This file is indexed.

/usr/share/acl2-7.2dfsg/books/tools/defsum.lisp is in acl2-books-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
; Defsum: a macro for defining recursive data types
; by Sol Swords & William Cook

; Please email bug reports to sswords@cs.utexas.edu.
;
; For primary documentation of the content of this book, see the :doc
; topics defsum, defsums, and pattern-match.
;
; This book defines the macros defsum and defsums which can be used to
; define recursive data types analogous to type definitions in
; Haskell. These types are recursive labeled sums of products.
;
; Proofs written using the new type are based on the abstract model of
; constructors, recognizers, and field access.  The underlying list
; representation is (almost) completely hidden: the definitions and
; executable-counterparts of functions operating on the list structure are
; disabled. As a result, proofs using the type only require reasoning about the
; type itself, not its representation. Unlike records, but like Haskell,
; components of a data type cannot be modified once constructed.
;
; A simple example, which defines a simple list structure, is:
;
; (defsum my-list
;    (my-empty)
;    (my-cons car (my-list-p cdr)))
;
; The first item of each list is the *constructor* and the remaining
; items are fields. Constructors with no arguments, like my-empty,
; represent abstract constants.  For each constructor, a recognizer is
; also defined, and functions to extract fields from the constructed
; values. The overall type also has a recognizer. Here
; are all the functions defined by the above:
;
; constructors: my-empty, my-cons
; recognizers: my-list-p, my-empty-p, my-cons-p
; fields: my-cons-car, my-cons-cdr
;
; The sum recognizer my-list-p recognizes only completely well-formed
; structures.  The product recognizers my-empty and my-cons, on the other hand,
; only check the top level "shape" and do not check any types.  (my-cons-p x),
; for example, equals (and (true-listp x) (= (len x) 3) (eq (car x) 'my-cons)).
;
; The example above corresponds to the standard Haskell definition:
;     data MyList a = MyEmpty | MyCons a (MyList a)
; Haskell also allows the fields to be named:
;     data MyList a = MyEmpty | MyCons { car :: a, cdr :: MyList a }
;
; Here is another example:
;
; (defsum person
;   (student (stringp name) (integerp year) major)
;   (professor name degree-year school (symbolp topic))
;   (administrator name title (person-p manager)))
;
; Using this example, we can illustrate the matching form:
;
; (pattern-match x
;               ((student nm yr maj) body1)
;               ((professor a b c d) body2)
;               ((administrator p d q) body3)
;               (& body4))
;
; This is still work in progress. Related work (which could be much more
; appropriate for any given application) includes the following (see the files
; for proper attribution):
;
; the records book, distributed as books/misc/records.lisp; the typed records
; book, distributed as books/workshops/2004/greve/support/defrecord.lisp; and
; the structures book, distributed as books/data-structures/structures.lisp.
;
; To see how this library works in detail, you can examine the events
; introduced by a defsum form such as, in this example, the above "my-list"
; form.  The following will print out the list of events:
; (include-book "defsum")
; (include-book "defsum-thms")
; :trans1 (defsum my-list
;           (my-empty)
;           (my-cons car (my-list-p cdr)))


(in-package "ACL2")

(include-book "xdoc/top" :dir :system)
(include-book "pattern-match")
(include-book "types-misc")

(set-ignore-ok t)
(set-bogus-mutual-recursion-ok t)

(defun product-type (x)
  (declare (xargs :guard (consp x)))
  (car x))

(in-theory (disable product-type (:executable-counterpart product-type)))

(program)





;; Uniform ways of accessing the structure information.

;; The top-level structure is just a list of sums.  The global keyword-alist is
;; passed around separately.



;; Each sum in the list has just a name and a product list.  The global keyword
;; alist is stored separately.  In a mutual-defsum, the keywords are assumed to
;; be shared.
(defun sum-name (sum)
  (car sum))

(defun sum-products (sum)
  (cdr sum))

(defun sum-recognizer (sum)
  (appsyms (list (sum-name sum) 'p)))


;; Each product also has an associated recognizer; by convention if the product
;; name (and constructor name) is foo, the recognizer is foo-p.  However, a
;; recognizer (possibly predefined) can also be specified with the :recognizer
;; keyword.

(defun sym-recognizer (sym)
  (appsyms (list sym 'p)))

(defun product-recognizer (product)
  (or (kwassoc :recognizer nil (product-kwalist product))
      (sym-recognizer (product-name product))))


;; That concludes the functions for accessing elements of the internal
;; structure.  Now we need the ability to transform user input into the
;; internal structure.




(defun defsum-munge-product (product)
    (mv-let (product kwalist)
            (strip-keywords product)
            (cons
             ;; name and component listing
             (cons (car product)
                   (munge-components (cdr product)))
             ;; keywords
             kwalist)))

(defun defsum-munge-products (products)
  (if (atom products)
      nil
    (cons (defsum-munge-product (car products))
          (defsum-munge-products (cdr products)))))

;; Separates external functions from product list (or sum list for
;; defsums.)  Thus we don't allow the sume "defun-p" or the
;; constructor defun.
(defun strip-extfns (products)
  (if (atom products)
      (mv nil nil)
    (mv-let (prods extfns)
            (strip-extfns (cdr products))
            (if (and (consp (car products))
                     (eq (caar products) 'defun))
                (mv prods (cons (car products) extfns))
              (mv (cons (car products) prods) extfns)))))

;; Converts top-level defsum input into internal form.  Returns the
;; list of sums (just one in this case), the list of functions to be
;; defined in the mutual-recursion with the sum recognizer, and the
;; global keyword alist.
(defun defsum-munge-input (name rest)
  (mv-let (products kwalist)
          (strip-keywords rest)
          (mv-let (products extfns)
                  (strip-extfns products)
                  (mv (list (cons name (defsum-munge-products products)))
                      extfns
                      kwalist))))

