseudo-termp'), this is pretty subtle: ACL2's definition uses different
variables for the term/list cases, i.e.,</p>
@({
(mutual-recursion
(defun pseudo-termp (x) ...)
(defun pseudo-term-listp (lst) ...))
})
<p>So the theorem above only works without hints because we happened to choose
@('x') and @('lst') as our variables. If, instead, we wanted to use different
variable names in our theorems, we'd have to give an explicit induction hint.
For example:</p>
@({
(defthm-pseudo-termp
(defthm type-of-pseudo-termp
(booleanp (pseudo-termp term))
:rule-classes :type-prescription
:flag term)
(defthm type-of-pseudo-term-listp
(booleanp (pseudo-term-listp termlist))
:rule-classes :type-prescription
:flag list)
:hints((\"Goal\" :induct (flag-pseudo-termp flag term termlist))))
})
<h3>Bells and Whistles</h3>
<p><color rgb='#ff0000'>New!</color> <b>Proof Templates</b>. You can submit,
e.g., @('(defthm-pseudo-termp)'), with no arguments, to print a ``template''
that is similar to the above form. This can be a convenient starting place for
writing down a new theorem.</p>
<p><b>Localizing Theorems</b>. Sometimes you may only want to export one of
the theorems. For instance, if we only want to add a rule about the term case,
but no the list case, we could do this:</p>
@({
(defthm-pseudo-termp
(defthm type-of-pseudo-termp
(booleanp (pseudo-termp x))
:rule-classes :type-prescription
:flag term)
(defthm type-of-pseudo-term-listp
(booleanp (pseudo-term-listp lst))
:flag list
:skip t))
})
<p><b>Irrelevant Cases</b>. Sometimes the theorem you want is inductive in such
a way that some functions are irrelevant; nothing needs to be proved about them
in order to prove the desired theorem about the others. The :skip keyword can
be used with a theorem of T to do this:</p>
@({
(defthm-pseudo-termp
(defthm type-of-pseudo-termp
(booleanp (pseudo-termp x))
:rule-classes :type-prescription
:flag term)
(defthm type-of-pseudo-term-listp
t
:flag list
:skip t))
})
<p>Alternatively, you can provide the :skip-others keyword to the top-level
macro and simply leave out the trivial parts:</p>
@({
(defthm-pseudo-termp
(defthm type-of-pseudo-termp
(booleanp (pseudo-termp x))
:rule-classes :type-prescription
:flag term)
:skip-others t)
})
<p><b>Multiple Theorems</b>. You may have more than one defthm form for a given
flag. For the main inductive proof, these are all simply conjoined
together (and their hints are simply appended together), but they are exported
as separate theorems and may have different @(':rule-classes').</p>
<p><b>Legacy Syntax</b>. There is an older, alternate syntax for @('make-flag')
that is still available. To encourage transitioning to the new syntax, the old
syntax is not documented and should not be used. Support for the old syntax
will eventually be removed. If you are maintaining legacy code that still uses
the old syntax, see the comments in @('flag.lisp') for some details.</p>
<h3>Advanced Hints</h3>
<p>For advanced users, note that each individual \"theorem\" can have its own
computed hints. For instance we can write:</p>
@({
(defthm-pseudo-termp
(defthm type-of-pseudo-termp
(booleanp (pseudo-termp term))
:rule-classes :type-prescription
:flag term
:hints ('(:expand ((pseudo-termp x)))))
(defthm type-of-pseudo-term-listp
(booleanp (pseudo-term-listp termlist))
:rule-classes :type-prescription
:flag list
:hints ('(:expand ((pseudo-term-listp lst)))))
:hints((\"Goal\" :induct (flag-pseudo-termp flag term termlist))))
})
<p>These hints are used <b>during the mutually inductive proof</b>. Under the
top-level induction, we check the clause for the current subgoal to determine
the hypothesized setting of the flag variable, and provide the computed hints
for the appropriate case.</p>
<p>If you provide both a top-level hints form and hints on some or all of the
separate theorems, both sets of hints have an effect; try @(':trans1') on such
a defthm-flag-fn form to see what you get.</p>
<p>You may use subgoal hints as well as computed hints, but they will not have
any effect if the particular subgoal does not occur when those hints are in
effect. We simply translate subgoal hints to computed hints:</p>
@({
(\"Subgoal *1/5.2\" :in-theory (theory 'foo))
--->
(and (equal id (parse-clause-id \"Subgoal *1/5.2\"))
'(:in-theory (theory 'foo)))
})
<p>As mentioned above, if there is more than one defthm form for a given flag,
the hints for all such forms are simply appended together; the hints given to
one such form may affect what you might think of as the proof of another.</p>
")
;; see flag-tests.lisp for examples
(defthmd expand-all-hides
(equal (hide x) x)
:hints (("goal" :expand ((hide x)))))
(defun acl2::flag-is (x)
(declare (ignore x))
t)
(in-theory (disable acl2::flag-is (acl2::flag-is) (:type-prescription acl2::flag-is)))
(defevaluator flag-is-cp-ev flag-is-cp-ev-lst ((if a b c) (acl2::flag-is x) (not x)))
(defun flag-is-cp (clause name)
(declare (xargs :guard t))
(list (cons `(not (acl2::flag-is ',name))
clause)))
(defthm flag-is-cp-correct
(implies (and (pseudo-term-listp clause)
(alistp al)
(flag-is-cp-ev (acl2::conjoin-clauses
(flag-is-cp clause name))
al))
(flag-is-cp-ev (acl2::disjoin clause) al))
:hints (("goal" :expand ((:free (a b) (acl2::disjoin (cons a b))))
:in-theory (enable acl2::disjoin2 acl2::flag-is)
:do-not-induct t))
:rule-classes :clause-processor)
(program)
(defmacro id (form) form)
(defun get-clique-members (fn world)
(or (getprop fn 'recursivep nil 'current-acl2-world world)
(er hard 'get-clique-members
"Expected ~s0 to be in a mutually-recursive nest.~%" fn)))
(defun get-formals (fn world)
(getprop fn 'formals :none 'current-acl2-world world))
(defun get-body (fn latest-def world)
;; If latest-def is nil (the default for make-flag), this gets the original,
;; normalized or non-normalized body based on what the user typed for the
;; :normalize xarg. The use of "last" skips past any other :definition rules
;; that have been added since then.
