/usr/share/acl2-7.2dfsg/books/tools/defsum.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 | ; Defsum: a macro for defining recursive data types
; by Sol Swords & William Cook
; Please email bug reports to sswords@cs.utexas.edu.
;
; For primary documentation of the content of this book, see the :doc
; topics defsum, defsums, and pattern-match.
;
; This book defines the macros defsum and defsums which can be used to
; define recursive data types analogous to type definitions in
; Haskell. These types are recursive labeled sums of products.
;
; Proofs written using the new type are based on the abstract model of
; constructors, recognizers, and field access. The underlying list
; representation is (almost) completely hidden: the definitions and
; executable-counterparts of functions operating on the list structure are
; disabled. As a result, proofs using the type only require reasoning about the
; type itself, not its representation. Unlike records, but like Haskell,
; components of a data type cannot be modified once constructed.
;
; A simple example, which defines a simple list structure, is:
;
; (defsum my-list
; (my-empty)
; (my-cons car (my-list-p cdr)))
;
; The first item of each list is the *constructor* and the remaining
; items are fields. Constructors with no arguments, like my-empty,
; represent abstract constants. For each constructor, a recognizer is
; also defined, and functions to extract fields from the constructed
; values. The overall type also has a recognizer. Here
; are all the functions defined by the above:
;
; constructors: my-empty, my-cons
; recognizers: my-list-p, my-empty-p, my-cons-p
; fields: my-cons-car, my-cons-cdr
;
; The sum recognizer my-list-p recognizes only completely well-formed
; structures. The product recognizers my-empty and my-cons, on the other hand,
; only check the top level "shape" and do not check any types. (my-cons-p x),
; for example, equals (and (true-listp x) (= (len x) 3) (eq (car x) 'my-cons)).
;
; The example above corresponds to the standard Haskell definition:
; data MyList a = MyEmpty | MyCons a (MyList a)
; Haskell also allows the fields to be named:
; data MyList a = MyEmpty | MyCons { car :: a, cdr :: MyList a }
;
; Here is another example:
;
; (defsum person
; (student (stringp name) (integerp year) major)
; (professor name degree-year school (symbolp topic))
; (administrator name title (person-p manager)))
;
; Using this example, we can illustrate the matching form:
;
; (pattern-match x
; ((student nm yr maj) body1)
; ((professor a b c d) body2)
; ((administrator p d q) body3)
; (& body4))
;
; This is still work in progress. Related work (which could be much more
; appropriate for any given application) includes the following (see the files
; for proper attribution):
;
; the records book, distributed as books/misc/records.lisp; the typed records
; book, distributed as books/workshops/2004/greve/support/defrecord.lisp; and
; the structures book, distributed as books/data-structures/structures.lisp.
;
; To see how this library works in detail, you can examine the events
; introduced by a defsum form such as, in this example, the above "my-list"
; form. The following will print out the list of events:
; (include-book "defsum")
; (include-book "defsum-thms")
; :trans1 (defsum my-list
; (my-empty)
; (my-cons car (my-list-p cdr)))
(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
(include-book "pattern-match")
(include-book "types-misc")
(set-ignore-ok t)
(set-bogus-mutual-recursion-ok t)
(defun product-type (x)
(declare (xargs :guard (consp x)))
(car x))
(in-theory (disable product-type (:executable-counterpart product-type)))
(program)
;; Uniform ways of accessing the structure information.
;; The top-level structure is just a list of sums. The global keyword-alist is
;; passed around separately.
;; Each sum in the list has just a name and a product list. The global keyword
;; alist is stored separately. In a mutual-defsum, the keywords are assumed to
;; be shared.
(defun sum-name (sum)
(car sum))
(defun sum-products (sum)
(cdr sum))
(defun sum-recognizer (sum)
(appsyms (list (sum-name sum) 'p)))
;; Each product also has an associated recognizer; by convention if the product
;; name (and constructor name) is foo, the recognizer is foo-p. However, a
;; recognizer (possibly predefined) can also be specified with the :recognizer
;; keyword.
(defun sym-recognizer (sym)
(appsyms (list sym 'p)))
(defun product-recognizer (product)
(or (kwassoc :recognizer nil (product-kwalist product))
(sym-recognizer (product-name product))))
;; That concludes the functions for accessing elements of the internal
;; structure. Now we need the ability to transform user input into the
;; internal structure.
(defun defsum-munge-product (product)
(mv-let (product kwalist)
(strip-keywords product)
(cons
;; name and component listing
(cons (car product)
(munge-components (cdr product)))
;; keywords
kwalist)))
(defun defsum-munge-products (products)
(if (atom products)
nil
(cons (defsum-munge-product (car products))
(defsum-munge-products (cdr products)))))
;; Separates external functions from product list (or sum list for
;; defsums.) Thus we don't allow the sume "defun-p" or the
;; constructor defun.
(defun strip-extfns (products)
(if (atom products)
(mv nil nil)
(mv-let (prods extfns)
(strip-extfns (cdr products))
(if (and (consp (car products))
(eq (caar products) 'defun))
(mv prods (cons (car products) extfns))
(mv (cons (car products) prods) extfns)))))
;; Converts top-level defsum input into internal form. Returns the
;; list of sums (just one in this case), the list of functions to be
;; defined in the mutual-recursion with the sum recognizer, and the
;; global keyword alist.