(defun defsums-munge-sums (sums)
  (if (atom sums)
      nil
    (cons
     (cons (caar sums) (defsum-munge-products (cdar sums)))
     (defsums-munge-sums (cdr sums)))))

;; Converts top-level defsums input into internal form.  Returns the
;; sums, the functions to be defined with the sums, and the global
;; keyword alist.
(defun defsums-munge-input (args)
  (mv-let (sums kwalist)
          (strip-keywords args)
          (mv-let (sums extfns)
                  (strip-extfns sums)
                  (mv (defsums-munge-sums sums) extfns kwalist))))





;; recognzier name given a constructor name; product-recognzier is preferred
(defun recognizer-name (sym)
  (appsyms (list sym 'p)))

;; add the -p to a list of symbols
(defun recognizer-list (syms)
  (if (atom syms)
      nil
    (cons (recognizer-name (car syms))
          (recognizer-list (cdr syms)))))



;; Constructor call given a complete product declaration
(defun constructor-call (product)
  (cons (product-name product)
        (components-names (product-components product))))


(defun product-accessor-list (product)
  (accessor-list product (product-components product)))

(defun accessor-call-list (product components)
  (if (consp components)
      (cons `(,(accessor-name product (car components)) x)
            (accessor-call-list product (cdr components)))
    nil))



;; Constructor definition for a product.
(defun constructor-def (product guard-opt hons-opt compact-opt)
  (let* ((constr (product-name product))
         (args (components-names (product-components product)))
         (cons (if hons-opt 'hons 'cons)))
  `(defun ,constr ,args
     ,@(if guard-opt
           `((declare (xargs :guard t)))
         nil)
     ,(if compact-opt
           `(,cons (quote ,constr)
                   ,(argtree cons args))
         `(,(if hons-opt 'hons-list 'list)
           (quote ,constr) ,@args)))))





;; Definition for the recognizer of a product
(defun product-recognizer-def (product compact-opt)
  (let* ((nargs (len (product-components product)))
         (tests (if compact-opt
                    (cons `(consp x) (recog-consp-list nargs `(cdr x)))
                  `((true-listp x) (= (length x) ,(1+ nargs))))))
  `(defun ,(product-recognizer product) (x)
     (declare (xargs :guard t))
     (and ,@tests
          (eq (car x) (quote ,(product-name product)))))))


;; Definition of the nth accessor for a product
(defun accessor-def (product component ncomps n guard-opt accessor-opt compact-opt)
  (let ((rec (product-recognizer product))
        (acc (if compact-opt (tree-accessor n ncomps `(cdr x) nil)
               `(nth ,n x))))
  `(defun ,(accessor-name product component) (x)
     ,@(if guard-opt
           `((declare (xargs :guard (,rec x))))
         nil)
     ,@(if (and guard-opt accessor-opt)
           `((mbe :logic (and (,rec x) ,acc)
                  :exec ,acc))
         (if accessor-opt
             `((and (,rec x) ,acc))
           `(,acc))))))

;; Define all accessors for a product
(defun accessors-def (product components ncomps n guard-opt accessor-opt compact-opt)
  (if (consp components)
      (cons (accessor-def product (car components) ncomps n guard-opt
                          accessor-opt compact-opt)
            (accessors-def product (cdr components) ncomps (1+ n) guard-opt
                           accessor-opt compact-opt))
    nil))

(defun product-function-defs (product guard-opt hons-opt compact-opt accessor-opt)
  (let* ((kwalist (product-kwalist product))
         (predef (kwassoc :predef nil (product-kwalist product)))
         (recog (kwassoc :recognizer nil kwalist)))
    (append (and (not (or recog predef))
                 (list (product-recognizer-def product compact-opt)))
            (and (not predef)
                 (cons (constructor-def product guard-opt hons-opt compact-opt)
                       (accessors-def product
                                      (product-components product)
                                      (len (product-components product)) 1
                                      guard-opt
                                      accessor-opt compact-opt))))))


;; Makes the pattern matcher macro for the product.
(defun product-pattern-matcher (product guard-opt)
  `(def-pattern-match-constructor
     ,(if (eq guard-opt :fast)
          (appsyms (list (product-name product) 'slow))
        (product-name product))
     ,(product-recognizer product) ,(product-accessor-list product)))


(defun product-compound-rec-thm (product compact-opt)
  `(defthm ,(appsyms (list (product-name product) 'p 'compound-recognizer))
     (implies (,(product-recognizer product) x)
              ,(if compact-opt `(consp x)
                 `(and (consp x)
                       (true-listp x))))
     :rule-classes :compound-recognizer))

(defun function-call-list (fn-preargs list postargs)
  (if (atom list)
      nil
    (cons (append fn-preargs (cons (car list) postargs))
          (function-call-list fn-preargs (cdr list) postargs))))

(defun args-cons-count (nargs)
  (if (or (zp nargs) (= nargs 1))
      0
    (let ((flo (floor nargs 2)))
      (+ 1 (args-cons-count flo)
         (args-cons-count (- nargs flo))))))

(defun constructor-acl2-count-thm (product compact-opt)
  (let* ((nargs (len (product-components product)))
         (conses (if compact-opt (1+ (args-cons-count nargs))
                   (1+ nargs))))
  `(defthm ,(appsyms (list (product-name product) 'acl2-count))
     (equal (acl2-count ,(constructor-call product))
            (+ ,conses
               ,@(function-call-list '(acl2-count)
                                     (components-names (product-components product))
                                     nil))))))

