/usr/share/acl2-7.2dfsg/books/ihs/logops-definitions.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 | ; logops-definitions.lisp -- extensions to Common Lisp logical operations
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; "logops-definitions.lisp"
;;;
;;; This book, along with "logops-lemmas", includes a theory of the Common
;;; Lisp logical operations on numbers, a portable implementation of the
;;; Common Lisp byte operations, extensions to those theories, and some
;;; useful macros. This book contains only definitions, lemmas
;;; necessary to admit those definitions, and selected type lemmas.
;;;
;;; Large parts of this work were inspired by Yuan Yu's Nqthm
;;; specification of the Motorola MC68020.
;;;
;;; Bishop Brock
;;; Computational Logic, Inc.
;;; 1717 West Sixth Street, Suite 290
;;; Austin, Texas 78703
;;; (512) 322-9951
;;; brock@cli.com
;;;
;;; Modified for ACL2 Version_2.6 by:
;;; Jun Sawada, IBM Austin Research Lab. sawada@us.ibm.com
;;; Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;; Modified for ACL2 Version_2.7 by:
;;; Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;; Modified July 2012 by Jared Davis <jared@centtech.com>
;;; Moved many definitions into new basic-definitions.lisp file.
;;;
;;; Modified October 2014 by Jared Davis <jared@centtech.com>
;;; Ported documentation to XDOC
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(in-package "ACL2")
;;; Global rules.
(include-book "ihs-init")
(include-book "ihs-theories")
(include-book "std/util/defval" :dir :system)
(local (include-book "math-lemmas"))
(local (include-book "quotient-remainder-lemmas"))
; From ihs-theories
(local (in-theory (enable basic-boot-strap)))
; From math-lemmas
(local (in-theory (enable ihs-math)))
; From integer-quotient-lemmas
(local (in-theory (enable quotient-remainder-rules)))
(local (in-theory (disable floor mod)))
(deflabel begin-logops-definitions)
(include-book "basic-definitions")
;;;****************************************************************************
;;;
;;; Local Lemmas.
;;;
;;;****************************************************************************
(local (defthm x*y->-1
(implies (and (force (real/rationalp x))
(force (real/rationalp y))
(or (and (> x 1) (>= y 1))
(and (>= x 1) (> y 1))))
(> (* x y) 1))
:rule-classes :linear
:hints (("Goal"
:in-theory (enable x*y>1-positive)
:cases ((equal y 1)
(equal x 1))))))
(local (defthm x*y->=-1
(implies (and (force (real/rationalp x))
(force (real/rationalp y))
(>= x 1)
(>= y 1))
(>= (* x y) 1))
:rule-classes :linear
:hints (("Goal" :in-theory (disable <-*-left-cancel
commutativity-of-*)
:use ((:instance <-*-left-cancel (z y) (x 1) (y x)))))))
(local (defthm x-<-y*z
(implies (and (force (real/rationalp x))
(force (real/rationalp y))
(force (real/rationalp z))
(or (and (<= 0 y) (< x y) (<= 1 z))
(and (< 0 y) (<= x y) (< 1 z))))
(and (< x (* y z))
(< x (* z y))))
:hints (("Goal" :in-theory (disable <-*-left-cancel <-y-*-y-x)
:use ((:instance <-*-left-cancel (z y) (x 1) (y z)))))))
(local (defthm x-<=-y*z
(implies (and (force (real/rationalp x))
(force (real/rationalp y))
(force (real/rationalp z))
(<= x y)
(<= 0 y)
(<= 1 z))
(and (<= x (* y z))
(<= x (* z y))))
:hints (("Goal" :in-theory (disable <-*-left-cancel <-y-*-y-x)
:use ((:instance <-*-left-cancel (z y) (x 1) (y z)))))))
;; [Jared]: I eliminated the type-prescription rules saying logand, logandc1,
;; and logandc2 produce integers, since ACL2 now automatically knows this.
;; [Jared]: I moved definitions like bitp, bfix, etc., into
;; basic-definitions.lisp.
(defsection bitp-basics
:parents (bitp)
(defthm bitp-forward
(implies (bitp i)
(and (integerp i)
(>= i 0)
(< i 2)))
:rule-classes :forward-chaining)
(defthm bitp-mod-2
(implies (integerp i)
(bitp (mod i 2)))
:rule-classes ((:rewrite)
(:generalize :corollary (implies (integerp i)
(or (equal (mod i 2) 0)
(equal (mod i 2) 1)))))
:hints (("Goal" :in-theory (enable linearize-mod)))))
(local (in-theory (enable unsigned-byte-p signed-byte-p integer-range-p)))
(local (in-theory (disable bitp)))
(local (in-theory (disable bfix)))
(defsection unsigned-byte-p-basics
:parents (unsigned-byte-p)
(defthm unsigned-byte-p-forward
(implies (unsigned-byte-p bits i)
(and (integerp i)
(>= i 0)
(< i (expt 2 bits))))
:rule-classes :forward-chaining)
(defthm unsigned-byte-p-unsigned-byte-p
(implies (and (unsigned-byte-p size i)
(integerp size1)
(>= size1 size))
(unsigned-byte-p size1 i))
:rule-classes nil
:hints (("Goal" :in-theory (disable expt-is-weakly-increasing-for-base>1)
:use ((:instance expt-is-weakly-increasing-for-base>1
(r 2) (i size) (j size1)))))))
(local (in-theory (disable unsigned-byte-p)))
(defxdoc unsigned-byte-p-discussion
:parents (unsigned-byte-p)
:short "Discussion on how to use unsigned-byte-p"
:long "<p>@(csee unsigned-byte-p) (and @(see signed-byte-p) for that matter) are
tricky enough that there is no one-size-fits-all solution that everyone
should use to reason about them. Depending on your problem you might try any
of these strategies:</p>
<ol>
<li><it>Arithmetic</it> -- Leave unsigned-byte-p's regular definition
enabled and try to reason about the resulting inequalities. This sometimes
works and may be a good approach if you have goals involving \"non bit-vector
functions\" like +, *, /, etc. I usually don't use this approach but I
haven't done a lot of proofs about true arithmetic functions.</li>
<li><it>Induction</it> -- Disable unsigned-byte-p's regular definition but
instead enable an alternate definition, e.g., the
centaur/bitops/ihsext-basics book has unsigned-byte-p**, which is a recursive
version that works well for induction. This definition is in the
ihsext-recursive-redefs ruleset and also works well with other ** definitions
like logand**. This is often a good strategy when proving lemmas about
unsigned-byte-p but is probably mainly useful when reasoning about new
recursive functions.</li>
<li><it>Vector</it> -- Leave @(see unsigned-byte-p) disabled except to
prove lemmas, and expect to reason about (unsigned-byte-p n x) via lemmas. I
think I usually prefer this strategy as it feels more reliable/less magical
than reasoning about arithmetic inequalities. Some useful books:
<ol>
<li>bitops/ihsext-basics proves the nice/obvious lemmas about
signed/unsigned-byte-p on many bit-vector functions like logior,
logand, etc.</li>
<li>bitops/signed-byte-p has lemmas about signed/unsigned-byte-p for
some arithmetic functions (+, -, *) and also extended lemmas about
bit-vector stuff. It's often very handy for the kinds of guard
obligations that arise from things like (the (unsigned-byte 32)
x).</li>
</ol></li>
</ol>
<p>We have occasionally written wrapper functions like @('u32p'), but, I
think that perhaps the only reason we did this was for macros like @(see
def-typed-record), where we needed a unary predicate to introduce a fancier
data structure. Once we had the typed records in place, we just enabled
these wrappers and did all our reasoning about @(see unsigned-byte-p).