(defun defsum-munge-input (name rest)
(mv-let (products kwalist)
(strip-keywords rest)
(mv-let (products extfns)
(strip-extfns products)
(mv (list (cons name (defsum-munge-products products)))
extfns
kwalist))))
(defun defsums-munge-sums (sums)
(if (atom sums)
nil
(cons
(cons (caar sums) (defsum-munge-products (cdar sums)))
(defsums-munge-sums (cdr sums)))))
;; Converts top-level defsums input into internal form. Returns the
;; sums, the functions to be defined with the sums, and the global
;; keyword alist.
(defun defsums-munge-input (args)
(mv-let (sums kwalist)
(strip-keywords args)
(mv-let (sums extfns)
(strip-extfns sums)
(mv (defsums-munge-sums sums) extfns kwalist))))
;; recognzier name given a constructor name; product-recognzier is preferred
(defun recognizer-name (sym)
(appsyms (list sym 'p)))
;; add the -p to a list of symbols
(defun recognizer-list (syms)
(if (atom syms)
nil
(cons (recognizer-name (car syms))
(recognizer-list (cdr syms)))))
;; Constructor call given a complete product declaration
(defun constructor-call (product)
(cons (product-name product)
(components-names (product-components product))))
(defun product-accessor-list (product)
(accessor-list product (product-components product)))
(defun accessor-call-list (product components)
(if (consp components)
(cons `(,(accessor-name product (car components)) x)
(accessor-call-list product (cdr components)))
nil))
;; Constructor definition for a product.
(defun constructor-def (product guard-opt hons-opt compact-opt)
(let* ((constr (product-name product))
(args (components-names (product-components product)))
(cons (if hons-opt 'hons 'cons)))
`(defun ,constr ,args
,@(if guard-opt
`((declare (xargs :guard t)))
nil)
,(if compact-opt
`(,cons (quote ,constr)
,(argtree cons args))
`(,(if hons-opt 'hons-list 'list)
(quote ,constr) ,@args)))))
;; Definition for the recognizer of a product
(defun product-recognizer-def (product compact-opt)
(let* ((nargs (len (product-components product)))
(tests (if compact-opt
(cons `(consp x) (recog-consp-list nargs `(cdr x)))
`((true-listp x) (= (length x) ,(1+ nargs))))))
`(defun ,(product-recognizer product) (x)
(declare (xargs :guard t))
(and ,@tests
(eq (car x) (quote ,(product-name product)))))))
;; Definition of the nth accessor for a product
(defun accessor-def (product component ncomps n guard-opt accessor-opt compact-opt)
(let ((rec (product-recognizer product))
(acc (if compact-opt (tree-accessor n ncomps `(cdr x) nil)
`(nth ,n x))))
`(defun ,(accessor-name product component) (x)
,@(if guard-opt
`((declare (xargs :guard (,rec x))))
nil)
,@(if (and guard-opt accessor-opt)
`((mbe :logic (and (,rec x) ,acc)
:exec ,acc))
(if accessor-opt
`((and (,rec x) ,acc))
`(,acc))))))
;; Define all accessors for a product
(defun accessors-def (product components ncomps n guard-opt accessor-opt compact-opt)
(if (consp components)
(cons (accessor-def product (car components) ncomps n guard-opt
accessor-opt compact-opt)
(accessors-def product (cdr components) ncomps (1+ n) guard-opt
accessor-opt compact-opt))
nil))
(defun product-function-defs (product guard-opt hons-opt compact-opt accessor-opt)
(let* ((kwalist (product-kwalist product))
(predef (kwassoc :predef nil (product-kwalist product)))
(recog (kwassoc :recognizer nil kwalist)))
(append (and (not (or recog predef))
(list (product-recognizer-def product compact-opt)))
(and (not predef)
(cons (constructor-def product guard-opt hons-opt compact-opt)
(accessors-def product
(product-components product)
(len (product-components product)) 1
guard-opt
accessor-opt compact-opt))))))
;; Makes the pattern matcher macro for the product.