(defun accessor-short-circuit-thm (product component)
  (let* ((acc (accessor-name product component))
         (rec (product-recognizer product)))
    `(defthm ,(appsyms (list 'not rec acc))
       (implies (not (,rec x))
                (equal (,acc x) nil)))))

(defun accessor-short-circuit-thms (product components)
  (if (consp components)
      (cons (accessor-short-circuit-thm product (car components))
            (accessor-short-circuit-thms product (cdr components)))
    nil))

(defun accessor-acl2-count-thm (product component)
  (let ((acc (accessor-name product component))
        (recognizer (product-recognizer product)))
    `(defthm ,(appsyms (list acc 'acl2-count))
     (implies (,recognizer x)
              (< (acl2-count (,acc x))
                 (acl2-count x)))
     :hints (("Goal" :in-theory
              (e/d (acl2-count-car-cdr-of-cons-linear
                    acl2-count-nth-of-len-2-or-greater-linear)
                   (nth acl2-count))))
     :rule-classes (:rewrite :linear))))

(defun accessor-acl2-count-thms (product components)
  (if (consp components)
      (cons (accessor-acl2-count-thm product (car components))
            (accessor-acl2-count-thms product (cdr components)))
    nil))

(defun product-recognizer-constructor-thm (product)
  (let ((constructor (product-name product))
        (constr-call (constructor-call product))
        (recognizer (product-recognizer product)))
  `(defthm ,(appsyms (list recognizer constructor))
     (,recognizer ,constr-call))))


;; destructor elimination rule
(defun product-elim-thm (product compact-opt)
  (let ((recognizer (product-recognizer product))
        (name (product-name product))
        (components (product-components product)))
    (if (consp components)
        `(defthm ,(appsyms (list name 'elim))
           (implies (,recognizer x)
                    (equal (,name
                            ,@(accessor-call-list product components))
                           x))
           ,@(if compact-opt
                 nil
               `(:hints (("Goal" :in-theory
                          (enable nth-open
                                  len-0-true-listp-not-x)))))
           :rule-classes (:rewrite :elim))
      `(defthm ,(appsyms (list name 'unique))
         (implies (,recognizer x)
                  (equal x (,name)))
         :rule-classes :forward-chaining))))

(defun product-type-thms (product)
  (let ((recognizer (product-recognizer product))
        (name (product-name product))
        (call (constructor-call product))
        (components (product-components product)))
    `((defthm ,(appsyms (list recognizer 'product-type))
        (implies (,recognizer x)
                 (equal (product-type x) ',name)))
      (defthm ,(appsyms (list 'product-type recognizer))
        (implies (not (equal (product-type x) ',name))
                 (not (,recognizer x))))
      (defthm ,(appsyms (list name 'product-type))
        (equal (product-type ,call) ',name))
      (defthm ,(appsyms (list name 'equal-product-type))
        (implies (not (equal (product-type ,call) (product-type x)))
                 (not (equal ,call x)))))))



(defun accessor-constructor-thm (product component)
  (let ((acc (accessor-name product component))
        (constr-call (constructor-call product))
        (arg (component-name component)))
  `(defthm ,(appsyms (list acc (product-name product)))
     (equal (,acc ,constr-call)
            ,arg))))


(defun constructor-component-thm (product component)
  (let ((name (product-name product))
        (arg (component-name component)))
  `(defthm ,(appsyms (list name 'not-equal arg))
     (not (equal ,(constructor-call product)
                 ,arg))
     ;; :hints (("Goal" :use (:instance ,(appsyms (list name arg
;;                                                      'acl2-count))
;;                                      (x ,(constructor-call product)))
;;               :in-theory (disable ,(appsyms (list name arg 'acl2-count)))))
     )))

(defun product-component-thm (product component)
  (let* ((name (product-name product))
         (acc (accessor-name product component))
         (recognizer (product-recognizer product)))
  `(defthm ,(appsyms (list name 'not-equal acc))
     (implies (,recognizer x)
              (not (equal (,acc x) x)))
     :hints (("Goal" :use ,(appsyms (list name 'elim))
              :in-theory (disable ,name ,acc ,recognizer))))))

;; if one of the components is different, the product is different
(defun arg-difference-thm (product component)
  (let ((arg (component-name component))
        (name (product-name product))
        (acc (accessor-name product component)))
    `(defthm ,(appsyms (list 'difference arg name))
       (implies (not (equal ,arg (,acc x)))
                (not (equal ,(constructor-call product) x))))))

(defun product-arg-thms (product components)
  (if (consp components)
      `(,(accessor-constructor-thm product (car components))
        ,(constructor-component-thm product (car components))
        ,(product-component-thm product (car components))
        ,(arg-difference-thm product (car components))
        ,@(product-arg-thms product (cdr components)))
    nil))

(defun product-theorems (product accessor-opt compact-opt)
  (let* ((kwalist (product-kwalist product))
         (predef (kwassoc :predef nil kwalist))
         (recog (kwassoc :recognizer nil kwalist))
         (components (product-components product)))
    `(,@(and (not predef) (not recog)
             (list (product-compound-rec-thm product compact-opt)))
        ,@(and (not predef)
               (list (constructor-acl2-count-thm product compact-opt)))
        ,@(accessor-acl2-count-thms product components)
        ,@(if accessor-opt
              (accessor-short-circuit-thms product components)
            nil)
        ,(product-recognizer-constructor-thm product)
        ,(product-elim-thm product compact-opt)
        ,@(product-arg-thms product components))))



(defun basic-product-defs (product guard-opt accessor-opt hons-opt compact-opt)
  (append (product-function-defs product guard-opt hons-opt compact-opt accessor-opt)
          (product-theorems product accessor-opt compact-opt)
          (list (product-pattern-matcher product guard-opt))))