;; !! If latest-def is t, we should perhaps cause an error if the :hyps field
;; is non-nil.
(let* ((bodies (getprop fn 'def-bodies nil 'current-acl2-world world))
(body (if latest-def
(car bodies)
(car (last bodies)))))
(if (access def-body body :hyp)
(er hard 'get-body
"Attempt to call get-body on a body with a non-nil hypothesis, ~x0"
(access def-body body :hyp))
(access def-body body :concl))))
(defun get-measure (fn world)
(access justification
(getprop fn 'justification nil 'current-acl2-world world)
:measure))
(defun get-wfr (fn world)
(access justification
(getprop fn 'justification nil 'current-acl2-world world)
:rel))
(defun make-flag-measure-aux (alist ; binds function name -> flag symbol
world)
(cond ((and (consp alist)
(consp (cdr alist)))
(cons `(,(cdar alist) ,(get-measure (caar alist) world))
(make-flag-measure-aux (cdr alist) world)))
((consp alist)
(list `(otherwise ,(get-measure (caar alist) world))))
(t
(er hard 'make-flag-measure-aux "Never get here."))))
(defun make-flag-measure (flag-var ; e.g., 'flag
alist ; binds function name -> flag symbol
world)
(declare (xargs :guard (symbolp flag-var)
:mode :program))
`(case ,flag-var
. ,(make-flag-measure-aux alist world)))
(defun merge-formals (alist ; flag symbol -> corresponding function
world)
;; To create the formals for the flag function, union together the formals
;; for all of the sub-functions (and then, separately, add the flag
;; variable itself.)
(if (consp alist)
(union-eq (get-formals (caar alist) world)
(merge-formals (cdr alist) world))
nil))
(defun merge-actuals (alist formals)
;; This is used when rewriting original function bodies so that calls of
;; clique members instead become calls of the flag function.
;;
;; The alist here has in it (orig-formal . actual) pairs. We walk through
;; the formals and replace any orig-formal with its actual; replace any
;; unbound new formals with nil.
(if (consp formals)
(cons (cdr (assoc-eq (car formals) alist))
(merge-actuals alist (cdr formals)))
nil))
(mutual-recursion
(defun mangle-body (body fn-name alist formals world)
(cond ((atom body)
body)
((eq (car body) 'quote)
body)
((symbolp (car body))
(let ((lookup (assoc-eq (car body) alist))
(new-args (mangle-body-list (cdr body) fn-name alist formals world)))
(if lookup
(let* ((orig-formals (get-formals (car lookup) world))
(new-actuals (merge-actuals (pairlis$ orig-formals new-args) formals)))
`(,fn-name ',(cdr lookup) . ,new-actuals))
(cons (car body) new-args))))
(t
(let ((lformals (cadar body))
(lbody (caddar body))
(largs (cdr body)))
(cons (list 'lambda
lformals
(mangle-body lbody fn-name alist formals world))
(mangle-body-list largs fn-name alist formals world))))))
(defun mangle-body-list (list fn-name alist formals world)
(if (consp list)
(cons (mangle-body (car list) fn-name alist formals world)
(mangle-body-list (cdr list) fn-name alist formals world))
nil)))
(defun make-flag-body-aux (flag-var fn-name formals alist full-alist world)
(if (consp alist)
(let* ((orig-body (get-body (caar alist) nil world))
(new-body (mangle-body orig-body fn-name full-alist formals world)))
(cond ((consp (cdr alist))
(cons `((equal ,flag-var ',(cdar alist)) ,new-body)
(make-flag-body-aux flag-var fn-name formals (cdr alist) full-alist world)))
(t
(list `(t ,new-body)))))
(er hard 'make-flag-body-aux "Never get here.")))
