This file is indexed.

/usr/share/acl2-7.2dfsg/books/system/random.lisp is in acl2-books-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
; Random$ function
; Copyright (C) 2012 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original authors: Jared Davis <jared@centtech.com>
;                   Sol Swords <sswords@centtech.com>

(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
(include-book "std/util/bstar" :dir :system)
(local (include-book "tools/mv-nth" :dir :system))
(set-state-ok t)

(defsection random$-lemmas
  :parents (random$)
  :short "Lemmas about random$ available in the system/random book."

  (local (in-theory (enable random$)))

  (defthm natp-random$-better
    (natp (mv-nth 0 (random$ limit state)))
    :rule-classes :type-prescription)

  (defthm random$-linear-better
    (and (<= 0 (mv-nth 0 (random$ n state)))
         (implies (posp n)
                  (< (mv-nth 0 (random$ n state)) n)))
    :hints(("Goal"
            :in-theory (enable mv-nth)
            :use ((:instance acl2::random$-linear (acl2::n n))))))

  (defthm state-p1-of-random
    (implies (force (state-p1 state))
             (state-p1 (mv-nth 1 (random$ limit state))))
    :hints(("Goal" :in-theory (enable random$ read-acl2-oracle)))))


(defsection random-list-aux
  :parents (random$)
  :short "Add random numbers onto an accumulator."

  (defund random-list-aux (n limit acc state)
    (declare (xargs :guard (and (natp n)
                                (posp limit))))
    (if (zp n)
        (mv acc state)
      (b* (((mv x1 state) (random$ limit state)))
        (random-list-aux (- n 1) limit (cons x1 acc) state))))

  (local (in-theory (enable random-list-aux)))

  (defthm nat-listp-of-random-list-aux
    (equal (nat-listp (mv-nth 0 (random-list-aux n limit acc state)))
           (nat-listp acc)))

  (defthm state-p1-of-random-list-aux
    (implies (force (state-p1 state))
             (state-p1 (mv-nth 1 (random-list-aux n limit acc state))))))


(defsection random-list
  :parents (random$)
  :short "Generate a list of random numbers in [0, limit)."

  (defund random-list (n limit state)
    (declare (xargs :guard (and (natp n)
                                (posp limit))))
    (random-list-aux n limit nil state))

  (local (in-theory (enable random-list)))

  (defthm nat-listp-of-random-list
    (nat-listp (mv-nth 0 (random-list n limit state))))

  (defthm state-p1-of-random-list
    (implies (force (state-p1 state))
             (state-p1 (mv-nth 1 (random-list n limit state))))))