(defmacro defproduct (&rest product)
  (let ((product (defsum-munge-product product)))
    `(progn
       ,@(basic-product-defs product
                             (kwassoc :guard nil (product-kwalist product))
                             (kwassoc :short-accessors t (product-kwalist
                                                          product))
                             (kwassoc :hons nil (product-kwalist product))
                             (kwassoc :compact t (product-kwalist product))))))

(defun basic-products-defs (products guard-opt accessor-opt hons-opt
                                     compact-opt)
  (if (atom products)
      nil
    (append (basic-product-defs (car products) guard-opt accessor-opt hons-opt
                                compact-opt)
            (basic-products-defs (cdr products) guard-opt accessor-opt hons-opt
                                 compact-opt))))

(defun products-type-thms (products)
  (if (endp products)
      nil
    (append (product-type-thms (car products))
            (products-type-thms (cdr products)))))

;; list of statements about types from a product declaration
(defun type-checklist1 (components)
  (if (consp components)
      (let* ((component (car components))
             (type (component-type component))
             (name (component-name component)))
        (if type
            (cons (list type name)
                  (type-checklist1 (cdr components)))
          (type-checklist1 (cdr components))))
    nil))

;; type information from a product declaration, in the form of a single term:
;; t, a single predicate call, or (and ...).
(defun type-checklist (components)
  (let ((checklist (type-checklist1 components)))
    (if checklist
        (if (consp (cdr checklist))
            `(and ,@checklist)
          (car checklist))
      t)))

;; The clauses for pattern-matching for the sum recognizer
(defun sum-recognizer-clause (product guard-opt)
  (let* ((type-checklist (type-checklist (product-components product)))
         (constr (constructor-call product))
         (pattern (if (eq guard-opt :fast)
                      (cons (appsyms (list (car constr) 'slow))
                            (cdr constr))
                    constr)))
    (list pattern type-checklist)))

(defun sum-recognizer-clauses (products guard-opt)
  (if (consp products)
      (cons (sum-recognizer-clause (car products) guard-opt)
            (sum-recognizer-clauses (cdr products) guard-opt))
    nil))

;; Definition of the recognizer for a sum (with type information)
(defun sum-recognizer-def (sum guard-opt)
  `(defun ,(sum-recognizer sum) (x)
     (declare
      (xargs :measure (1+ (acl2-count x))
             ,@(if guard-opt
                   `(:guard t)
                 nil)
             :hints (("goal"
                      :in-theory
                      (enable
                       acl2-count-nth-of-len-2-or-greater-linear)))))
     (pattern-match x
       ,@(sum-recognizer-clauses (sum-products sum) guard-opt))))

(defun sum-recognizer-defs (sums guard-opt)
  (if (consp sums)
      (cons (sum-recognizer-def (car sums) guard-opt)
            (sum-recognizer-defs (cdr sums) guard-opt))
    nil))

;; if it's a mutual sum declaration or includes more functions for the mutual
;; recursion, then the mutual recursion for the sum recognizers. otherwise,
;; just the one sum recognizer function.
(defun sum-recognizers-def (sums extfns guard-opt)
  (if (and (= (len sums) 1) (not extfns))
      (sum-recognizer-def (car sums) guard-opt)
    `(mutual-recursion ,@(sum-recognizer-defs sums guard-opt)
                       ,@extfns)))


(defun sum-compound-rec-thm (sum compact-opt)
  (let ((sumname (sum-name sum))
        (recognizer (sum-recognizer sum)))
  `(defthm ,(appsyms (list sumname 'compound-recognizer))
     (implies (,recognizer x)
              ,(if compact-opt
                   `(consp x)
                 `(and (consp x)
                       (true-listp x))))
     :rule-classes :compound-recognizer)))

(defun sum-compound-rec-thms (sums compact-opt)
  (if (consp sums)
      (cons (sum-compound-rec-thm (car sums) compact-opt)
            (sum-compound-rec-thms (cdr sums) compact-opt))
    nil))


(defun recognizer-call-list (products)
  (if (consp products)
      (cons `(,(product-recognizer (car products))
              x)
            (recognizer-call-list (cdr products)))
    nil))

(defun sum-possibility-thm (sum)
  (let ((rec-list (recognizer-call-list (sum-products sum)))
        (name (sum-name sum))
        (recognizer (sum-recognizer sum)))
    `(defthm ,(appsyms (list name 'possibilities))
       (implies (,recognizer x)
                ,(if (consp (cdr rec-list))
                     `(or ,@rec-list)
                   (car rec-list)))
       :rule-classes :forward-chaining)))

(defun sum-possibility-thms (sums)
  (if (consp sums)
      (cons (sum-possibility-thm (car sums))
            (sum-possibility-thms (cdr sums)))
    nil))

(defun product-fast-recs (products sumrec)
  (if (atom products)
      nil
    (let* ((product (car products))
           (pname (product-name product))
           (prec (product-recognizer product))
           (prfast (appsyms (list prec 'fast))))
      (append
       `((defun ,prfast (x)
           (declare (xargs :guard (,sumrec x)))
           (mbe :exec (eq (car x) ',pname)
                :logic (,prec x)))
         (def-pattern-match-constructor ,pname ,prfast
           ,(product-accessor-list product)))
       (product-fast-recs (cdr products) sumrec)))))

(defun product-fast-recs-sums (sums)
  (if (atom sums)
      nil
    (append (product-fast-recs (sum-products (car sums))
                               (sum-recognizer (car sums)))
            (product-fast-recs-sums (cdr sums)))))


;; type checklist of accessor calls for a product
(defun accessor-type-checklist1 (product components)
  (if (consp components)
      (let ((ctype (component-type (car components)))
            (prodname (product-name product))
            (acc (accessor-name product (car components))))
        (if ctype
            (cons `(,ctype (,acc x))
                  (accessor-type-checklist1 product (cdr components)))
          (accessor-type-checklist1 product (cdr components))))
    nil))