(defun make-flag-body (fn-name flag-var alist hints ruler-extenders world)
(let ((formals (merge-formals alist world)))
`(defun-nx ,fn-name (,flag-var . ,formals)
(declare (xargs :verify-guards nil
:normalize nil
:measure ,(make-flag-measure flag-var alist world)
:hints ,hints
,@(and ruler-extenders
`(:ruler-extenders ,ruler-extenders))
:well-founded-relation ,(get-wfr (caar alist) world)
:mode :logic)
(ignorable . ,formals))
(cond
.
,(make-flag-body-aux flag-var fn-name formals alist alist world)))))
(defun extract-keyword-from-args (kwd args)
(if (consp args)
(if (eq (car args) kwd)
(if (consp (cdr args))
(cadr args)
(er hard "Expected something to follow ~s0.~%" kwd))
(extract-keyword-from-args kwd (cdr args)))
nil))
(defun throw-away-keyword-parts (args)
(if (consp args)
(if (keywordp (car args))
nil
(cons (car args)
(throw-away-keyword-parts (cdr args))))
nil))
(defun translate-subgoal-to-computed-hints (hints)
(declare (xargs :mode :program))
(if (atom hints)
nil
(cons (if (and (consp (car hints))
(stringp (caar hints)))
(let ((id (acl2::parse-clause-id (caar hints))))
`(and (equal id ',id)
',(cdar hints)))
(car hints))
(translate-subgoal-to-computed-hints (cdr hints)))))
(defun find-flag-hyps (flagname clause)
(declare (xargs :mode :program))
(if (atom clause)
(mv nil nil)
(let ((lit (car clause)))
(flet ((eql-hyp-case
(a b flagname clause)
(cond ((and (equal a flagname) (quotep b))
(mv b nil))
((and (equal b flagname) (quotep a))
(mv a nil))
(t (find-flag-hyps flagname (cdr clause)))))
(uneql-hyp-case
(a b flagname clause)
(mv-let (equiv rest)
(find-flag-hyps flagname (cdr clause))
(if equiv
(mv equiv nil)
(cond ((and (equal a flagname) (quotep b))
(mv nil (cons b rest)))
((and (equal b flagname) (quotep a))
(mv nil (cons a rest)))
(t (mv nil rest)))))))
(case-match lit
(('not ('equal a b))
(eql-hyp-case a b flagname clause))
(('not ('eql a b))
(eql-hyp-case a b flagname clause))
(('equal a b)
(uneql-hyp-case a b flagname clause))
(('eql a b)
(uneql-hyp-case a b flagname clause))
(& (find-flag-hyps flagname (cdr clause))))))))
(defun flag-hint-cases-fn (flagname cases clause)
(declare (xargs :mode :program))
(mv-let (equiv inequivs)
(find-flag-hyps flagname clause)
(let ((flagval (or equiv
(let* ((possibilities (strip-cars cases))
(not-ruled-out
(set-difference-eq possibilities
(acl2::strip-cadrs inequivs))))
(and (eql (len not-ruled-out) 1)
(list 'quote (car not-ruled-out))))))
(first (extract-keyword-from-args :first cases))
(cases (throw-away-keyword-parts cases)))
(and flagval
(let ((hints (cdr (assoc (cadr flagval) cases))))
`(:computed-hint-replacement
(,@first . ,(translate-subgoal-to-computed-hints hints))
:clause-processor (flag-is-cp clause ,flagval)))))))
(defmacro flag-hint-cases (flagname &rest cases)
`(flag-hint-cases-fn ',flagname ',cases clause))
; Definition: thmpart.
;
; Each thmpart is an thing like _either_
;
; For backwards compatibility with a very old version of make-flag. Please
; don't use this in new developments. Maybe some day we can get rid of this.
;
; (flag <thm-body> :name ... :rule-classes ... :doc ...)
;
; -or-
;
; (defthm[d] <thmname> <thm-body> :flag ... :rule-classes ...)
(defun flag-from-thmpart (thmpart)
(if (member (car thmpart) '(defthm defthmd))
(extract-keyword-from-args :flag thmpart)
(car thmpart)))
(defun body-from-thmpart (thmpart)
(cond ((not thmpart) t)
((member (car thmpart) '(defthm defthmd))
;; (defthm[d] name body ...)
(caddr thmpart))
(t ;; (flag body ...)
(cadr thmpart))))
(defun collect-thmparts-for-flag (flag thmparts)
(cond ((atom thmparts)
nil)
((eq (flag-from-thmpart (car thmparts)) flag)
(cons (car thmparts)
(collect-thmparts-for-flag flag (cdr thmparts))))
(t
(collect-thmparts-for-flag flag (cdr thmparts)))))
(defun thmparts-collect-bodies (thmparts)
(if (atom thmparts)
nil
(cons (body-from-thmpart (car thmparts))
(thmparts-collect-bodies (cdr thmparts)))))
(defun thmparts-collect-hints (thmparts)
(if (atom thmparts)
nil
(append (extract-keyword-from-args :hints (car thmparts))
(thmparts-collect-hints (cdr thmparts)))))
(defun pair-up-cases-with-thmparts (flag-var alist thmparts skip-ok)
(b* (((when (atom alist))
(er hard 'pair-up-cases-with-thmparts
"Never get here."))