(I don't think you'd want to reason about a each various u32p, u64p, etc.,
individually.)</p>
<p>In the context of FTY, I don't think you need wrappers, but if for some
reason you do want to use them then that is probably basically fine. Note
here that you have some choice for your fixing function. You can fix to 0 as
you've done in your examples, but you might instead prefer to fix to
@'(loghead n x)'). Why? When you use loghead, it preserves the lower @('N')
bits, and this may interact much more nicely with rules about true bit-vector
functions. This approach is also good for GL, where loghead is supported in
an especially good way.</p>
<p>That said, it should be possible to get by without wrappers; see for
instance the definition of sizednum in centaur/fty/deftypes-tests.lisp, or
the definition of vl-constint in centaur/vl/expr.lisp, both of which use a
loghead-based approach to do the fixing. (The vl-constint example has
a :require that is an inequality instead of an unsigned-byte-p term, but I
don't think there's any particular reason to do it this way instead of the
other.)</p>
<p>In general there is good reason to expect it to sometimes be hard to work
with unsigned-byte-p. For instance, consider a theorem like the following,
from @('centaur/bitops/signed-byte-p.lisp'):</p>
@({
(defthm lousy-unsigned-byte-p-of-*-mixed
;; Probably won't ever unify with anything.
(implies (and (unsigned-byte-p n1 a)
(unsigned-byte-p n2 b))
(unsigned-byte-p (+ n1 n2) (* a b)))
:hints((\"Goal\" :use ((:instance upper-bound)))))
})
<p>This would be a good rule to try on goals like @('(unsigned-byte-p 10 (* a
b))'), but without some insight into @('a') and @('b') it's hard to know how
to successfully instantiate @('N1/N2'). So you end up resorting to @(':use')
hints, or special-case variants of this theorem (e.g., another theorem that
says 7 bits * 3 bits --> 10 bits), or you do something more sophisticated
with bind-free or similar.</p>
<p>If you find yourself going down this road, you might see in particular Dave
Greve's \"Parameterized Congruences\" paper from the 2006 workshop, which is
implemented in the coi/nary/nary.lisp book. You could also look at Sol
Swords' book to do something similar, see :doc contextual-rewriting.</p>")
(defsection signed-byte-p-basics
:parents (signed-byte-p)
(defthm signed-byte-p-forward
(implies (signed-byte-p bits i)
(and (integerp i)
(>= i (- (expt 2 (- bits 1))))
(< i (expt 2 (- bits 1)))))
:rule-classes :forward-chaining))
(local (in-theory (disable signed-byte-p)))
;; [Jared]: I moved definitions like ifloor, expt, logcar, logbit, etc., into
;; basic-definitions.lisp. I also moved the most basic type theorems. But I
;; didn't move various theorems about these functions, e.g., bounds theorems,
;; and I didn't move the guard macros.
;;;Matt: You will find instances of these throughout "logops-lemmas". These
;;;should all be redundant now, but in case they aren't I'll leave them in.
(defsection logbit-guard
:parents (logops-definitions)
:short "@(call logbit-guard) is a macro form of the guards for @(see logbit)."
(defmacro logbit-guard (pos i)
`(and (force (integerp ,pos))
(force (>= ,pos 0))
(force (integerp ,i)))))
(defsection logmask-guard
:parents (logops-definitions)
:short "@(call logmask-guard) is a macro form of the guards for @(see logmask)."
(defmacro logmask-guard (size)
`(and (force (integerp ,size))
(force (>= ,size 0)))))
(defsection loghead-guard
:parents (logops-definitions)
:short "@(call loghead-guard) is a macro form of the guards for @(see loghead)."
(defmacro loghead-guard (size i)
`(and (force (integerp ,size))
(force (>= ,size 0))
(force (integerp ,i)))))
(defsection logtail-guard
:parents (logops-definitions)
:short "@(call logtail-guard) is a macro form of the guards for @(see logtail)."
(defmacro logtail-guard (pos i)
`(and (force (integerp ,pos))
(force (>= ,pos 0))
(force (integerp ,i)))))
(defsection logapp-guard
:parents (logops-definitions)
:short "@(call logapp-guard) is a macro form of the guards for @(see logapp)."
(defmacro logapp-guard (size i j)
`(and (force (integerp ,size))
(force (>= ,size 0))
(force (integerp ,i))
(force (integerp ,j)))))
(defsection logrpl-guard
:parents (logops-definitions)
:short "@(call logrpl-guard) is a macro form of the guards for @(see logrpl)."
(defmacro logrpl-guard (size i j)
`(and (force (integerp ,size))
(force (>= ,size 0))
(force (integerp ,i))
(force (integerp ,j)))))
(defsection logext-guard
:parents (logops-definitions)
:short "@(call logext-guard) is a macro form of the guards for @(see logext)."
(defmacro logext-guard (size i)
`(and (force (integerp ,size))
(force (> ,size 0))
(force (integerp ,i)))))
(defsection logrev-guard
:parents (logops-definitions)
:short "@(call logrev-guard) is a macro form of the guards for @(see logrev)."
(defmacro logrev-guard (size i)
`(and (force (integerp ,size))
(force (>= ,size 0))
(force (integerp ,i)))))
(defsection logextu-guard
:parents (logops-definitions)
:short "@(call logextu-guard) is a macro form of the guards for @(see logextu)."