;; the above, in the form of a single term
(defun accessor-type-checklist (product)
  (let ((checklist (accessor-type-checklist1 product (product-components product))))
    (if (consp checklist)
        (if (consp (cdr checklist))
            `(and ,@checklist)
          (car checklist))
      t)))

(defun strip-product-recognizers (products)
  (if (atom products)
      nil
    (cons (product-recognizer (car products))
          (strip-product-recognizers (cdr products)))))

;; if the term is a well-typed instance of the product type, then accessor
;; calls have the given types.  This function returns a singleton list
;; containing the theorem or nil if there are no types to worry about.
(defun accessor-type-thm (sum product)
  (let ((checklist (accessor-type-checklist product))
        (prodname (product-name product))
        (srecog (sum-recognizer sum))
        (sumname (sum-name sum))
        (recogs (strip-product-recognizers (sum-products sum)))
        (precog (product-recognizer product)))
    (if (eq checklist t)
        nil
      `((defthm ,(appsyms (list sumname prodname 'accessor-types))
          (implies (and (,srecog x)
                        (,precog x))
                   ,checklist)
          :hints (("Goal" :in-theory (disable ,@recogs ,prodname
                                              ,@(product-accessor-list
                                                 product))
                   :expand ((,srecog x)))))))))


(defun accessor-type-thms (sum products)
  (if (consp products)
      (append (accessor-type-thm sum (car products))
              (accessor-type-thms sum (cdr products)))
    nil))

(defun all-accessor-type-thms (sums)
  (if (consp sums)
      (append (accessor-type-thms (car sums) (sum-products (car sums)))
              (all-accessor-type-thms (cdr sums)))
    nil))

(defun negated-list (list)
  (if (atom list)
      nil
    (cons (list 'not (car list))
          (negated-list (Cdr list)))))


(defun negated-accessor-type-list (product)
  (let ((nlist (negated-list (accessor-type-checklist1
                              product (product-components product)))))
    (if (atom nlist)
        nil
      (if (atom (cdr nlist))
          (car nlist)
        `(or ,@nlist)))))

(defun bad-typing-thm (sum product)
  (let ((badtypes (negated-accessor-type-list product))
        (srecog (sum-recognizer sum))
        (precog (product-recognizer product))
        (sumname (sum-name sum))
        (pname (product-name product)))
    (if badtypes
        `((defthm ,(appsyms (list pname 'not sumname))
            (implies (and (,precog x)
                          ,badtypes)
                     (not (,srecog x)))
            :hints (("Goal" :in-theory
                     (disable ,precog
                              ,@(product-accessor-list product))))))
      nil)))

(defun sum-bad-typing-thms (sum products)
  (if (consp products)
      (append (bad-typing-thm sum (car products))
              (sum-bad-typing-thms sum (cdr products)))
    nil))

(defun all-bad-typing-thms (sums)
  (if (consp sums)
      (append (sum-bad-typing-thms (car sums) (sum-products (car sums)))
              (all-bad-typing-thms (cdr sums)))
    nil))






(defun sum-recognizer-constructor-thm (sum product)
  (let ((constructor (product-name product))
        (precog (product-recognizer product))
        (constr-call (constructor-call product))
        (recognizer (sum-recognizer sum))
        (type-checklist (type-checklist (product-components product))))
    `(defthm ,(appsyms (list recognizer constructor))
       ,(if (eq t type-checklist)
            `(,recognizer ,constr-call)
          `(iff (,recognizer ,constr-call) ,type-checklist))
     :hints (("Goal" :in-theory (disable ,precog ,constructor
                                         ,@(product-accessor-list product)))))))






(defun sum-recognizer-constructor-thms (sum products)
  (if (consp products)
      `(,(sum-recognizer-constructor-thm sum (car products))
        ,@(sum-recognizer-constructor-thms sum (cdr products)))
    nil))

(defun all-post-constructor-thms (sums)
  (if (consp sums)
      (append (sum-recognizer-constructor-thms (car sums) (sum-products (car sums)))
              (all-post-constructor-thms (cdr sums)))
    nil))

(defun recognizer-negate-list (products arg)
  (if (consp products)
      (cons `(not (,(product-recognizer (car products)) ,arg))
            (recognizer-negate-list (cdr products) arg))
    nil))

(defun not-equal-constructor-list (term products)
  (if (consp products)
      (cons `(not (equal ,term ,(constructor-call (car products))))
            (not-equal-constructor-list term (cdr products)))
    nil))

(defun exclusion-thm (product all-products)
  (let* ((rest (remove-equal product all-products))
         (not-prod (recognizer-negate-list
                    rest (constructor-call product)))
         (not-equal (not-equal-constructor-list
                     (constructor-call product) rest))
         (not-recs (recognizer-negate-list rest 'x))
         (name (product-name product))
         (recognizer (product-recognizer product)))
    (if not-prod
        `((defthm ,(appsyms (list name 'not-others))
            ,(if (= (len not-prod) 1)
                 (car not-prod)
               `(and ,@not-prod))
          :hints (("Goal" :in-theory (disable true-listp len))))

          (defthm ,(appsyms (list name 'not-other-constructors))
            ,(if (= (len not-equal) 1)
                 (car not-equal)
               `(and ,@not-equal)))
          (defthm ,(appsyms (list recognizer 'not-others))
            (implies (,recognizer x)
                     ,(if (= (len not-recs) 1)
                          (car not-recs)
                        `(and ,@not-recs)))
            :hints (("Goal" :in-theory (disable true-listp len)))
            :rule-classes :forward-chaining)
          )
      nil)))