(flag (cdar alist))
(flag-thmparts (collect-thmparts-for-flag flag thmparts))
((when (and (not flag-thmparts)
(not skip-ok)))
(er hard 'pair-up-cases-with-thmparts
"Expected there to be a case for the flag ~s0.~%" flag))
(bodies (thmparts-collect-bodies flag-thmparts))
(body (if (eql (len bodies) 1)
(car bodies)
`(and . ,bodies)))
((when (consp (cdr alist)))
(cons `((equal ,flag-var ',flag) ,body)
(pair-up-cases-with-thmparts flag-var (cdr alist) thmparts skip-ok))))
(list `(t ,body))))
(defun pair-up-cases-with-hints (alist thmparts skip-ok)
(b* (((when (atom alist))
nil)
(flag (cdar alist))
(flag-thmparts (collect-thmparts-for-flag flag thmparts))
((unless flag-thmparts)
(if skip-ok
(cons (cons flag nil)
(pair-up-cases-with-hints (cdr alist) thmparts skip-ok))
(er hard 'pair-up-cases-with-hints
"Expected there to be a case for the flag ~s0.~%" flag)))
(hints (thmparts-collect-hints flag-thmparts)))
(cons (cons flag hints)
(pair-up-cases-with-hints (cdr alist) thmparts skip-ok))))
(defun flag-thm-entry-thmname (explicit-name flag entry)
(if (member (car entry) '(defthm defthmd))
(cadr entry)
(or (extract-keyword-from-args :name (cddr entry))
(if explicit-name
(intern-in-package-of-symbol
(concatenate 'string
(symbol-name explicit-name)
"-"
(symbol-name flag))
explicit-name)
(er hard 'flag-thm-entry-thmname
"Expected an explicit name for each theorem, since no general ~
name was given. The following theorem does not have a name: ~
~x0~%" entry)))))
(defun flag-defthm-corollaries (lemma-name explicit-name flag-var thmparts)
(b* (((when (atom thmparts))
nil)
((when (extract-keyword-from-args :skip (car thmparts)))
(flag-defthm-corollaries lemma-name explicit-name flag-var (cdr thmparts)))
(thmpart (car thmparts))
(flag (flag-from-thmpart thmpart))
;; note: this can sometimes cause name conflicts when names are
;; generated from the flags
(defthm[d] (if (eq (car thmpart) 'defthmd)
'defthmd
'defthm))
(thmname (flag-thm-entry-thmname explicit-name flag thmpart))
(body (body-from-thmpart thmpart))
(rule-classes-look (member :rule-classes thmpart))
; Commented out by Matt K. for post-v-7.1 removal of :doc for defthm:
;;(doc (extract-keyword-from-args :doc thmpart))
)
(cons `(with-output :stack :pop
(,defthm[d] ,thmname
,body
,@(and rule-classes-look
`(:rule-classes ,(cadr rule-classes-look)))
;; :doc ,doc ; Removed by Matt K.; see comment above
:hints(("Goal"
:in-theory (theory 'minimal-theory)
:use ((:instance ,lemma-name (,flag-var ',flag)))))))
(flag-defthm-corollaries lemma-name explicit-name flag-var (cdr thmparts)))))
(defun find-first-thm-name (thmparts)
(cond ((atom thmparts)
(er hard? 'find-first-thm-name
"No explicit name given, and no theorems are given names?"))
((extract-keyword-from-args :skip (cddr (car thmparts)))
(find-first-thm-name (cdr thmparts)))
(t
(flag-thm-entry-thmname
nil (flag-from-thmpart (car thmparts)) (car thmparts)))))
;; [Jared] we previously just looked for a user-supplied Goal hint as the first
;; item in the hints list. But this didn't work at all and led to really weird
;; failures when using unconventional hint orders like
;;
;; :hints(("Subgoal *1/3" ...)
;; ("Goal" ...))
;;
;; So, now work harder to find hints that are targeting Goal.
(defun find-first-goal-hint (user-hints)
(cond ((atom user-hints)
nil)
((atom (car user-hints))
(er hard? 'find-first-goal-hint "Malformed entry in hints: ~x0.~%" (car user-hints)))
((and (stringp (caar user-hints))
(equal (acl2::string-upcase (caar user-hints)) "GOAL"))
(car user-hints))
(t
(find-first-goal-hint (cdr user-hints)))))
(defun make-flag-template-cases (alist ; binds function name -> flag symbol
world)
(b* (((when (atom alist))
nil)
((cons fnname flag-symbol) (car alist))
(thmname (intern-in-package-of-symbol
(concatenate 'string "THEOREM-FOR-" (symbol-name fnname))
fnname))
(hyp1 (intern-in-package-of-symbol "HYP1" fnname))
(hyp2 (intern-in-package-of-symbol "HYP2" fnname))
(prop (intern-in-package-of-symbol "PROP" fnname))
(fnargs (get-formals fnname world))
(mock-thm `(defthm ,thmname
(implies (and ,hyp1 ,hyp2)
(,prop (,fnname . ,fnargs)))
:flag ,flag-symbol)))
(cons mock-thm
(make-flag-template-cases (cdr alist) world))))
(defun make-flag-template (real-macro-name ; e.g., 'defthm-pseudo-termp
alist ; binds function name -> flag symbol
world)
(b* ((template-cases (make-flag-template-cases alist world))
(template (cons real-macro-name template-cases)))
(cw "~|Here's a template for using ~s0:~%~%~p1"
real-macro-name template)
(cw "~|~%You'll probably want to adjust the names, hyps, and conclusion ~
terms above. Note also that you can use :skip, :rule-classes, etc.; ~
for more information see :doc make-flag.~%")
nil))
(defun flag-defthm-fn (args ; user supplied args
real-macro-name ; e.g., 'defthm-pseudo-termp
alist ; binds function name -> flag symbol
flag-var ; e.g., 'flag
flag-fncall ; e.g., (flag-foo flag ...)