(defmacro logextu-guard (final-size ext-size i)
`(and (force (integerp ,final-size))
(force (>= ,final-size 0))
(force (integerp ,ext-size))
(force (> ,ext-size 0))
(force (integerp ,i)))))
(defsection lognotu-guard
:parents (logops-definitions)
:short "@(call lognotu-guard) is a macro form of the guards for @(see lognotu)."
(defmacro lognotu-guard (size i)
`(and (force (integerp ,size))
(force (>= ,size 0))
(force (integerp ,i)))))
(defsection ashu-guard
:parents (logops-definitions)
:short "@(call ashu-guard) is a macro form of the guards for @(see ashu)."
(defmacro ashu-guard (size i cnt)
`(and (force (integerp ,size))
(force (> ,size 0))
(force (integerp ,i))
(force (integerp ,cnt)))))
(defsection lshu-guard
:parents (logops-definitions)
:short "@(call lshu-guard) is a macro form of the guards for @(see lshu)."
(defmacro lshu-guard (size i cnt)
`(and (force (integerp ,size))
(force (>= ,size 0))
(force (integerp ,i))
(force (integerp ,cnt)))))
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; Type Lemmas for the new LOGOPS. Each function is DISABLEd after we
;;; have enough information about it (except for IFLOOR, IMOD, and EXPT2,
;;; which are considered abbreviations). We prove even the most obvious
;;; type lemmas because you never know what theory this book will be
;;; loaded into, and unless the theory is strong enough you may not get
;;; everthing you need.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(local (in-theory (disable logcar)))
(defsection logcdr-basics
:parents (logcdr)
(defthm logcdr-<-0
(equal (< (logcdr i) 0)
(and (integerp i)
(< i 0))))
(defthm justify-logcdr-induction
(and (implies (> i 0)
(< (logcdr i) i))
(implies (< i -1)
(< i (logcdr i))))
:hints (("Goal" :in-theory (enable logcdr)))))
(local (in-theory (disable logcdr)))
(defsection logcons-basics
:parents (logcons)
(defthm logcons-<-0
(equal (< (logcons b i) 0)
(and (integerp i)
(< i 0)))
:hints (("Goal" :in-theory (enable bfix)))))
(local (in-theory (disable logcons)))
(local (in-theory (disable logmaskp)))
;;; LOGHEAD
(defsection loghead-basics
:parents (loghead)
(defthm unsigned-byte-p-loghead
(implies (and (>= size1 size)
(integerp size)
(>= size 0)
(integerp size1))
(unsigned-byte-p size1 (loghead size i)))
:hints (("Goal" :in-theory (e/d (unsigned-byte-p)
(expt-is-weakly-increasing-for-base>1))
:use ((:instance expt-is-weakly-increasing-for-base>1
(r 2) (i size) (j size1))))))
(defthm loghead-upper-bound
(< (loghead size i) (expt 2 size))
:rule-classes (:linear :rewrite)))
(defmacro lloghead (n x)
;; bozo maybe should be a function?
;; Useful for guard of (unsigned-byte-p n x).
`(mbe :logic (loghead ,n ,x)
:exec ,x))
(local (in-theory (disable loghead)))
(local (in-theory (disable logtail)))
(defsection logapp-basics
:parents (logapp)
(defthm logapp-<-0
(implies (logapp-guard size i j)
(equal (< (logapp size i j) 0)
(< j 0)))
:hints (("Goal"
:in-theory (e/d (loghead) (x-<-y*z))
:use ((:instance x-<-y*z
(x (mod i (expt 2 size)))
(y (expt 2 size)) (z (abs j))))))))
(local (in-theory (disable logapp)))
(local (in-theory (disable logrpl)))
;;;4 Misplaced Lemmas
(defthm expt-with-violated-guards
(and (implies (not (integerp i))
(equal (expt r i) 1))
(implies (not (acl2-numberp r))
(equal (expt r i)
(expt 0 i))))
:hints (("Goal" :in-theory (enable expt))))
(defthm reduce-integerp-+-constant
(implies (and (syntaxp (constant-syntaxp i))
(integerp i))
(iff (integerp (+ i j))
(integerp (fix j)))))
(defthm how-could-this-have-been-left-out??
(equal (* 0 x) 0))
(defthm this-needs-to-be-added-to-quotient-remainder-lemmas
(implies (zerop y)
(equal (mod x y)
(fix x)))
:hints (("Goal" :in-theory (enable mod))))
(defsection logext-basics
:parents (logext)
(defthm logext-bounds
(implies (< 0 size)
(and (>= (logext size i) (- (expt 2 (1- size))))
(< (logext size i) (expt 2 (1- size)))))
:rule-classes ((:linear :trigger-terms ((logext size i)))
(:rewrite))
:hints (("Goal"
:in-theory (e/d (logapp loghead)
(expt-is-increasing-for-base>1 exponents-add))
:use ((:instance expt-is-increasing-for-base>1
(r 2) (i (1- size)) (j size))))))
(defthm signed-byte-p-logext
(implies (and (>= size1 size)
(> size 0)
(integerp size1)
(integerp size))
(signed-byte-p size1 (logext size i)))
:hints (("Goal"
:in-theory (e/d (signed-byte-p logapp loghead)
(expt-is-weakly-increasing-for-base>1 exponents-add))
:do-not '(eliminate-destructors)
:use ((:instance expt-is-weakly-increasing-for-base>1
(r 2) (i (1- size)) (j (1- size1))))))))
(local (in-theory (disable logext)))
(defsection logrev-basics
:parents (logrev)
(local
(defun crock-induction (size size1 i j)
(cond
((zp size) (+ size1 i j)) ;To avoid irrelevance
(t (crock-induction (1- size) (1+ size1) (logcdr i)
(logcons (logcar i) j))))))
;; This lemma could have used one of the deleted Type-Prescriptions, I
;; think the one for LOGCDR.
(local
(defthm unsigned-byte-p-logrev1
(implies
(and (unsigned-byte-p size1 j)
(integerp size)
(>= size 0))
(unsigned-byte-p (+ size size1) (logrev1 size i j)))
:rule-classes nil
:hints
(("Goal"
:in-theory (e/d (expt logcar logcons unsigned-byte-p) (exponents-add))
:induct (crock-induction size size1 i j)))))
(defthm unsigned-byte-p-logrev
(implies
(and (>= size1 size)
(>= size 0)
(integerp size)
(integerp size1))
(unsigned-byte-p size1 (logrev size i)))
:hints
(("Goal"
:use ((:instance unsigned-byte-p-logrev1
(size size) (size1 0) (i i) (j 0))
(:instance unsigned-byte-p-unsigned-byte-p
(size size) (size1 size1) (i (logrev size i))))))))
(local (in-theory (disable logrev)))
(defsection logsat-basics
:parents (logsat)
;; Added for Version_2.6. Without it the following defthm appears to loop,
;; though not within a single goal -- rather, by creating subgoal after subgoal
;; after ....