(defun exclusion-thms (products all-products)
  (if (consp products)
      (append (exclusion-thm (car products) all-products)
              (exclusion-thms (cdr products) all-products))
    nil))

;; ;; strip the "-p" from the end of a sum/product recognizer name if the name's
;; ;; too short we'll get nil as the exploded name, which translates to the empty
;; ;; symbol '||, so don't use that as the name of a sum and also use a one- or
;; ;; two-letter predicate for the type of one of your fields.
;; (defun recognizer-strip (recname)
;;   (intern (coerce (butlast (explode-atom recname 10) 2) 'string) "ACL2"))


(defun name-matching-recognizer (sums predtyp)
  (if (atom sums)
      nil
    (if (eq predtyp (sum-recognizer (car sums)))
        (sum-name (car sums))
      (name-matching-recognizer (cdr sums) predtyp))))

(defun recursive-arg-and-call-list (sums components)
  (if (consp components)
      (let ((predtyp (component-type (car components))))
        (mv-let (args calls)
                (recursive-arg-and-call-list sums (cdr components))
                (if predtyp
                  (let ((typname (name-matching-recognizer sums predtyp))
                        (argname (component-name (car components))))
                    (if typname
                        (mv (cons argname args)
                            (cons `(,(appsyms (list typname 'measure)) ,argname)
                                  calls))
                      (mv (cons '& args) calls)))
                (mv (cons '& args) calls))))
    (mv nil nil)))

(defun measure-clause-list (sums products)
  (if (consp products)
      (let ((rest (measure-clause-list sums (cdr products))))
        (mv-let (args calls)
                (recursive-arg-and-call-list sums (product-components (car products)))
                (if (consp calls)
                    (cons `((,(product-name (car products)) ,@args)
                            (+ 1 ,@calls))
                          rest)
                  rest)))
    '((& 1))))


(defun measure-def (sum sums guard-opt)
  (let ((clauses (measure-clause-list sums (sum-products sum))))
    `(defun ,(appsyms (list (sum-name sum) 'measure)) (x)
       (declare (xargs :measure (acl2-count x)
                       ,@(case guard-opt
                           (:fast `(:guard (,(sum-recognizer sum) x)))
                           (nil nil)
                           (otherwise`(:guard t))))
                ,@(if (= (len clauses) 1)
                      `((ignore x))
                    nil))
       (pattern-match x
         ,@clauses))))

(defun measure-defs (sums all-sums guard-opt)
  (if (consp sums)
      (cons (measure-def (car sums) all-sums guard-opt)
            (measure-defs (cdr sums) all-sums guard-opt))
    nil))

(defun measure-mrec (sums guard-opt)
  (let ((mdefs (measure-defs sums sums guard-opt)))
    (if (= (len mdefs) 1)
        (car mdefs)
      `(mutual-recursion ,@mdefs))))

(defun field-measure-ineqs (sums measure prodname prodargs)
  (if (consp prodargs)
      (let* ((predtyp (component-type (car prodargs)))
             (arg (component-name (car prodargs)))
             (pred (name-matching-recognizer sums predtyp))
             (meas (appsyms (list pred 'measure)))
             (acc (appsyms (list prodname arg))))
        (if pred
            (cons `(< (,meas (,acc x))
                      (,measure x))
                  (field-measure-ineqs sums measure prodname
                                       (cdr prodargs)))
          (field-measure-ineqs sums measure prodname
                               (cdr prodargs))))
    nil))

(defun field-measure-thms (sums measure products)
  (if (consp products)
      (let ((ineqs (field-measure-ineqs sums measure (product-name (car products))
                                        (product-components (car products)))))
        (if ineqs
            (cons
             `(defthm ,(appsyms (list (product-name (car products)) 'measure-decr))
                (implies (,(product-recognizer (car products)) x)
                         ,(if (consp (cdr ineqs))
                              `(and ,@ineqs)
                            (car ineqs))))
             (field-measure-thms sums measure (cdr products)))
          (field-measure-thms sums measure (cdr products))))
    nil))

(defun sum-measure-thms (sums all-sums)
  (if (consp sums)
      (append
       (field-measure-thms all-sums (appsyms (list (sum-name (car sums)) 'measure))
                           (sum-products (car sums)))
       (sum-measure-thms (cdr sums) all-sums))
    nil))


(defun updater-defun (prodname args accs n guard-opt)
  (let ((name (nth (1- n) args)))
  `(defun ,(appsyms (list 'update prodname name)) (new x)
     ,@(if guard-opt
           `((declare (xargs :guard (,(recognizer-name prodname) x)
                             :guard-hints (("Goal" :in-theory (enable ,prodname))))))
         nil)
     (mbe :exec (update-nth ,n new x)
          :logic (,prodname ,@(update-nth (1- n) 'new accs))))))


(defun product-updater-defuns (prodname args accs n guard-opt)
  (if (zp n)
      nil
    (cons (updater-defun prodname args accs n guard-opt)
          (product-updater-defuns prodname args accs (1- n) guard-opt))))

(defun updater-defuns (products guard-opt)
  (if (atom products)
      nil
    (let* ((prodname (product-name (car products)))
           (components (product-components (car products)))
           (arglist (components-names components)))
      (append (product-updater-defuns prodname arglist
                                      (accessor-call-list (car products) components)
                                      (len arglist) guard-opt)
              (updater-defuns (cdr products) guard-opt)))))




(defun sums-products (sums)
  (if (atom sums)
      nil
    (append (sum-products (car sums))
            (sums-products (cdr sums)))))

(defun sums-names (sums)
  (if (atom sums)
      nil
    (cons (sum-name (car sums))
          (sums-names (cdr sums)))))