)
(b* (((unless args)
`(make-event
(b* ((- (make-flag-template ',real-macro-name ',alist (w state))))
(value `(value-triple :invisible)))))
(explicit-name (and (symbolp (car args)) (car args)))
(args (if explicit-name (cdr args) args))
(thmparts (throw-away-keyword-parts args))
(name (if explicit-name
(intern-in-package-of-symbol
(concatenate 'string "FLAG-LEMMA-FOR-"
(symbol-name explicit-name))
explicit-name)
(intern-in-package-of-symbol
(concatenate 'string "FLAG-LEMMA-FOR-"
(symbol-name
(find-first-thm-name thmparts)))
(car flag-fncall))))
(instructions (extract-keyword-from-args :instructions args))
(user-hints (extract-keyword-from-args :hints args))
(no-induction-hint (extract-keyword-from-args :no-induction-hint args))
(skip-ok (extract-keyword-from-args :skip-others args))
(user-goal-hint (find-first-goal-hint user-hints))
(user-other-hints (remove1-equal user-goal-hint user-hints))
(hints (and (not instructions)
(append
(cond (no-induction-hint user-hints)
(user-goal-hint
;; First hint is for goal.
(if (extract-keyword-from-args :induct user-goal-hint)
;; Explicit induct hint is provided; do not override.
user-hints
;; Provide our induct hint in addition to the hints
;; provided in goal.
(cons `("Goal" :induct ,flag-fncall . ,(cdr user-goal-hint))
user-other-hints)))
;; No goal hint; cons our induction hint onto the rest.
(t (cons `("Goal" :induct ,flag-fncall)
user-hints)))
(list
`(flag-hint-cases
,flag-var
. ,(pair-up-cases-with-hints alist thmparts skip-ok)))))))
`(with-output :off :all :on (error) :stack :push
(progn
(encapsulate
()
(local
(with-output :stack :pop
(defthm ,name
(cond . ,(pair-up-cases-with-thmparts
flag-var alist thmparts skip-ok))
:rule-classes nil
:hints ,hints
:instructions ,instructions
:otf-flg ,(extract-keyword-from-args :otf-flg args))))
. ,(flag-defthm-corollaries name explicit-name flag-var thmparts))
(with-output :stack :pop (value-triple ',name))))))
(defun make-defthm-macro (real-macro-name ; e.g., defthm-pseudo-termp
alist ; binds function name -> flag symbol
flag-var ; e.g., 'flag
flag-fncall ; call of the flag function
)
`(defmacro ,real-macro-name (&rest args) ;; was (name &rest args)
(flag-defthm-fn args ',real-macro-name ',alist ',flag-var ',flag-fncall)))
(defun make-cases-for-equiv (alist world)
(if (consp alist)
(let* ((fn (caar alist))
(flag (cdar alist))
(fn-formals (get-formals fn world)))
(if (consp (cdr alist))
(cons `(,flag (,fn . ,fn-formals))
(make-cases-for-equiv (cdr alist) world))
(list `(otherwise (,fn . ,fn-formals)))))
nil))
(defun equiv-theorem-cases (flag-fn formals alist world)
(if (consp alist)
(let* ((fn (caar alist))
(flag (cdar alist))
(fn-formals (get-formals fn world)))
(cons `(equal (,flag-fn ',flag . ,formals)
(,fn . ,fn-formals))
(equiv-theorem-cases flag-fn formals (cdr alist) world)))
nil))
; NOTE: Expand-calls-computed-hint moved to std/util/support.
; NEW HINT: this more limited hint seems to be better.