(local (in-theory (enable exponents-add-unrestricted)))
(defthm logsat-bounds
(implies (< 0 size)
(and (>= (logsat size i) (- (expt 2 size)))
(< (logsat size i) (expt 2 size))))
:rule-classes ((:linear :trigger-terms ((logsat size i)))
(:rewrite)))
;; Now we disable this rule; necessary for signed-byte-p-logsat.
(local (in-theory (disable exponents-add-unrestricted)))
(defthm signed-byte-p-logsat
(implies (and (>= size1 size)
(> size 0)
(integerp size1)
(integerp size))
(signed-byte-p size1 (logsat size i)))
:hints (("Goal" :in-theory (e/d (signed-byte-p)
(expt-is-weakly-increasing-for-base>1 exponents-add))
:do-not '(eliminate-destructors)
:use ((:instance expt-is-weakly-increasing-for-base>1
(r 2) (i (1- size)) (j (1- size1))))))))
(local (in-theory (disable logsat)))
(defsection logextu-basics
:parents (logextu)
(defthm unsigned-byte-p-logextu
(implies (and (>= size1 final-size)
(>= final-size 0)
(integerp final-size)
(integerp size1))
(unsigned-byte-p size1 (logextu final-size ext-size i)))))
(local (in-theory (disable logextu)))
(defsection lognotu-basics
:parents (lognotu)
(defthm unsigned-byte-p-lognotu
(implies (and (>= size1 size)
(>= size 0)
(integerp size)
(integerp size1))
(unsigned-byte-p size1 (lognotu size i)))))
(local (in-theory (disable lognotu)))
(defsection ashu-basics
:parents (ashu)
(defthm unsigned-byte-p-ashu
(implies (and (>= size1 size)
(>= size 0)
(integerp size)
(integerp size1))
(unsigned-byte-p size1 (ashu size i cnt)))))
(local (in-theory (disable ashu)))
(defsection lshu-basics
:parents (lshu)
(defthm unsigned-byte-p-lshu
(implies (and (>= size1 size)
(>= size 0)
(integerp size)
(integerp size1))
(unsigned-byte-p size1 (lshu size i cnt)))))
(local (in-theory (disable lshu)))
;;;****************************************************************************
;;;
;;; DEFINITIONS -- Round 3.
;;;
;;; A portable implementation and extension of the CLTL byte operations.
;;; After the function definitions, we introduce a guard macro for those
;;; with non-trivial guards.
;;;
;;; BSP size pos
;;; BSPP bsp
;;; BSP-SIZE bsp
;;; BSP-POS bsp
;;; RDB bsp i
;;; WRB i bsp j
;;; RDB-TEST bsp i
;;; RDB-FIELD bsp i
;;; WRB-FIELD i bsp j
;;;
;;;****************************************************************************
(defxdoc logops-byte-functions
:parents (logops-definitions)
:short "A portable implementation and extension of Common Lisp byte
functions."
:long "<p>The proposed Common Lisp standard [<a
href='http://en.wikipedia.org/wiki/X3J13'>X3J13</a> Draft 14.10] defines a
number of functions that operate on subfields of integers. These subfields are
specified by @('(BYTE size position)'), which \"indicates a byte of width size
and whose bits have weights @($2^{position+size-1}$) through @($2^{pos}$), and
whose representation is implementation dependent\". Unfortunately, the
standard does not specify what BYTE returns, only that whatever is returned is
understood by the byte manipulation functions LDB, DPB, etc.</p>
<p>This lack of complete specification makes it impossible for ACL2 to specify
the byte manipulation functions of Common Lisp in a portable way. For example
AKCL uses @('(cons size position)') as a byte specifier, whereas another
implementation might use a special data structure to represent @('(byte size
position)'). Since any theorem about the ACL2 built-ins is meant to be a
theorem for all Common Lisp implementations, ACL2 cannot define BYTE.</p>
<p>Therefore, we have provided a portable implementation of the byte operations
specified by the draft standard. This behavior of this implementation should
be consistent with every Common Lisp that provides the standard byte
operations. Our byte specifier @('(bsp size pos)') is analogous to CLTL's
@('(byte size pos)'), where size and pos are nonnegative integers. Note that
the standard indicates that reading a byte of size 0 returns 0, and writing a
byte of size 0 leaves the destination unchanged.</p>
<p>This table indicates the correspondance between the Common Lisp byte
operations and our portable implementation:</p>
@({
Common Lisp This Implementation
------ ---- ---- --------------
(BYTE size position) (BSP size position)
(BYTE-SIZE bytespec) (BSP-SIZE bsp)
(BYTE-POSITION bytespec) (BSP-POSITION bsp)
(LDB bytespec integer) (RDB bsp integer)
(DPB newbyte bytespec integer) (WRB newbyte bsp integer)
(LDB-TEST bytespec integer) (RDB-TEST bsp integer)
(MASK-FIELD bytespec integer) (RDB-FIELD bsp integer)
(DEPOSIT-FIELD newbyte bytespec integer) (WRB-FIELD newbyte bsp integer)
})
<p>For more information, see the documentation for the functions listed above.
If you are concerned about the efficiency of this implementation, see the file
@('ihs/logops-efficiency-hack.lsp') for some notes.</p>")
(defsection bsp
:parents (logops-byte-functions)
:short "@(call bsp) returns a byte-specifier."
:long "<p>This specifier designates a byte whose width is size and whose bits have
weights 2^(pos) through 2^(pos+size-1). Both size and pos must be
nonnegative integers.</p>
<p>BSP is mnemonic for Byte SPecifier or Byte Size and Position, and is
analogous to Common Lisp's @('(byte size position)').</p>
<p>BSP is implemented as a macro for simplicity and convenience. One should
always use BSP in preference to CONS, however, to ensure compatibility with
future releases.</p>
@(def bsp)"
(defmacro bsp (size pos)
`(cons ,size ,pos)))
(define bspp (bsp)
:parents (logops-byte-functions)
:short "@(call bspp) recognizes objects produced by @(see bsp)."