(defun product-pattern-matcher (product guard-opt)
`(def-pattern-match-constructor
,(if (eq guard-opt :fast)
(appsyms (list (product-name product) 'slow))
(product-name product))
,(product-recognizer product) ,(product-accessor-list product)))
(defun product-compound-rec-thm (product compact-opt)
`(defthm ,(appsyms (list (product-name product) 'p 'compound-recognizer))
(implies (,(product-recognizer product) x)
,(if compact-opt `(consp x)
`(and (consp x)
(true-listp x))))
:rule-classes :compound-recognizer))
(defun function-call-list (fn-preargs list postargs)
(if (atom list)
nil
(cons (append fn-preargs (cons (car list) postargs))
(function-call-list fn-preargs (cdr list) postargs))))
(defun args-cons-count (nargs)
(if (or (zp nargs) (= nargs 1))
0
(let ((flo (floor nargs 2)))
(+ 1 (args-cons-count flo)
(args-cons-count (- nargs flo))))))
(defun constructor-acl2-count-thm (product compact-opt)
(let* ((nargs (len (product-components product)))
(conses (if compact-opt (1+ (args-cons-count nargs))
(1+ nargs))))
`(defthm ,(appsyms (list (product-name product) 'acl2-count))
(equal (acl2-count ,(constructor-call product))
(+ ,conses
,@(function-call-list '(acl2-count)
(components-names (product-components product))
nil))))))
(defun accessor-short-circuit-thm (product component)
(let* ((acc (accessor-name product component))
(rec (product-recognizer product)))
`(defthm ,(appsyms (list 'not rec acc))
(implies (not (,rec x))
(equal (,acc x) nil)))))
(defun accessor-short-circuit-thms (product components)
(if (consp components)
(cons (accessor-short-circuit-thm product (car components))
(accessor-short-circuit-thms product (cdr components)))
nil))
(defun accessor-acl2-count-thm (product component)
(let ((acc (accessor-name product component))
(recognizer (product-recognizer product)))
`(defthm ,(appsyms (list acc 'acl2-count))
(implies (,recognizer x)
(< (acl2-count (,acc x))
(acl2-count x)))
:hints (("Goal" :in-theory
(e/d (acl2-count-car-cdr-of-cons-linear
acl2-count-nth-of-len-2-or-greater-linear)
(nth acl2-count))))
:rule-classes (:rewrite :linear))))
(defun accessor-acl2-count-thms (product components)
(if (consp components)
(cons (accessor-acl2-count-thm product (car components))
(accessor-acl2-count-thms product (cdr components)))
nil))
(defun product-recognizer-constructor-thm (product)
(let ((constructor (product-name product))
(constr-call (constructor-call product))
(recognizer (product-recognizer product)))
`(defthm ,(appsyms (list recognizer constructor))
(,recognizer ,constr-call))))
;; destructor elimination rule
(defun product-elim-thm (product compact-opt)
(let ((recognizer (product-recognizer product))
(name (product-name product))
(components (product-components product)))
(if (consp components)
`(defthm ,(appsyms (list name 'elim))
(implies (,recognizer x)
(equal (,name
,@(accessor-call-list product components))
x))
,@(if compact-opt
nil
`(:hints (("Goal" :in-theory
(enable nth-open
len-0-true-listp-not-x)))))
:rule-classes (:rewrite :elim))
`(defthm ,(appsyms (list name 'unique))
(implies (,recognizer x)
(equal x (,name)))
:rule-classes :forward-chaining))))
(defun product-type-thms (product)
(let ((recognizer (product-recognizer product))
(name (product-name product))
(call (constructor-call product))
(components (product-components product)))
`((defthm ,(appsyms (list recognizer 'product-type))
(implies (,recognizer x)
(equal (product-type x) ',name)))
(defthm ,(appsyms (list 'product-type recognizer))
(implies (not (equal (product-type x) ',name))
(not (,recognizer x))))
(defthm ,(appsyms (list name 'product-type))
(equal (product-type ,call) ',name))
(defthm ,(appsyms (list name 'equal-product-type))
(implies (not (equal (product-type ,call) (product-type x)))
(not (equal ,call x)))))))
(defun accessor-constructor-thm (product component)
(let ((acc (accessor-name product component))
(constr-call (constructor-call product))
(arg (component-name component)))
`(defthm ,(appsyms (list acc (product-name product)))
(equal (,acc ,constr-call)
,arg))))
(defun constructor-component-thm (product component)
(let ((name (product-name product))
(arg (component-name component)))
`(defthm ,(appsyms (list name 'not-equal arg))
(not (equal ,(constructor-call product)
,arg))
;; :hints (("Goal" :use (:instance ,(appsyms (list name arg
;; 'acl2-count))
;; (x ,(constructor-call product)))
;; :in-theory (disable ,(appsyms (list name arg 'acl2-count)))))
)))
(defun product-component-thm (product component)
(let* ((name (product-name product))
(acc (accessor-name product component))
(recognizer (product-recognizer product)))
`(defthm ,(appsyms (list name 'not-equal acc))
(implies (,recognizer x)
(not (equal (,acc x) x)))
:hints (("Goal" :use ,(appsyms (list name 'elim))
:in-theory (disable ,name ,acc ,recognizer))))))
;; if one of the components is different, the product is different
(defun arg-difference-thm (product component)
(let ((arg (component-name component))
(name (product-name product))
(acc (accessor-name product component)))
`(defthm ,(appsyms (list 'difference arg name))
(implies (not (equal ,arg (,acc x)))
(not (equal ,(constructor-call product) x))))))
(defun product-arg-thms (product components)
(if (consp components)
`(,(accessor-constructor-thm product (car components))
,(constructor-component-thm product (car components))
,(product-component-thm product (car components))
,(arg-difference-thm product (car components))
,@(product-arg-thms product (cdr components)))
nil))
(defun product-theorems (product accessor-opt compact-opt)
(let* ((kwalist (product-kwalist product))
(predef (kwassoc :predef nil kwalist))
(recog (kwassoc :recognizer nil kwalist))
(components (product-components product)))
`(,@(and (not predef) (not recog)
(list (product-compound-rec-thm product compact-opt)))
,@(and (not predef)
(list (constructor-acl2-count-thm product compact-opt)))
,@(accessor-acl2-count-thms product components)
,@(if accessor-opt
(accessor-short-circuit-thms product components)
nil)
,(product-recognizer-constructor-thm product)
,(product-elim-thm product compact-opt)
,@(product-arg-thms product components))))
(defun basic-product-defs (product guard-opt accessor-opt hons-opt compact-opt)
(append (product-function-defs product guard-opt hons-opt compact-opt accessor-opt)
(product-theorems product accessor-opt compact-opt)
(list (product-pattern-matcher product guard-opt))))
(defmacro defproduct (&rest product)
(let ((product (defsum-munge-product product)))
`(progn
,@(basic-product-defs product
(kwassoc :guard nil (product-kwalist product))
(kwassoc :short-accessors t (product-kwalist
product))
(kwassoc :hons nil (product-kwalist product))
(kwassoc :compact t (product-kwalist product))))))
(defun basic-products-defs (products guard-opt accessor-opt hons-opt
compact-opt)
(if (atom products)
nil
(append (basic-product-defs (car products) guard-opt accessor-opt hons-opt
compact-opt)
(basic-products-defs (cdr products) guard-opt accessor-opt hons-opt
compact-opt))))
(defun products-type-thms (products)
(if (endp products)
nil
(append (product-type-thms (car products))
(products-type-thms (cdr products)))))
;; list of statements about types from a product declaration
(defun type-checklist1 (components)
(if (consp components)
(let* ((component (car components))
(type (component-type component))
(name (component-name component)))
(if type
(cons (list type name)
(type-checklist1 (cdr components)))
(type-checklist1 (cdr components))))
nil))
;; type information from a product declaration, in the form of a single term:
;; t, a single predicate call, or (and ...).