(defun defsums-fn (sums kwalist extfns)
  (let* ((products (sums-products sums))
         (guard-option (kwassoc :guard t kwalist))
         (hons-opt (kwassoc :hons nil kwalist))
         (compact-opt (kwassoc :compact t kwalist))
         (accessor-option (kwassoc :short-accessors t kwalist))
         (update-option (kwassoc :updatable nil kwalist))
         (arith-option (kwassoc :arithmetic t kwalist))
         (theory-name (appsyms (sums-names sums)))
         (before-label (appsyms (list 'before theory-name)))
        )
  `(encapsulate
    nil
    (deflabel ,before-label)
    (local (in-theory (enable product-type (:executable-counterpart
                                            product-type))))
    ,@(if arith-option
          `((local (include-book
                    "arithmetic/top-with-meta" :dir :system)))
        nil)
    ,@(basic-products-defs products guard-option accessor-option hons-opt compact-opt)

    ,(sum-recognizers-def sums extfns guard-option)

    ,@(sum-compound-rec-thms sums compact-opt)

    ,@(sum-possibility-thms sums)

    ,@(exclusion-thms products products)

    ,@(all-accessor-type-thms sums)

    ,@(all-bad-typing-thms sums)

    ;; ,@(constructor-defs products guard-option)

    ,@(all-post-constructor-thms sums)

    (deftheory ,(appsyms (list theory-name 'functions))
      (rules-of-type :DEFINITION
                     (set-difference-theories
                      (current-theory :here)
                      (current-theory ',before-label))))

    ;; We want fast recognizer function definitions enabled but not executable
    ;; counterparts.
    ,@(if (eq guard-option :fast)
          (product-fast-recs-sums sums)
        nil)

    (deftheory ,(appsyms (list theory-name 'executable-counterparts))
      (rules-of-type :EXECUTABLE-COUNTERPART
                     (set-difference-theories
                      (current-theory :here)
                      (current-theory ',before-label))))

    (deftheory ,(appsyms (list theory-name 'inductions))
      (rules-of-type :INDUCTION
                     (set-difference-theories
                      (current-theory :here)
                      (current-theory ',before-label))))


    (deftheory ,(appsyms (list theory-name 'theorems))
      (set-difference-theories (set-difference-theories
                                (current-theory :here)
                                (current-theory ',before-label))
                               (union-theories
                                (theory ',(appsyms (list theory-name
                                                        'executable-counterparts)))
                                (union-theories
                                 (theory ',(appsyms (list theory-name
                                                         'functions)))
                                 (theory ',(appsyms (list theory-name 'inductions)))))))

    ,@(products-type-thms products)

    (deftheory ,(appsyms (list theory-name 'product-type-theorems))
      (set-difference-theories (current-theory :here)
                               (current-theory ',(appsyms (list theory-name 'theorems)))))


    (in-theory (disable ,(appsyms (list theory-name 'functions))
                        ,(appsyms (list theory-name
                                        'executable-counterparts))
                        ,(appsyms (list theory-name 'product-type-theorems))))

    ,@(and (not extfns)
           `(,(measure-mrec sums guard-option)
             ,@(sum-measure-thms sums sums)))

    ,@(if update-option
          (updater-defuns products guard-option)
        nil)

    (deftheory ,(appsyms (list theory-name 'entire-theory))
      (set-difference-theories (universal-theory :here)
                               (universal-theory ',before-label)))
    )))




(defxdoc defsum
  :parents (miscellaneous)
  :short "Define a recursive data type similar to a Haskell type definition."
  :long "<p>Example:</p>

 @({
 (include-book \"tools/defsum\" :dir :system)
 (set-ignore-ok :warn)
 (defsum my-list
   (my-empty)
   (my-cons car (my-list-p cdr)))
 })

<p>This declaration says that an object is of the type @('my-list') if it
is either of the type @('my-empty') or @('my-cons'), where @('my-empty')
is an empty structure and @('my-cons') is a structure with two fields:
the @('car'), an arbitrary object; and the @('cdr') which is of type
@('my-list').  In this case, recognizers @('my-list-p'), @('my-empty-p'),
and @('my-cons-p') are defined along with constructors @('my-empty') and
@('my-cons') and destructors @('my-cons-car') and @('my-cons-cdr').  The
necessary macros are also defined to enable pattern-matching using the
constructors (see @(see pattern-match)).  For mutually-recursive data types
see @(see defsums).  It may also be informative to look at the translated
version of a defsum form using :trans1.</p>

<p>Note that a defsum form produces several logic-mode events inside an
encapsulate.  Despite the author's best intentions, not every such
automatically-generated event will complete successfully.  If you
encounter a defsum form that fails, please email it to
sswords@cs.utexas.edu (with or without fixing the bug yourself.)</p>

<p>Several theorems about the new type are defined so as to enable
reasoning based on their abstract model rather than their underlying
list representation. For most reasoning these theorems should be
sufficient without enabling the function definitions or
executable-counterparts.  In case these do need to be enabled,
theories named (for the above example) @('my-list-functions') and
@('my-list-executable-counterparts') are defined.</p>

<p>In addition to the recognizer, constructor, and destructor functions,
a measure function is also defined which counts the number of nested
objects of the sum type.  In the example above, the measure function
is my-list-measure and the measure of an object is 1 if it is not a
my-cons, and 1 plus the measure of its my-cons-cdr if it is.</p>

<p>Defsum accepts some keyword arguments.  Be aware that not all
combinations of these arguments have been tested extensively.  Again,
please send bug reports to sswords@cs.utexas.edu if you find a defsum
form that does not succeed.</p>