(defun flag-expand-computed-hint (stable-under-simplificationp clause fns)
(and stable-under-simplificationp
(let ((conclusion (car (last clause))))
(case-match conclusion
(('equal lhs rhs)
(let* ((expands (if (and (consp lhs)
(member (car lhs) fns))
(list lhs)
nil))
(expands (if (and (consp rhs)
(member (car rhs) fns))
(cons rhs expands)
expands)))
(and expands
`(:expand ,expands))))
(&
nil)))))
(defun flag-table-events (alist entry)
(if (atom alist)
nil
(cons `(table flag-fns ',(caar alist) ',entry)
(flag-table-events (cdr alist) entry))))
(defun apply-formals-subst (formals subst)
(b* (((when (atom formals))
nil)
(look (assoc (car formals) subst))
((when look)
(cons (cdr look) (apply-formals-subst (cdr formals) subst))))
(cons (car formals) (apply-formals-subst (cdr formals) subst))))
(defun thm-macro-name (flag-fn-name)
(intern-in-package-of-symbol
(concatenate 'string "DEFTHM-" (symbol-name flag-fn-name))
flag-fn-name))
(defun make-flag-fn (flag-fn-name clique-member-name flag-var flag-mapping hints
defthm-macro-name
formals-subst
local ruler-extenders world)
(let* ((flag-var (or flag-var
(intern-in-package-of-symbol "FLAG" flag-fn-name)))
(alist (or flag-mapping
(pairlis$ (get-clique-members clique-member-name world)
(get-clique-members clique-member-name world))))
(defthm-macro-name (or defthm-macro-name
(thm-macro-name flag-fn-name)))
(equiv-thm-name (intern-in-package-of-symbol
(concatenate 'string (symbol-name flag-fn-name) "-EQUIVALENCES")
flag-fn-name))
(formals (merge-formals alist world)))
`(,@(if local '(progn) '(encapsulate nil))
;; use encapsulate instead of progn so set-ignore-ok is local to this
(logic)
(set-ignore-ok t) ;; can't wrap this in local --- fubar!
(,(if local 'local 'id)
,(make-flag-body flag-fn-name flag-var alist hints ruler-extenders world))
,(make-defthm-macro defthm-macro-name alist flag-var
`(,flag-fn-name ,flag-var
. ,(apply-formals-subst formals formals-subst)))
(,(if local 'local 'id)
(with-output
:off (prove event) ;; hides induction scheme, too
(encapsulate nil
(logic)
(local (defthm flag-equiv-lemma
(equal (,flag-fn-name ,flag-var . ,formals)
(case ,flag-var
,@(make-cases-for-equiv alist world)))
:hints (("Goal"
:induct
(,flag-fn-name ,flag-var . ,formals)
:in-theory
'((:induction ,flag-fn-name))
;; (set-difference-theories
;; (union-theories (theory 'minimal-theory)
;; '((:induction ,flag-fn-name)
;; (:rewrite expand-all-hides)))
;; '(;; Jared found mv-nth to be slowing down a couple of flag
;; ;; function admissions. Take it out of the minimal theory.
;; (:definition mv-nth)
;; ;; Jared found a case where "linear" forced some goals
;; ;; from an equality, which were unprovable. So, turn
;; ;; off forcing.
;; (:executable-counterpart force)
;; ;; Turn of NOT to prevent case-splitting and
;; ))
)
(flag-expand-computed-hint stable-under-simplificationp
ACL2::clause
',(cons flag-fn-name
(strip-cars
alist))))))
(defthm ,equiv-thm-name
(and . ,(equiv-theorem-cases flag-fn-name formals alist world))
:hints(("Goal" :in-theory (union-theories
'(flag-equiv-lemma)
(theory 'acl2::minimal-theory))))))))
(progn . ,(flag-table-events alist `(,flag-fn-name
,alist
,defthm-macro-name
,equiv-thm-name)))
(,(if local 'local 'id)
(in-theory (disable (:definition ,flag-fn-name)))))))
(defconst *make-flag-keywords*
'(:flag-var
:flag-mapping
:formals-subst
:hints
:defthm-macro-name
:local
:ruler-extenders))
(defun make-flag-dwim (args world)
;; Stupid wrapper so that you don't have to explicitly name the flag var
(b* (((mv names kwd/args) (acl2::split-at-first-keyword args))
((unless (consp names))
(er hard? 'make-flag "No name given"))
((unless (symbolp (first names)))
(er hard? 'make-flag "Name is not a symbol: ~x0" (first names)))
((unless (or (eql 1 (len names))
(eql 2 (len names))))
(er hard? 'make-flag "Too many names: ~x0~%" names))
((unless (symbolp (second names)))
(er hard? 'make-flag "Clique member name is not a symbol: ~x0" (second names)))
((mv flag-name clique-member-name)
(if (eql 2 (len names))
(mv (first names) (second names))
;; Just one name, so it should be a clique-member name and we will
;; name the flag function flag-foo.
(mv (intern-in-package-of-symbol
(concatenate 'string "FLAG-" (symbol-name (first names)))
(first names))
(first names))))
((mv kwd-alist other-args)
(std::extract-keywords `(make-flag ,(first names)) *make-flag-keywords* kwd/args nil))
((unless (atom other-args))
(er hard? 'make-flag "Spurious arguments: ~x0" other-args)))
(make-flag-fn flag-name clique-member-name
(cdr (assoc :flag-var kwd-alist))
(cdr (assoc :flag-mapping kwd-alist))
(cdr (assoc :hints kwd-alist))
(cdr (assoc :defthm-macro-name kwd-alist))
(cdr (assoc :formals-subst kwd-alist))
(cdr (assoc :local kwd-alist))
(cdr (assoc :ruler-extenders kwd-alist))
world)))
(defmacro make-flag (&rest args)
`(make-event (make-flag-dwim ',args (w state))))
;; Accessors for the records stored in the flag-fns table
(defun flag-present (fn world)
(consp (assoc-eq fn (table-alist 'flag::flag-fns world))))
(defun flag-fn-name (fn world)
(nth 0 (cdr (assoc-eq fn (table-alist 'flag::flag-fns world)))))
(defun flag-alist (fn world)
(nth 1 (cdr (assoc-eq fn (table-alist 'flag::flag-fns world)))))
(defun flag-defthm-macro (fn world)
(nth 2 (cdr (assoc-eq fn (table-alist 'flag::flag-fns world)))))
(defun flag-equivs-name (fn world)
(nth 3 (cdr (assoc-eq fn (table-alist 'flag::flag-fns world)))))
(defxdoc def-doublevar-induction
:parents (mutual-recursion)
:short "Create an induction scheme that adds a duplicate variable to the substitution."