:returns bool
:enabled t
(and (consp bsp)
(integerp (car bsp))
(>= (car bsp) 0)
(integerp (cdr bsp))
(>= (cdr bsp) 0))
///
(defthm bspp-bsp
(implies (and (integerp size)
(>= size 0)
(integerp pos)
(>= pos 0))
(bspp (bsp size pos)))
:hints (("Goal" :in-theory (enable bspp)))))
(define bsp-size ((bsp bspp))
:returns (size (and (integerp size)
(>= size 0))
:rule-classes :type-prescription
:hyp (bspp bsp) ;; BOZO not good for type prescription
:name bsp-size-type)
:parents (logops-byte-functions)
:short "@('(bsp-size (bsp size pos)) = size')"
:long "<p>This is analogous to Common Lisp's @('(byte-size bytespec)').</p>"
:enabled t
(car bsp))
(define bsp-position ((bsp bspp))
:returns (pos (and (integerp pos)
(>= pos 0))
:rule-classes :type-prescription
:hyp (bspp bsp) ;; BOZO not good for type prescription
:name bsp-position-type)
:parents (logops-byte-functions)
:short "@('(bsp-position (bsp size pos)) = pos')"
:long "<p>This is analogous to Common Lisp's @('(byte-position bytespec)').</p>"
:enabled t
(cdr bsp))
(define rdb ((bsp bspp)
(i integerp))
:returns (nat (and (integerp nat)
(>= nat 0))
:rule-classes :type-prescription
:name rdb-type)
:parents (logops-byte-functions)
:short "@(call rdb) returns the byte of @('i') specified by @('bsp')."
:long "<p>This is analogous to Common Lisp's @('(ldb bytespec integer)').</p>"
:enabled t
(loghead (bsp-size bsp) (logtail (bsp-position bsp) i))
///
(defthm unsigned-byte-p-rdb
(implies (and (>= size (bsp-size bsp))
(force (>= size 0))
(force (integerp size))
(force (bspp bsp)))
(unsigned-byte-p size (rdb bsp i))))
(defthm rdb-upper-bound
(implies (force (bspp bsp))
(< (rdb bsp i) (expt 2 (bsp-size bsp))))
:rule-classes (:linear :rewrite))
(defthm bitp-rdb-bsp-1
(implies (equal (bsp-size bsp) 1)
(bitp (rdb bsp i)))
:hints (("Goal" :in-theory (enable bitp loghead)))))
(define wrb ((i integerp)
(bsp bspp)
(j integerp))
:returns (int integerp
:rule-classes :type-prescription
:name wrb-type)
:parents (logops-byte-functions)
:short "@(call wrb) writes the @('(bsp-size bsp)') low-order bits of @('i')
into the byte of @('j') specified by @('bsp')."
:long "<p>This is analogous to Common Lisp's @('(dpb newbyte bytespec
integer)').</p>"
:enabled t
(logapp (bsp-position bsp)
(loghead (bsp-position bsp) j)
(logapp (bsp-size bsp)
i
(logtail (+ (bsp-size bsp) (bsp-position bsp)) j))))
(define rdb-test ((bsp bspp)
(i integerp))
:returns bool
:parents (logops-byte-functions)
:short "@(call rdb-test) is true iff the field of @('i') specified by
@('bsp') is nonzero."
:long "<p>This is analogous to Common Lisp's @('(ldb-test bytespec
integer)').</p>"
:enabled t
(not (eql (rdb bsp i) 0)))
(define rdb-field ((bsp bspp)
(i integerp))
:returns nat
:parents (logops-byte-functions)
:short "@(call rdb-field) is analogous to Common Lisp's @('(mask-field bytespec integer)')."
:enabled t
(logand i (wrb -1 bsp 0)))
(define wrb-field ((i integerp)
(bsp bspp)
(j integerp))
:returns (int integerp
:rule-classes :type-prescription
:name wrb-field-type)
:parents (logops-byte-functions)
:short "@(call wrb-field) is analogous to Common Lisp's @('(deposit-field
newbyte bytespec integer)')."
:enabled t
(wrb (rdb bsp i) bsp j))
; Guard macros.
(defsection rdb-guard
:parents (logops-byte-functions)
:short "@(call rdb-guard) is a macro form of the guards for @(see rdb), @(see
rdb-test), and @(see rdb-field)."
:long "@(def rdb-guard)"
(defmacro rdb-guard (bsp i)
`(and (force (bspp ,bsp))
(force (integerp ,i)))))
(defsection wrb-guard
:parents (logops-byte-functions)
:short "@(call wrb-guard) is a macro form of the guards for @(see wrb) and @(see wrb-field)."
:long "@(def wrb-guard)"
(defmacro wrb-guard (i bsp j)
`(and (force (integerp ,i))
(force (bspp ,bsp))
(force (integerp ,j)))))
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; Type lemmas for the byte functions. Each function is DISABLED after we
;;; have enough information about it.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(local (in-theory (disable bspp)))
(local (in-theory (disable bsp-size)))
(local (in-theory (disable bsp-position)))
(local (in-theory (disable rdb)))
(local (in-theory (disable wrb)))
(local (in-theory (disable rdb-test))) ;An obvious predicate.
;;; RDB-FIELD
#|
Need Type-Prescriptions to prove this. I don't think we ever use this
function.
(defthm rdb-field-type
(and (integerp (rdb-field bsp i))
(>= (rdb-field bsp i) 0))
:rule-classes :type-prescription)
|#
(local (in-theory (disable rdb-field)))
(local (in-theory (disable wrb-field)))
;; [Jared]: I moved the bit functions like B-NOT into basic-definitions.lisp.
;;;****************************************************************************
;;;
;;; Theories
;;;
;;;****************************************************************************
(defval *logops-functions*
:parents (logops-definitions)
:short "A list of all functions considered to be part of the theory of logical
operations on numbers."
'(binary-LOGIOR
binary-LOGXOR binary-LOGAND binary-LOGEQV LOGNAND LOGNOR LOGANDC1
LOGANDC2 LOGORC1 LOGORC2 LOGNOT LOGTEST LOGBITP ASH
LOGCOUNT INTEGER-LENGTH
BITP$inline
SIGNED-BYTE-P
UNSIGNED-BYTE-P
LOGCAR$inline
LOGCDR$inline
LOGCONS$inline
LOGBIT$inline
LOGMASK$inline
LOGMASKP
LOGHEAD$inline
LOGTAIL$inline
LOGAPP
LOGRPL
LOGEXT
LOGREV1
LOGREV$inline
LOGSAT
LOGNOTU$inline
LOGEXTU$inline
ASHU
LSHU
BSPP BSP-SIZE BSP-POSITION RDB WRB RDB-TEST RDB-FIELD WRB-FIELD
B-NOT$inline
B-AND$inline
B-IOR$inline
B-XOR$inline
B-EQV$inline
B-NAND$inline
B-NOR$inline
B-ANDC1$inline
B-ANDC2$inline
B-ORC1$inline
B-ORC2$inline
))
(defsection logops-functions
:parents (logops-definitions)
:short "A theory consisting of all function names of functions considered to
be logical operations on numbers."