(defun type-checklist (components)
(let ((checklist (type-checklist1 components)))
(if checklist
(if (consp (cdr checklist))
`(and ,@checklist)
(car checklist))
t)))
;; The clauses for pattern-matching for the sum recognizer
(defun sum-recognizer-clause (product guard-opt)
(let* ((type-checklist (type-checklist (product-components product)))
(constr (constructor-call product))
(pattern (if (eq guard-opt :fast)
(cons (appsyms (list (car constr) 'slow))
(cdr constr))
constr)))
(list pattern type-checklist)))
(defun sum-recognizer-clauses (products guard-opt)
(if (consp products)
(cons (sum-recognizer-clause (car products) guard-opt)
(sum-recognizer-clauses (cdr products) guard-opt))
nil))
;; Definition of the recognizer for a sum (with type information)
(defun sum-recognizer-def (sum guard-opt)
`(defun ,(sum-recognizer sum) (x)
(declare
(xargs :measure (1+ (acl2-count x))
,@(if guard-opt
`(:guard t)
nil)
:hints (("goal"
:in-theory
(enable
acl2-count-nth-of-len-2-or-greater-linear)))))
(pattern-match x
,@(sum-recognizer-clauses (sum-products sum) guard-opt))))
(defun sum-recognizer-defs (sums guard-opt)
(if (consp sums)
(cons (sum-recognizer-def (car sums) guard-opt)
(sum-recognizer-defs (cdr sums) guard-opt))
nil))
;; if it's a mutual sum declaration or includes more functions for the mutual
;; recursion, then the mutual recursion for the sum recognizers. otherwise,
;; just the one sum recognizer function.
(defun sum-recognizers-def (sums extfns guard-opt)
(if (and (= (len sums) 1) (not extfns))
(sum-recognizer-def (car sums) guard-opt)
`(mutual-recursion ,@(sum-recognizer-defs sums guard-opt)
,@extfns)))
(defun sum-compound-rec-thm (sum compact-opt)
(let ((sumname (sum-name sum))
(recognizer (sum-recognizer sum)))
`(defthm ,(appsyms (list sumname 'compound-recognizer))
(implies (,recognizer x)
,(if compact-opt
`(consp x)
`(and (consp x)
(true-listp x))))
:rule-classes :compound-recognizer)))
(defun sum-compound-rec-thms (sums compact-opt)
(if (consp sums)
(cons (sum-compound-rec-thm (car sums) compact-opt)
(sum-compound-rec-thms (cdr sums) compact-opt))
nil))
(defun recognizer-call-list (products)
(if (consp products)
(cons `(,(product-recognizer (car products))
x)
(recognizer-call-list (cdr products)))
nil))
(defun sum-possibility-thm (sum)
(let ((rec-list (recognizer-call-list (sum-products sum)))
(name (sum-name sum))
(recognizer (sum-recognizer sum)))
`(defthm ,(appsyms (list name 'possibilities))
(implies (,recognizer x)
,(if (consp (cdr rec-list))
`(or ,@rec-list)
(car rec-list)))
:rule-classes :forward-chaining)))
(defun sum-possibility-thms (sums)
(if (consp sums)
(cons (sum-possibility-thm (car sums))
(sum-possibility-thms (cdr sums)))
nil))
(defun product-fast-recs (products sumrec)
(if (atom products)
nil
(let* ((product (car products))
(pname (product-name product))
(prec (product-recognizer product))
(prfast (appsyms (list prec 'fast))))
(append
`((defun ,prfast (x)
(declare (xargs :guard (,sumrec x)))
(mbe :exec (eq (car x) ',pname)
:logic (,prec x)))
(def-pattern-match-constructor ,pname ,prfast
,(product-accessor-list product)))
(product-fast-recs (cdr products) sumrec)))))
(defun product-fast-recs-sums (sums)
(if (atom sums)
nil
(append (product-fast-recs (sum-products (car sums))
(sum-recognizer (car sums)))
(product-fast-recs-sums (cdr sums)))))
;; type checklist of accessor calls for a product
(defun accessor-type-checklist1 (product components)
(if (consp components)
(let ((ctype (component-type (car components)))
(prodname (product-name product))
(acc (accessor-name product (car components))))
(if ctype
(cons `(,ctype (,acc x))
(accessor-type-checklist1 product (cdr components)))
(accessor-type-checklist1 product (cdr components))))
nil))
;; the above, in the form of a single term
(defun accessor-type-checklist (product)
(let ((checklist (accessor-type-checklist1 product (product-components product))))
(if (consp checklist)
(if (consp (cdr checklist))
`(and ,@checklist)
(car checklist))
t)))
(defun strip-product-recognizers (products)
(if (atom products)
nil
(cons (product-recognizer (car products))
(strip-product-recognizers (cdr products)))))
;; if the term is a well-typed instance of the product type, then accessor
;; calls have the given types. This function returns a singleton list
;; containing the theorem or nil if there are no types to worry about.