:long "<p>Certain types of proofs require inductions that are rather simple
modifications of existing induction schemes. For example, to prove a
congruence on some recursive function, typically you want to induct
<em>almost</em> on that function, but with the simple modification that for
each substitution in the induction scheme, you want to basically copy the
substitution of an existing variable into a new variable.</p>
<p>For example, consider our attempt to prove that sum-pairs-list is nat-list congruent:</p>
@({
(defun nat-list-equiv (x y)
(if (atom x)
(atom y)
(and (consp y)
(equal (nfix (car x)) (nfix (car y)))
(nat-list-equiv (cdr x) (cdr y)))))
(defun sum-pairs-list (x)
(if (atom x)
nil
(if (atom (cdr x))
(list (nfix (car x)))
(cons (+ (nfix (car x)) (nfix (cadr x)))
(sum-pairs-list (cddr x))))))
(defequiv nat-list-equiv)
(defthm sum-pairs-list-nat-list-equiv-congruence
(implies (nat-list-equiv x y)
(equal (sum-pairs-list x) (sum-pairs-list y)))
:rule-classes :congruence)
})
<p>The proof of the congruence rule fails with no hint, and neither of the
following induction hints don't help either:</p>
@({
:hints ((\"goal\" :induct (nat-list-equiv x y))))
:hints ((\"goal\" :induct (list (sum-pairs-list x)
(sum-pairs-list y))))
})
<p>What we really want is an induction scheme that inducts as sum-pairs-list
on (say) x, but does a similar substitution on y, e.g.,</p>
@({
(defun sum-pairs-list-double-manual (x y)
(declare (ignorable y))
(if (atom x)
nil
(if (atom (cdr x))
(list (nfix (car x)))
(cons (+ (nfix (car x)) (nfix (cadr x)))
(sum-pairs-list-double-manual (cddr x) (cddr y))))))
(defthm sum-pairs-list-nat-list-equiv-congruence ;; sum-pairs-list-double-manual works
(implies (nat-list-equiv x y)
(equal (sum-pairs-list x) (sum-pairs-list y)))
:hints ((\"goal\" :induct (sum-pairs-list-double-manual x y)))
:rule-classes :congruence)
})
<p>Def-doublevar-ind automatically generates a function like this, e.g.:</p>
@({
(def-doublevar-induction sum-pairs-list-double
:orig-fn sum-pairs-list
:old-var x :new-var y)
(defthm sum-pairs-list-nat-list-equiv-congruence ;; sum-pairs-list-double works
(implies (nat-list-equiv x y)
(equal (sum-pairs-list x) (sum-pairs-list y)))
:hints ((\"goal\" :induct (sum-pairs-list-double x y)))
:rule-classes :congruence)
})
<p>This can be used with flag functions and their defthm macros (see @(see make-flag)): use def-doublevar-ind to define a new induction scheme based on the flag function, and give a hint to the flag defthm macro to use that induction scheme. For example,</p>
@({
(flag::make-flag foo-flag foo-mutualrec ...)
(flag::def-doublevar-ind foo-doublevar-ind
:orig-fn foo-flag
:old-var x :new-var y)
(defthm-foo-flag
(defthm foo1-thm ...)
(defthm foo2-thm ...)