:long "<p>If you are using the book @('logops-lemmas'), you will need to
DISABLE this theory in order to use the lemmas contained therein, as most of
the logical operations on numbers are non-recursive.</p>"
(deftheory logops-functions *logops-functions*))
(defsection logops-definitions-theory
:parents (logops-definitions)
:short "The \"minimal\" theory for the book \"logops-definitions\"."
:long "<p>This theory contains the DEFUN-TYPE/EXEC-THEORY (which see) of all
functions considered to be logical operations on numbers, and all
lemmas (predominately `type lemmas') proved in this book. All functions in the
list *LOGOPS-FUNCTIONS* are DISABLEd.</p>"
(deftheory logops-definitions-theory
(union-theories
(set-difference-theories
(set-difference-theories ;Everything in this book ...
(universal-theory :here)
(universal-theory 'begin-logops-definitions))
*logops-functions*) ;Minus all of the definitions.
(defun-type/exec-theory *logops-functions*)) ;Plus basic type info
))
;;;****************************************************************************
;;;
;;; DEFBYTETYPE name size s/u &key saturating-coercion doc.
;;;
;;;****************************************************************************
(defsection defbytetype
:parents (logops-definitions)
:short "A macro for defining integer subrange types."
:long "<p>The \"byte types\" defined by DEFBYTETYPE correspond to the Common
Lisp concept of a \"byte\", that is, an integer with a fixed number of bits.
We extend the Common Lisp concept to allow signed bytes.</p>
<p>Example:</p>
@({
(DEFBYTETYPE WORD 32 :SIGNED)
})
<p>Defines a new integer type of 32-bit signed integers, recognized by
@('(WORD-P i)').</p>
<p>General Form:</p>
@({
(DEFBYTETYPE name size s/u &key saturating-coercion)
})
<p>The argument name should be a symbol, size should be a constant
expression (suitable for DEFCONST) for a positive integer, s/u is
either :SIGNED or :UNSIGNED, saturating-coercion should be a symbol (default
NIL).</p>
<p>Each data type defined by DEFBYTETYPE produces a number of events:</p>
<ul>
<li>A constant @('*<name>-MAX*'), set to the maximum value of the type.</li>
<li>A constant @('*<name>-MIN*'), set to the minimum value of the type.</li>
<li>A predicate, @('(<pred> x)'), that recognizes either @('(UNSIGNED-BYTE-P
size x)') or @('(SIGNED-BYTE-P size x)'), depending on whether s/u
was :UNSIGNED or :SIGNED respectively. This predicate is DISABLED. The name of
the predicate will be @('<name>-p').</li>
<li>A coercion function, @('(<name> i)'), that coerces any object @('i') to the
correct type by LOGHEAD and LOGEXT for unsigned and signed integers
respectively. This function is DISABLED.</li>
<li>A lemma showing that the coercion function actually does the correct
coercion.</li>
<li>A lemma that reduces calls of the coercion function when its argument
satisfies the predicate.</li>
<li>A forward chaining lemma from the predicate to the appropriate type
information.</li>
<li>If :SATURATING-COERCION is specified, the value of this keyword argument
should be a symbol. A function of this name will be defined to provide a
saturating coercion. `Saturation' in this context means that values outside of
the legal range for the type are coerced to the type by setting them to the
nearest legal value, which will be either the minimum or maximum value of the
type. This function will be DISABLEd, and a lemma will be generated that proves
that this function returns the correct type. Note that
the :SATURATING-COERCION option is only valid for :SIGNED types.</li>
<li>A theory named @('<name>')-THEORY that includes the lemmas and the
DEFUN-TYPE/EXEC-THEORY of the functions.</li>
</ul>")
(defmacro defbytetype (name size s/u &key saturating-coercion doc)
(declare (xargs :guard (and (symbolp name)
;; How to say that SIZE is a constant expression?
(or (eq s/u :SIGNED) (eq s/u :UNSIGNED))
(implies saturating-coercion
(and (symbolp saturating-coercion)
(eq s/u :SIGNED)))
(implies doc (stringp doc)))))
(let*
((max-constant (pack-intern name "*" name "-MAX*"))
(min-constant (pack-intern name "*" name "-MIN*"))
(predicate (pack-intern name name "-P"))
(predicate-lemma (pack-intern name predicate "-" name))
(coercion-lemma (pack-intern name "REDUCE-" name))
(forward-lemma (pack-intern predicate predicate "-FORWARD"))
(sat-lemma (pack-intern name predicate "-" saturating-coercion))
(theory (pack-intern name name "-THEORY")))
`(ENCAPSULATE ()
(LOCAL (IN-THEORY (THEORY 'BASIC-BOOT-STRAP)))
(LOCAL (IN-THEORY (ENABLE LOGOPS-DEFINITIONS-THEORY)))
;; NB! These two ENABLEs mean that we have to have "logops-lemmas"
;; loaded to do a DEFBYTETYPE.
(LOCAL (IN-THEORY (ENABLE LOGHEAD-IDENTITY LOGEXT-IDENTITY)))
(DEFCONST ,max-constant ,(case s/u
(:SIGNED `(- (EXPT2 (- ,size 1)) 1))
(:UNSIGNED `(- (EXPT2 ,size) 1))))
(DEFCONST ,min-constant ,(case s/u
(:SIGNED `(- (EXPT2 (- ,size 1))))
(:UNSIGNED 0)))
(DEFUN ,predicate (X)
(DECLARE (XARGS :GUARD T))
,(case s/u
(:SIGNED `(SIGNED-BYTE-P ,size X))
(:UNSIGNED `(UNSIGNED-BYTE-P ,size X))))
(DEFUN ,name (I)
,@(when$ doc (list doc))
(DECLARE (XARGS :GUARD (INTEGERP I)))
,(case s/u
(:SIGNED `(LOGEXT ,size I))
(:UNSIGNED `(LOGHEAD ,size I))))
(DEFTHM ,predicate-lemma
(,predicate (,name I)))
(DEFTHM ,coercion-lemma
(IMPLIES
(,predicate I)
(EQUAL (,name I) I)))
(DEFTHM ,forward-lemma
(IMPLIES
(,predicate X)
,(case s/u
(:SIGNED `(INTEGERP X))
(:UNSIGNED `(AND (INTEGERP X)
(>= X 0)))))
:RULE-CLASSES :FORWARD-CHAINING)
,@(when$ saturating-coercion
(list
`(DEFUN ,saturating-coercion (I)
(DECLARE (XARGS :GUARD (INTEGERP I)))
(LOGSAT ,size I))
`(DEFTHM ,sat-lemma
(,predicate (,saturating-coercion I)))))
(IN-THEORY (DISABLE ,predicate ,name ,@(when$ saturating-coercion
(list saturating-coercion))))
(DEFTHEORY ,theory
(UNION-THEORIES
(DEFUN-TYPE/EXEC-THEORY
'(,predicate ,name ,@(when$ saturating-coercion
(list saturating-coercion))))
'(,predicate-lemma ,coercion-lemma ,forward-lemma
,@(when$ saturating-coercion
(list sat-lemma))))))))
;;;****************************************************************************
;;;
;;; DEFWORD
;;;
;;;****************************************************************************
;;; Recognizers for valid structure definitions and code generators. See
;;; the grammar in the :DOC for DEFWORD.