(defun accessor-type-thm (sum product)
(let ((checklist (accessor-type-checklist product))
(prodname (product-name product))
(srecog (sum-recognizer sum))
(sumname (sum-name sum))
(recogs (strip-product-recognizers (sum-products sum)))
(precog (product-recognizer product)))
(if (eq checklist t)
nil
`((defthm ,(appsyms (list sumname prodname 'accessor-types))
(implies (and (,srecog x)
(,precog x))
,checklist)
:hints (("Goal" :in-theory (disable ,@recogs ,prodname
,@(product-accessor-list
product))
:expand ((,srecog x)))))))))
(defun accessor-type-thms (sum products)
(if (consp products)
(append (accessor-type-thm sum (car products))
(accessor-type-thms sum (cdr products)))
nil))
(defun all-accessor-type-thms (sums)
(if (consp sums)
(append (accessor-type-thms (car sums) (sum-products (car sums)))
(all-accessor-type-thms (cdr sums)))
nil))
(defun negated-list (list)
(if (atom list)
nil
(cons (list 'not (car list))
(negated-list (Cdr list)))))
(defun negated-accessor-type-list (product)
(let ((nlist (negated-list (accessor-type-checklist1
product (product-components product)))))
(if (atom nlist)
nil
(if (atom (cdr nlist))
(car nlist)
`(or ,@nlist)))))
(defun bad-typing-thm (sum product)
(let ((badtypes (negated-accessor-type-list product))
(srecog (sum-recognizer sum))
(precog (product-recognizer product))
(sumname (sum-name sum))
(pname (product-name product)))
(if badtypes
`((defthm ,(appsyms (list pname 'not sumname))
(implies (and (,precog x)
,badtypes)
(not (,srecog x)))
:hints (("Goal" :in-theory
(disable ,precog
,@(product-accessor-list product))))))
nil)))
(defun sum-bad-typing-thms (sum products)
(if (consp products)
(append (bad-typing-thm sum (car products))
(sum-bad-typing-thms sum (cdr products)))
nil))
(defun all-bad-typing-thms (sums)
(if (consp sums)
(append (sum-bad-typing-thms (car sums) (sum-products (car sums)))
(all-bad-typing-thms (cdr sums)))
nil))
(defun sum-recognizer-constructor-thm (sum product)
(let ((constructor (product-name product))
(precog (product-recognizer product))
(constr-call (constructor-call product))
(recognizer (sum-recognizer sum))
(type-checklist (type-checklist (product-components product))))
`(defthm ,(appsyms (list recognizer constructor))
,(if (eq t type-checklist)
`(,recognizer ,constr-call)
`(iff (,recognizer ,constr-call) ,type-checklist))
:hints (("Goal" :in-theory (disable ,precog ,constructor
,@(product-accessor-list product)))))))
(defun sum-recognizer-constructor-thms (sum products)
(if (consp products)
`(,(sum-recognizer-constructor-thm sum (car products))
,@(sum-recognizer-constructor-thms sum (cdr products)))
nil))
(defun all-post-constructor-thms (sums)
(if (consp sums)
(append (sum-recognizer-constructor-thms (car sums) (sum-products (car sums)))
(all-post-constructor-thms (cdr sums)))
nil))
(defun recognizer-negate-list (products arg)
(if (consp products)
(cons `(not (,(product-recognizer (car products)) ,arg))
(recognizer-negate-list (cdr products) arg))
nil))
(defun not-equal-constructor-list (term products)
(if (consp products)
(cons `(not (equal ,term ,(constructor-call (car products))))
(not-equal-constructor-list term (cdr products)))
nil))
(defun exclusion-thm (product all-products)
(let* ((rest (remove-equal product all-products))
(not-prod (recognizer-negate-list
rest (constructor-call product)))
(not-equal (not-equal-constructor-list
(constructor-call product) rest))
(not-recs (recognizer-negate-list rest 'x))
(name (product-name product))
(recognizer (product-recognizer product)))
(if not-prod
`((defthm ,(appsyms (list name 'not-others))
,(if (= (len not-prod) 1)
(car not-prod)
`(and ,@not-prod))
:hints (("Goal" :in-theory (disable true-listp len))))
(defthm ,(appsyms (list name 'not-other-constructors))
,(if (= (len not-equal) 1)
(car not-equal)
`(and ,@not-equal)))
(defthm ,(appsyms (list recognizer 'not-others))
(implies (,recognizer x)
,(if (= (len not-recs) 1)
(car not-recs)
`(and ,@not-recs)))
:hints (("Goal" :in-theory (disable true-listp len)))
:rule-classes :forward-chaining)
)
nil)))
(defun exclusion-thms (products all-products)
(if (consp products)
(append (exclusion-thm (car products) all-products)
(exclusion-thms (cdr products) all-products))
nil))
;; ;; strip the "-p" from the end of a sum/product recognizer name if the name's
;; ;; too short we'll get nil as the exploded name, which translates to the empty
;; ;; symbol '||, so don't use that as the name of a sum and also use a one- or
;; ;; two-letter predicate for the type of one of your fields.