:hints ((\"goal\" :induct (foo-doublevar-ind flag x a b y))))
})
")
(defun doublevar-transform-calls (calls fnname old-var-index old-var new-var)
(if (atom calls)
nil
(let ((actuals (cdr (car calls))))
(cons (cons fnname (append actuals
(list
(acl2::subst-var new-var old-var (nth old-var-index actuals)))))
(doublevar-transform-calls (cdr calls) fnname old-var-index old-var new-var)))))
(defun doublevar-different-equals-p (test1 test2)
(and (consp test1)
(consp test2)
(eq (car test1) 'equal)
(eq (car test2) 'equal)
(let* ((quote1 (if (quotep (cadr test1))
(cadr test1)
(and (quotep (caddr test1))
(caddr test1))))
(quote2 (if (quotep (cadr test2))
(cadr test2)
(and (quotep (caddr test2))
(caddr test2)))))
(and quote1
quote2
(not (equal quote1 quote2))
(or (equal (cadr test1) (cadr test2))
(equal (cadr test1) (caddr test2))
(equal (caddr test1) (cadr test2))
(equal (caddr test1) (caddr test2)))))))
(defun do-both (x y)
(declare (xargs :mode :logic))
(list x y))
(defmacro do-all (&rest args)
(cond ((atom args) nil)
((atom (cdr args)) (car args))
(t (xxxjoin 'do-both args))))
(defun doublevar-make-simple-tests/calls (tests calls)
(declare (xargs :mode :program))
(if (atom tests)
calls
(let* ((negp (and (consp (car tests))
(eq (caar tests) 'not)))
(test-term (if negp (cadar tests) (car tests)))
(rest (doublevar-make-simple-tests/calls (cdr tests) calls)))
(if negp
`(if ,test-term nil (do-all ,rest))
`(if ,test-term (do-all ,rest) nil)))))
(mutual-recursion
(defun doublevar-place-calls-in-body (tests calls-term term)
(declare (xargs :measure (make-ord 1 (+ 1 (acl2-count term))
(acl2-count tests))
:mode :program))
;; The existing term is of type DOTERM in the following schema:
;; DOTERM ::= (DO-ALL IFTERM ... IFTERM) | NIL
;; IFTERM ::= (if TEST DOTERM DOTERM)
;; | recursive-call
;; The simplest way to write this function would be:
;; `(do-both (and ,@tests ,calls-term) ,term)
;; But this would replicate a lot of the IF structure in a lot of different
;; places and make a mess. We instead try to reuse the same IF structure as
;; much as possible.
;; For a given DOTERM, we look through the various subterms for an IF whose
;; test is compatible with the first one in TESTS. That is, it's the same
;; condition modulo negation, or is checking equality of the same term with
;; different constants.
(if (atom term)
`(do-all ,(doublevar-make-simple-tests/calls tests calls-term))
;; term is (do-all . ,subterms)
(cons 'do-all (doublevar-find-if-to-place-calls tests calls-term (cdr term)))))
(defun doublevar-find-if-to-place-calls (tests calls-term subterms)
;; Returns a list of IFTERMs, including the existing subterms and the tests/calls.
(if (atom subterms)
(list (doublevar-make-simple-tests/calls tests calls-term))
(if (not (eq (caar subterms) 'if))
(cons (car subterms)
(doublevar-find-if-to-place-calls tests calls-term (cdr subterms)))
(let* ((negp (and (consp (car tests))
(eq (caar tests) 'not)))
(test-term (if negp (cadar tests) (car tests)))
(subterm-test (second (car subterms)))
(diff-equals (and (not negp)
(doublevar-different-equals-p test-term subterm-test)))
(compatible (or (equal test-term subterm-test)
diff-equals)))
(if (not compatible)
(cons (car subterms)
(doublevar-find-if-to-place-calls tests calls-term (cdr subterms)))
(let* ((then-branchp (and (not diff-equals) (not negp)))
(rest-tests (if diff-equals tests (cdr tests)))
(sub-branch
(doublevar-place-calls-in-body
rest-tests calls-term
(if then-branchp
(third (car subterms))
(fourth (car subterms))))))
(cons (if then-branchp
`(if ,subterm-test
,sub-branch
,(fourth (car subterms)))
`(if ,subterm-test
,(third (car subterms))
,sub-branch))
(cdr subterms)))))))))
(defun doublevar-ind-body (ind-machine fnname old-var-index old-var new-var term)
(declare (xargs :mode :program))
(if (atom ind-machine)
term
(let* ((tests (access acl2::tests-and-calls (car ind-machine) :tests))
(calls (access acl2::tests-and-calls (car ind-machine) :calls))
(calls-term `(list ,(len ind-machine)
. ,(doublevar-transform-calls
calls fnname old-var-index old-var new-var)))
(new-term (doublevar-place-calls-in-body tests calls-term term)))
(doublevar-ind-body (cdr ind-machine) fnname old-var-index old-var new-var new-term))))
(defun def-doublevar-induction-fn (name f old-var new-var hints take w)
(declare (xargs :mode :program))
(let* ((formals (get-formals f w))
(ind-machine (getprop f 'acl2::induction-machine :none 'current-acl2-world w)))
(cond ((eq formals :none)
(er hard? 'def-doublevar-induction-fn
"~x0 is not a function -- no formals~%" f))
((not (member-eq old-var formals))
(er hard? 'def-doublevar-induction-fn
"~x0 is not an existing formal of ~x1~%" old-var f))
((eq ind-machine :none)
(er hard? 'def-doublevar-induction-fn
"~x0 has no induction machine -- not singly recursive?~%" f))
(t
(let* ((measure (get-measure f w))
(wfr (get-wfr f w))
(old-var-index (search (list old-var) formals))
(all-formals (append formals (list new-var))))
`(defun-nx ,name ,all-formals
(declare (xargs :verify-guards nil
:measure ,measure
:hints ,hints
:well-founded-relation ,wfr
:ruler-extenders (do-both mv-list return-last)
:mode :logic)
(ignorable . ,all-formals))
,(doublevar-ind-body (if take
(take take ind-machine)
ind-machine)
name old-var-index old-var new-var nil)))))))
(defmacro def-doublevar-induction (name &key orig-fn old-var new-var hints take)
`(make-event
(def-doublevar-induction-fn ',name ',orig-fn ',old-var ',new-var ',hints ',take (w state))))
|