(defun defword-tuple-p (tuple)
(or (and (true-listp tuple)
(or (equal (length tuple) 3)
(equal (length tuple) 4))
(symbolp (first tuple))
(integerp (second tuple))
(> (second tuple) 0)
(integerp (third tuple))
(>= (third tuple) 0)
(implies (fourth tuple) (stringp (fourth tuple))))
(er hard 'defword
"A field designator for DEFWORD must be a list, the first ~
element of which is a symbol, the second a positive integer, ~
and the third a non-negative integer. If a fouth element is ~
provided it must be a string. This object violates these ~
constraints: ~p0" tuple)))
(defun defword-tuple-p-listp (struct)
(cond
((null struct) t)
(t (and (defword-tuple-p (car struct))
(defword-tuple-p-listp (cdr struct))))))
(defun defword-struct-p (struct)
(cond
((true-listp struct) (defword-tuple-p-listp struct))
(t (er hard 'defword
"The second argument of DEFWORD must be a true list. ~
This object is not a true list: ~p0" struct))))
(defun defword-guards (name struct conc-name set-conc-name keyword-updater
doc)
(and
(or (symbolp name)
(er hard 'defword
"The name must be a symbol. This is not a symbol: ~p0" name))
(defword-struct-p struct)
(or (symbolp conc-name)
(er hard 'defword
"The :CONC-NAME must be a symbol. This is not a symbol: ~
~p0" conc-name))
(or (symbolp set-conc-name)
(er hard 'defword
"The :SET-CONC-NAME must be a symbol. This is not a symbol: ~
~p0" conc-name))
(or (symbolp keyword-updater)
(er hard 'defword
"The :KEYWORD-UPDATER must be a symbol. This is not a symbol: ~
~p0" conc-name))
(or (implies doc (stringp doc))
(er hard 'defword
"The :DOC must be a string. This is not a string: ~p0" doc))))
(defun defword-accessor-name (name conc-name field)
(pack-intern name conc-name field))
(defun defword-updater-name (name set-conc-name field)
(pack-intern name set-conc-name field))
(defun defword-accessor-definitions (rdb name conc-name tuples)
(cond ((consp tuples)
(let*
((tuple (car tuples))
(field (first tuple))
(size (second tuple))
(pos (third tuple))
(doc (fourth tuple))
(accessor (defword-accessor-name name conc-name field)))
(cons
`(DEFMACRO ,accessor (WORD)
,@(if doc (list doc) nil)
(LIST ',rdb (LIST 'BSP ,size ,pos) WORD))
(defword-accessor-definitions rdb name conc-name (cdr tuples)))))
(t ())))
(defun defword-updater-definitions (wrb name set-conc-name tuples)
(cond ((consp tuples)
(let*
((tuple (car tuples))
(field (first tuple))
(size (second tuple))
(pos (third tuple))
(updater (defword-updater-name name set-conc-name field)))
(cons
`(DEFMACRO ,updater (VAL WORD)
(LIST ',wrb VAL (LIST 'BSP ,size ,pos) WORD))
(defword-updater-definitions wrb name set-conc-name
(cdr tuples)))))
(t ())))
(defloop defword-keyword-field-alist (name set-conc-name field-names)
(for ((field-name in field-names))
(collect (cons (intern-in-package-of-symbol (string field-name) :keyword)
(defword-updater-name name set-conc-name field-name)))))
(defun defword-keyword-updater-body (val args keyword-field-alist)
(cond
((atom args) val)
(t `(,(cdr (assoc (car args) keyword-field-alist)) ,(cadr args)
,(defword-keyword-updater-body val (cddr args) keyword-field-alist)))))
(defun defword-keyword-updater-fn (form val args keyword-updater
keyword-field-alist)
(declare (xargs :mode :program))
(let*
((keyword-field-names (strip-cars keyword-field-alist)))
(cond
((not (keyword-value-listp args))
(er hard keyword-updater
"The argument list in the macro invocation ~p0 ~
does not match the syntax of a keyword argument ~
list because ~@1."
form (reason-for-non-keyword-value-listp args)))
((not (subsetp (evens args) keyword-field-names))
(er hard keyword-updater
"The argument list in the macro invocation ~p0 is not ~
a valid keyword argument list because it contains the ~
~#1~[keyword~/keywords~] ~&1, which ~#1~[is~/are~] ~
not the keyword ~#1~[form~/forms~] of any of the ~
field names ~&2."
FORM (set-difference-equal (evens args) keyword-field-names)
keyword-field-names))
(t (defword-keyword-updater-body val args keyword-field-alist)))))
(defun defword-keyword-updater (name keyword-updater set-conc-name
field-names)
`(DEFMACRO ,keyword-updater (&WHOLE FORM VAL &REST ARGS)
(DEFWORD-KEYWORD-UPDATER-FN
FORM VAL ARGS ',keyword-updater
',(defword-keyword-field-alist name set-conc-name field-names))))
(defsection defword
:parents (logops-definitions)
:short "A macro to define packed integer data structures."