;; (defun recognizer-strip (recname)
;; (intern (coerce (butlast (explode-atom recname 10) 2) 'string) "ACL2"))
(defun name-matching-recognizer (sums predtyp)
(if (atom sums)
nil
(if (eq predtyp (sum-recognizer (car sums)))
(sum-name (car sums))
(name-matching-recognizer (cdr sums) predtyp))))
(defun recursive-arg-and-call-list (sums components)
(if (consp components)
(let ((predtyp (component-type (car components))))
(mv-let (args calls)
(recursive-arg-and-call-list sums (cdr components))
(if predtyp
(let ((typname (name-matching-recognizer sums predtyp))
(argname (component-name (car components))))
(if typname
(mv (cons argname args)
(cons `(,(appsyms (list typname 'measure)) ,argname)
calls))
(mv (cons '& args) calls)))
(mv (cons '& args) calls))))
(mv nil nil)))
(defun measure-clause-list (sums products)
(if (consp products)
(let ((rest (measure-clause-list sums (cdr products))))
(mv-let (args calls)
(recursive-arg-and-call-list sums (product-components (car products)))
(if (consp calls)
(cons `((,(product-name (car products)) ,@args)
(+ 1 ,@calls))
rest)
rest)))
'((& 1))))
(defun measure-def (sum sums guard-opt)
(let ((clauses (measure-clause-list sums (sum-products sum))))
`(defun ,(appsyms (list (sum-name sum) 'measure)) (x)
(declare (xargs :measure (acl2-count x)
,@(case guard-opt
(:fast `(:guard (,(sum-recognizer sum) x)))
(nil nil)
(otherwise`(:guard t))))
,@(if (= (len clauses) 1)
`((ignore x))
nil))
(pattern-match x
,@clauses))))
(defun measure-defs (sums all-sums guard-opt)
(if (consp sums)
(cons (measure-def (car sums) all-sums guard-opt)
(measure-defs (cdr sums) all-sums guard-opt))
nil))
(defun measure-mrec (sums guard-opt)
(let ((mdefs (measure-defs sums sums guard-opt)))
(if (= (len mdefs) 1)
(car mdefs)
`(mutual-recursion ,@mdefs))))
(defun field-measure-ineqs (sums measure prodname prodargs)
(if (consp prodargs)
(let* ((predtyp (component-type (car prodargs)))
(arg (component-name (car prodargs)))
(pred (name-matching-recognizer sums predtyp))
(meas (appsyms (list pred 'measure)))
(acc (appsyms (list prodname arg))))
(if pred
(cons `(< (,meas (,acc x))
(,measure x))
(field-measure-ineqs sums measure prodname
(cdr prodargs)))
(field-measure-ineqs sums measure prodname
(cdr prodargs))))
nil))
(defun field-measure-thms (sums measure products)
(if (consp products)
(let ((ineqs (field-measure-ineqs sums measure (product-name (car products))
(product-components (car products)))))
(if ineqs
(cons
`(defthm ,(appsyms (list (product-name (car products)) 'measure-decr))
(implies (,(product-recognizer (car products)) x)
,(if (consp (cdr ineqs))
`(and ,@ineqs)
(car ineqs))))
(field-measure-thms sums measure (cdr products)))
(field-measure-thms sums measure (cdr products))))
nil))
(defun sum-measure-thms (sums all-sums)
(if (consp sums)
(append
(field-measure-thms all-sums (appsyms (list (sum-name (car sums)) 'measure))
(sum-products (car sums)))
(sum-measure-thms (cdr sums) all-sums))
nil))
(defun updater-defun (prodname args accs n guard-opt)
(let ((name (nth (1- n) args)))
`(defun ,(appsyms (list 'update prodname name)) (new x)
,@(if guard-opt
`((declare (xargs :guard (,(recognizer-name prodname) x)
:guard-hints (("Goal" :in-theory (enable ,prodname))))))
nil)
(mbe :exec (update-nth ,n new x)
:logic (,prodname ,@(update-nth (1- n) 'new accs))))))
(defun product-updater-defuns (prodname args accs n guard-opt)
(if (zp n)
nil
(cons (updater-defun prodname args accs n guard-opt)
(product-updater-defuns prodname args accs (1- n) guard-opt))))
(defun updater-defuns (products guard-opt)
(if (atom products)
nil
(let* ((prodname (product-name (car products)))
(components (product-components (car products)))
(arglist (components-names components)))
(append (product-updater-defuns prodname arglist
(accessor-call-list (car products) components)
(len arglist) guard-opt)
(updater-defuns (cdr products) guard-opt)))))
(defun sums-products (sums)
(if (atom sums)
nil
(append (sum-products (car sums))
(sums-products (cdr sums)))))
(defun sums-names (sums)
(if (atom sums)
nil
(cons (sum-name (car sums))
(sums-names (cdr sums)))))
(defun defsums-fn (sums kwalist extfns)
(let* ((products (sums-products sums))
(guard-option (kwassoc :guard t kwalist))
(hons-opt (kwassoc :hons nil kwalist))
(compact-opt (kwassoc :compact t kwalist))
(accessor-option (kwassoc :short-accessors t kwalist))
(update-option (kwassoc :updatable nil kwalist))
(arith-option (kwassoc :arithmetic t kwalist))
(theory-name (appsyms (sums-names sums)))
(before-label (appsyms (list 'before theory-name)))
)
`(encapsulate
nil
(deflabel ,before-label)
(local (in-theory (enable product-type (:executable-counterpart
product-type))))
,@(if arith-option
`((local (include-book
"arithmetic/top-with-meta" :dir :system)))
nil)
,@(basic-products-defs products guard-option accessor-option hons-opt compact-opt)
,(sum-recognizers-def sums extfns guard-option)
,@(sum-compound-rec-thms sums compact-opt)
,@(sum-possibility-thms sums)
,@(exclusion-thms products products)
,@(all-accessor-type-thms sums)
,@(all-bad-typing-thms sums)
;; ,@(constructor-defs products guard-option)
,@(all-post-constructor-thms sums)
(deftheory ,(appsyms (list theory-name 'functions))
(rules-of-type :DEFINITION
(set-difference-theories
(current-theory :here)
(current-theory ',before-label))))
;; We want fast recognizer function definitions enabled but not executable
;; counterparts.