<p>@(':arithmetic') - By default, each @('defsum') event expands to an
encapsulate which locally includes the book arithmetic/top-with-meta.
If an incompatible arithmetic book has already been included, this may
cause the defsum to fail.  But the other arithmetic book may also have
theorems that allow the defsum event to succeed if we don't attempt to
include the arithmetic book.  This can be done by setting
@(':arithmetic nil').</p>

<p>@(':guard') - may be set to @('t'), @('nil'), or @(':fast').  By default
it is set to @('t'), in which case minimal guards are set for all
functions.  If set to @('nil'), guards will not be verified for any
functions; this is useful in case some field type recognizers don't
have their guards verified.  If set to @(':fast'), an additional
recognizer for each product is defined named ``foo-p-fast'' if the
product is named foo.  This has a guard such that its argument must be
a valid sum object.  It is then logically equivalent to the other
recognizer, but in execution only checks that the symbol in the car of
the object matches the name of the product.  The pattern matcher for
each product then uses the fast recognizers.  Thus fast guards result
in a small (?) gain in performance in exchange for a (hopefully
trivial) degradation in logical complexity.</p>

<p>@(':short-accessors') - @('t') by default; may be set to @('nil').  If
@('t'), each field accessor first checks whether the object is of the
correct product type and returns nil if not.  This allows for an
additional theorem saying that if x is not of the correct product
type, then the accessor returns nil.  If @('nil'), the nth accessor
returns @('(nth n x)') regardless of x's type.  When guards are turned
on, this is implemented with an @('mbe') so there should be no
performance difference between the two options.  When guards are off,
performance will be somewhat better if this feature is turned off.</p>

<p>@(':compact') - By default, a defsum constructor makes a product
object by putting its components into a cons tree using n-1 conses,
but a prettier list representation is also supported which uses n
conses to store the elements in a flattened list which is easier to
read when printed.  Set @(':compact nil') if you prefer this
representation.</p>

<p>@(':hons') - If HONS mode is in use, the flag @(':hons t') causes all
defsum forms to be built with HONSes rather than regular conses.  See
@(see hons-and-memoization).</p>

<p>It may be necessary to include some function definition in a mutual
recursion with the sum recognizer function.  In this case simply put
the defun form inside the defsum form, i.e.</p>

 @({
 (defsum lisp-term
   (lisp-atom val)
   (func-app (symbolp function) (lisp-term-listp args))
   (defun lisp-term-listp (args)
     (declare (xargs :guard t))
     (if (atom args)
         (null args)
       (and (lisp-term-p (car args))
            (lisp-term-listp (cdr args))))))
 })

<p>If such a function is included, however, no measure function will be
defined for the sum.</p>

<p>Usually it is not necessary to specify a measure for such a function;
because there is currently no way of directly specifying the measure
for the sum's recognizer, specifying an exotic measure on such a
function is likely to fail.  If you come up against this limitation,
please send an example to sswords@cs.utexas.edu.</p>")

(defmacro defsum (name &rest defs)
  (mv-let
   (sum extfns kwalist) (defsum-munge-input name defs)
   (defsums-fn sum kwalist extfns)))



(defxdoc defsums
  :parents (miscellaneous)
  :short "Define a set of mutually-recursive data types."
  :long "<p>Example:</p>

 @({
 (defsums
   (my-term
    (my-atom val)
    (my-application (symbolp function) (my-term-list-p args)))
   (my-term-list
    (my-nil)
    (my-cons (my-term-p car) (my-term-list-p cdr))))
 })

<p>See @(see defsum).  This form is used when you want to define two or more
types which may be constructed from each other.  In the above example,
@('my-term') and @('my-term-list') could not be defined using independent
defsum forms; their recognizer functions need to be defined in a mutual
recursion.</p>

<p>Defsums accepts the same keyword arguments as defsum.</p>

<p>If you want some function to be defined inside the same mutual-recursion in
which the recognizers for each of the sums and products are defined, you may
insert the defun inside the def-mutual-sums form, i.e.</p>

 @({
 (defsums
  (foo
   (bla (bar-p x))
   (ble (foo-p x) (bar-p y)))
  (bar
   (blu (integerp k))
   (blo (symbolp f) (foo-list-p a)))
  (defun foo-list-p (x)
    (declare (xargs :guard t))
    (if (atom x)
        (null x)
      (and (foo-p (car x))
           (foo-list-p (cdr x))))))
 })

<p>Usually it is not necessary to specify a measure for such a function;
because there is currently no way of directly specifying the measures on the
sums' recognizers, specifying an exotic measure on such a function is likely to
fail.</p>

<p>As with defsum, def-mutual-sums requires the (possibly local) inclusion of
the defsum-thms book.</p>")

(defmacro defsums (&rest sums)
  (mv-let
   (sums extfns kwalist) (defsums-munge-input sums)
   (defsums-fn sums kwalist extfns)))



;; (logic)

;; ;; tests, so this book won't certify if it's broken


;; (local
;;  (defsum bla
;;    :guards :fast
;;    (foo (bla-p x) (integerp y))
;;    (bar a x (stringp y) (bla-p z))
;;    (abc)))

;; (local
;;  (defsums
;; ;   :updatable t
;;    (my-term
;;     (my-atom val)
;;     (my-application (symbolp function) (my-term-list-p args)))
;;    (my-term-list
;;     (my-nil)
;;     (my-cons (my-term-p car) (my-term-list-p cdr)))))

;; (local
;;  (defsum lisp-term
;;    :measure-multiplier 10
;;    (lisp-atom val)
;;    (func-app (symbolp function) (lisp-term-listp args))
;;    (defun lisp-term-listp (args)
;;      (declare (xargs :guard t
;;                      :measure (o* 10 (1+ (acl2-count args)))))
;;      (if (atom args)
;;          (null args)
;;        (and (lisp-term-p (car args))
;;             (lisp-term-listp (cdr args)))))))