:long "<p>Example:</p>
@({
(DEFWORD FM9001-INSTRUCTION-WORD
((RN-A 4 0) (MODE-A 2 4) (IMMEDIATE 9 0) (A-IMMEDIATE 1 9)
(RN-B 4 10) (MODE-B 2 14)
(SET-FLAGS 4 16) (STORE-CC 4 20) (OP-CODE 4 24))
:CONC-NAME ||
:SET-CONC-NAME SET-)
})
<p>The above example defines the instruction word layout for the FM9001. The
macro defines accessing macros (RN-A i), ... ,(OP-CODE i), updating
macros (SET-RN-A val i), ... ,(SET-OP-CODE val i), and a keyword updating
macro @('(UPDATE-FM9001-INSTRUCTION-WORD val &rest args)').</p>
<p>General form:</p>
@({
(DEFWORD name struct &key conc-name set-conc-name keyword-updater)
})
<p>The DEFWORD macro defines a packed integer data structure, for example an
instruction word for a programmable processor or a status word. DEFWORD is a
simple macro that defines accessing and updating macros for the fields of the
data structure. The utility of DEFWORD is mainly to simplify the specification
of packed integer data structures, and to improve the readability of code
manipulating these data structures without affecting performance. As long as
the book \"logops-lemmas\" is loaded all of the important facts about the macro
expansions should be available to the theorem prover.</p>
<p>Arguments</p>
@({
name: The name of the data structure, a symbol.
struct : The field structure of the word. The form of this argument is
given by the following grammar:
<tuple> := (<field> <size> <pos> [ <doc> ])
<struct> := () | (<tuple> . <struct>)
where:
(SYMBOLP <field>)
(AND (INTEGERP <size>) (> <size> 0))
(AND (INTEGERP <pos>) (>= <pos> 0))
(STRINGP <doc>)
})
<p>In other words, a list of tuples, the first element being a symbol, the
second a positive integer, the third a nonnegative integer, and the optional
fourth a string.</p>
<p>Note that there are few other requirements on the @('<struct>') other than
the syntactic ones above. For example, the FM9001 DEFWORD shows that a word
may have more than one possible structure - the first 9 bits of the FM9001
instruction word are either an immediate value, or they include the RN-A and
MODE-A fields.</p>
<p>conc-name, set-conc-name: These are symbols whose print names will be
concatenated with the field names to produce the name of the accessors and
updaters respectively. The default is @('<name>')- and @('SET-<name>')-
respectively. The access and update macro names will be interned in the
package of name.</p>
<p>keyword-updater: This is a symbol, and specifies the name of the keyword
updating macro (see below). The default is @('UPDATE-<name>').</p>
<h3>Interpretation</h3>
<p>DEFWORD creates an ACL2 DEFLABEL event named @('<name>').</p>
<p>Each tuple @('(<field> <size> <pos>)') represents a @('<size>')-bit field of
a word at the bit position indicated. Each field tuple produces an accessor
macro</p>
@({
(<accessor> word)
})
<p>where @('<accessor>') is computed from the :conc-name (see above). This
accessor will expand into:</p>
@({
(RDB (BSP <size> <pos>) word).
})
<p>DEFWORD also generates an updating macro</p>
@({
(<updater> val word)
})
<p>where @('<updater>') is computed from the :set-conc-name (see above). This
macro will expand to</p>
@({
(WRB val (BSP <size> <pos>) word)
})
<p>The keyword updater</p>
@({
(<keyword-updater> word &rest args)
})
<p>is equivalent to multiple nested calls of the updaters on the initial word.
For example,</p>
@({
(UPDATE-FM9001-INSTRUCTION-WORD WORD :RN-A 10 :RN-B 12)
})
<p>is the same as @('(SET-RN-A 10 (SET-RN-B 12 WORD))').</p>")
(defmacro defword (name struct &key conc-name set-conc-name keyword-updater doc)
(cond
((not
(defword-guards name struct conc-name set-conc-name keyword-updater doc)))
(t
(let*
((conc-name (if conc-name
conc-name
(pack-intern name name "-")))
(set-conc-name (if set-conc-name
set-conc-name
(pack-intern name "SET-" name "-")))
(keyword-updater (if keyword-updater
keyword-updater
(pack-intern name "UPDATE-" name)))
(accessor-definitions
(defword-accessor-definitions 'RDB name conc-name struct))
(updater-definitions
(defword-updater-definitions 'WRB name set-conc-name struct))
(field-names (strip-cars struct)))
`(ENCAPSULATE () ;Only to make macroexpansion pretty.
(DEFLABEL ,name ,@(if doc `(:DOC ,doc) nil))
,@accessor-definitions
,@updater-definitions
,(defword-keyword-updater
name keyword-updater set-conc-name field-names))))))
#||
Example:
(DEFWORD FM9001-INSTRUCTION
((RN-A 4 0) (MODE-A 2 4) (IMMEDIATE 9 0) (A-IMMEDIATE 1 9)
(RN-B 4 10) (MODE-B 2 14)
(SET-FLAGS 4 16) (STORE-CC 4 20) (OP-CODE 4 24))
:CONC-NAME ||
:SET-CONC-NAME SET-
:DOC "Instruction word layout for the FM9001.")
||#
;;;****************************************************************************
;;;
;;; Word/Bit Macros
;;;
;;;****************************************************************************
(defxdoc word/bit-macros
:parents (logops-definitions)
:short "Macros for manipulating integer words defined as contiguous bits."
:long "<p>These macros were defined to support the functions produced by
translating SPW .eqn files to ACL2 functions.</p>")
(defun bind-word-to-bits-fn (bit-names n word)
(cond
((endp bit-names) ())
(t (cons `(,(car bit-names) (LOGBIT ,n ,word))
(bind-word-to-bits-fn (cdr bit-names) (1+ n) word)))))
(defsection bind-word-to-bits
:parents (word/bit-macros)
:short "Bind variables to the contiguous low-order bits of word."
:long "<p>Example:</p>
@({
(BIND-WORD-TO-BITS (A B C) I (B-AND A (B-IOR B C)))
})
<p>The above macro call will bind A, B, and C to the 0th, 1st, and 2nd bit of
I, and then evaluate the logical expression under those bindings. The list of
bit names is always interpreted from low to high order.</p>"
(defmacro bind-word-to-bits (bit-names word &rest forms)
(declare (xargs :guard (and (symbol-listp bit-names)
(no-duplicatesp bit-names))))
`(LET ,(bind-word-to-bits-fn bit-names 0 word) ,@forms)))
(defsection make-word-from-bits
:parents (word/bit-macros)
:short "Update the low-order bits of word with the indicated values."
:long "<p>Example:</p>
@({
(MAKE-WORD-FROM-BITS A B C)
})
<p>The above macro call will build an unsigned integer from the bits A B, and
C. The list of bits is always interpreted from low to high order. Note that
the expression generated by this macro will coerce the values to bits before
building the word.</p>"
(defmacro make-word-from-bits (&rest bits)
(cond
((endp bits) 0)
(t `(LOGAPP 1 ,(car bits) (MAKE-WORD-FROM-BITS ,@(cdr bits)))))))
|