,@(if (eq guard-option :fast)
(product-fast-recs-sums sums)
nil)
(deftheory ,(appsyms (list theory-name 'executable-counterparts))
(rules-of-type :EXECUTABLE-COUNTERPART
(set-difference-theories
(current-theory :here)
(current-theory ',before-label))))
(deftheory ,(appsyms (list theory-name 'inductions))
(rules-of-type :INDUCTION
(set-difference-theories
(current-theory :here)
(current-theory ',before-label))))
(deftheory ,(appsyms (list theory-name 'theorems))
(set-difference-theories (set-difference-theories
(current-theory :here)
(current-theory ',before-label))
(union-theories
(theory ',(appsyms (list theory-name
'executable-counterparts)))
(union-theories
(theory ',(appsyms (list theory-name
'functions)))
(theory ',(appsyms (list theory-name 'inductions)))))))
,@(products-type-thms products)
(deftheory ,(appsyms (list theory-name 'product-type-theorems))
(set-difference-theories (current-theory :here)
(current-theory ',(appsyms (list theory-name 'theorems)))))
(in-theory (disable ,(appsyms (list theory-name 'functions))
,(appsyms (list theory-name
'executable-counterparts))
,(appsyms (list theory-name 'product-type-theorems))))
,@(and (not extfns)
`(,(measure-mrec sums guard-option)
,@(sum-measure-thms sums sums)))
,@(if update-option
(updater-defuns products guard-option)
nil)
(deftheory ,(appsyms (list theory-name 'entire-theory))
(set-difference-theories (universal-theory :here)
(universal-theory ',before-label)))
)))
(defxdoc defsum
:parents (miscellaneous)
:short "Define a recursive data type similar to a Haskell type definition."
:long "<p>Example:</p>
@({
(include-book \"tools/defsum\" :dir :system)
(set-ignore-ok :warn)
(defsum my-list
(my-empty)
(my-cons car (my-list-p cdr)))
})
<p>This declaration says that an object is of the type @('my-list') if it
is either of the type @('my-empty') or @('my-cons'), where @('my-empty')
is an empty structure and @('my-cons') is a structure with two fields:
the @('car'), an arbitrary object; and the @('cdr') which is of type
@('my-list'). In this case, recognizers @('my-list-p'), @('my-empty-p'),
and @('my-cons-p') are defined along with constructors @('my-empty') and
@('my-cons') and destructors @('my-cons-car') and @('my-cons-cdr'). The
necessary macros are also defined to enable pattern-matching using the
constructors (see @(see pattern-match)). For mutually-recursive data types
see @(see defsums). It may also be informative to look at the translated
version of a defsum form using :trans1.</p>
<p>Note that a defsum form produces several logic-mode events inside an
encapsulate. Despite the author's best intentions, not every such
automatically-generated event will complete successfully. If you
encounter a defsum form that fails, please email it to
sswords@cs.utexas.edu (with or without fixing the bug yourself.)</p>
<p>Several theorems about the new type are defined so as to enable
reasoning based on their abstract model rather than their underlying
list representation. For most reasoning these theorems should be
sufficient without enabling the function definitions or
executable-counterparts. In case these do need to be enabled,
theories named (for the above example) @('my-list-functions') and
@('my-list-executable-counterparts') are defined.</p>
<p>In addition to the recognizer, constructor, and destructor functions,
a measure function is also defined which counts the number of nested
objects of the sum type. In the example above, the measure function
is my-list-measure and the measure of an object is 1 if it is not a
my-cons, and 1 plus the measure of its my-cons-cdr if it is.</p>
<p>Defsum accepts some keyword arguments. Be aware that not all
combinations of these arguments have been tested extensively. Again,
please send bug reports to sswords@cs.utexas.edu if you find a defsum
form that does not succeed.</p>
<p>@(':arithmetic') - By default, each @('defsum') event expands to an
encapsulate which locally includes the book arithmetic/top-with-meta.
If an incompatible arithmetic book has already been included, this may
cause the defsum to fail. But the other arithmetic book may also have
theorems that allow the defsum event to succeed if we don't attempt to
include the arithmetic book. This can be done by setting
@(':arithmetic nil').</p>
<p>@(':guard') - may be set to @('t'), @('nil'), or @(':fast'). By default
it is set to @('t'), in which case minimal guards are set for all
functions. If set to @('nil'), guards will not be verified for any
functions; this is useful in case some field type recognizers don't
have their guards verified. If set to @(':fast'), an additional
recognizer for each product is defined named ``foo-p-fast'' if the
product is named foo. This has a guard such that its argument must be
a valid sum object. It is then logically equivalent to the other
recognizer, but in execution only checks that the symbol in the car of
the object matches the name of the product. The pattern matcher for
each product then uses the fast recognizers. Thus fast guards result
in a small (?) gain in performance in exchange for a (hopefully
trivial) degradation in logical complexity.</p>
<p>@(':short-accessors') - @('t') by default; may be set to @('nil'). If
@('t'), each field accessor first checks whether the object is of the
correct product type and returns nil if not. This allows for an
additional theorem saying that if x is not of the correct product
type, then the accessor returns nil. If @('nil'), the nth accessor
returns @('(nth n x)') regardless of x's type. When guards are turned
on, this is implemented with an @('mbe') so there should be no
performance difference between the two options. When guards are off,
performance will be somewhat better if this feature is turned off.</p>
<p>@(':compact') - By default, a defsum constructor makes a product
object by putting its components into a cons tree using n-1 conses,
but a prettier list representation is also supported which uses n
conses to store the elements in a flattened list which is easier to
read when printed. Set @(':compact nil') if you prefer this
representation.</p>
<p>@(':hons') - If HONS mode is in use, the flag @(':hons t') causes all
defsum forms to be built with HONSes rather than regular conses. See
@(see hons-and-memoization).</p>
<p>It may be necessary to include some function definition in a mutual
recursion with the sum recognizer function. In this case simply put
the defun form inside the defsum form, i.e.</p>
@({
(defsum lisp-term
(lisp-atom val)
(func-app (symbolp function) (lisp-term-listp args))
(defun lisp-term-listp (args)
(declare (xargs :guard t))
(if (atom args)
(null args)
(and (lisp-term-p (car args))
(lisp-term-listp (cdr args))))))
})
<p>If such a function is included, however, no measure function will be
defined for the sum.</p>
<p>Usually it is not necessary to specify a measure for such a function;
because there is currently no way of directly specifying the measure
for the sum's recognizer, specifying an exotic measure on such a
function is likely to fail. If you come up against this limitation,
please send an example to sswords@cs.utexas.edu.</p>")
(defmacro defsum (name &rest defs)
(mv-let
(sum extfns kwalist) (defsum-munge-input name defs)
(defsums-fn sum kwalist extfns)))
(defxdoc defsums
:parents (miscellaneous)
:short "Define a set of mutually-recursive data types."
:long "<p>Example:</p>
@({
(defsums
(my-term
(my-atom val)
(my-application (symbolp function) (my-term-list-p args)))
(my-term-list
(my-nil)
(my-cons (my-term-p car) (my-term-list-p cdr))))
})
<p>See @(see defsum). This form is used when you want to define two or more
types which may be constructed from each other. In the above example,
@('my-term') and @('my-term-list') could not be defined using independent
defsum forms; their recognizer functions need to be defined in a mutual
recursion.</p>
<p>Defsums accepts the same keyword arguments as defsum.</p>
<p>If you want some function to be defined inside the same mutual-recursion in
which the recognizers for each of the sums and products are defined, you may
insert the defun inside the def-mutual-sums form, i.e.</p>
@({
(defsums
(foo
(bla (bar-p x))
(ble (foo-p x) (bar-p y)))
(bar
(blu (integerp k))
(blo (symbolp f) (foo-list-p a)))
(defun foo-list-p (x)
(declare (xargs :guard t))
(if (atom x)
(null x)
(and (foo-p (car x))
(foo-list-p (cdr x))))))
})
<p>Usually it is not necessary to specify a measure for such a function;
because there is currently no way of directly specifying the measures on the
sums' recognizers, specifying an exotic measure on such a function is likely to
fail.</p>
<p>As with defsum, def-mutual-sums requires the (possibly local) inclusion of
the defsum-thms book.</p>")
(defmacro defsums (&rest sums)
(mv-let
(sums extfns kwalist) (defsums-munge-input sums)
(defsums-fn sums kwalist extfns)))
;; (logic)
;; ;; tests, so this book won't certify if it's broken
;; (local
;; (defsum bla
;; :guards :fast
;; (foo (bla-p x) (integerp y))
;; (bar a x (stringp y) (bla-p z))
;; (abc)))
;; (local
;; (defsums
;; ; :updatable t
;; (my-term
;; (my-atom val)
;; (my-application (symbolp function) (my-term-list-p args)))
;; (my-term-list
;; (my-nil)
;; (my-cons (my-term-p car) (my-term-list-p cdr)))))
;; (local
;; (defsum lisp-term
;; :measure-multiplier 10
;; (lisp-atom val)
;; (func-app (symbolp function) (lisp-term-listp args))
;; (defun lisp-term-listp (args)
;; (declare (xargs :guard t
;; :measure (o* 10 (1+ (acl2-count args)))))
;; (if (atom args)
;; (null args)
;; (and (lisp-term-p (car args))
;; (lisp-term-listp (cdr args)))))))
|