/usr/share/acl2-7.2dfsg/books/ihs/basic-definitions.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 | ; basic-definitions.lisp -- extensions to Common Lisp logical operations
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; basic-definitions.lisp
;;;
;;; [Jared]: This book is a lighter-weight version of "logops-lemmas.lisp"
;;; which only defines the basic logical operations on words and bits, and
;;; omits functions like bsp, wrb, and rdb, the guard macros, and macros such
;;; as defword, defbytetype, etc. All of these functions were originally part
;;; of logops-lemmas.lisp, with credit as follows:
;;;
;;; Large parts of this work were inspired by Yuan Yu's Nqthm
;;; specification of the Motorola MC68020.
;;;
;;; Bishop Brock
;;; Computational Logic, Inc.
;;; 1717 West Sixth Street, Suite 290
;;; Austin, Texas 78703
;;; (512) 322-9951
;;; brock@cli.com
;;;
;;; Modified for ACL2 Version_2.6 by:
;;; Jun Sawada, IBM Austin Research Lab. sawada@us.ibm.com
;;; Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;; Modified for ACL2 Version_2.7 by:
;;; Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;; Modified October 2014 by Jared Davis <jared@centtech.com>
;;; Ported documentation to XDOC
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(in-package "ACL2")
(include-book "std/util/define" :dir :system)
(include-book "std/basic/defs" :dir :system)
(local (include-book "math-lemmas"))
(local (include-book "quotient-remainder-lemmas"))
(defxdoc logops
:parents (ihs)
:short "Definitions and lemmas about logical operations on integers."
:long "<p>The books @(see logops-definitions) and @(see logops-lemmas)
contain a theory of the logical operations on numbers defined by CLTL (Section
12.7), and a portable implementation of the CLTL byte manipulation
functions (Section 12.8). These books also extend the CLTL logical operations
and byte manipulation theory with a few new definitions, lemmas supporting
those definitions, and useful macros.</p>
<p>These books were developed as a basis for the formal specification and
verification of hardware, where integers are used to represent binary signals
and busses. These books should be general enough, however, to be used as a
basis for reasoning about packed data structures, bit-encoded sets, and other
applications of logical operations on integers.</p>")
(defxdoc logops-definitions
:parents (ihs)
:short "A book a definitions of logical operations on numbers."
:long "<p>This book, along with @(see logops-lemmas), includes a theory of
the Common Lisp logical operations on numbers, a portable implementation of the
Common Lisp byte operations, extensions to those theories, and some useful
macros.</p>
<p>This book contains only definitions, lemmas necessary to admit those
definitions, and selected type lemmas. By \"type lemmas\" we mean any lemmas
about the logical operations that we have found necessary to verify the guards
of functions that use these operations. We have separated these \"type
lemmas\" from the large body of other lemmas in @(see logops-lemmas) to allow a
user to use this book to define guard-verified functions without having to also
include the extensive theory in @('logops-lemmas').</p>
<p>The standard Common Lisp logical operations on numbers are defined on the
signed integers, and return signed integers as appropriate. This allows a high
level, signed interpretation of hardware operations if that is appropriate for
the specification at hand. We also provide unsigned versions of several of the
standard logical operations for use in specifications where fixed-length
unsigned integers are used to model hardware registers and busses. This view
of hardware is used, for example, in Yuan Yu's Nqthm specification of the
Motorola MC68020.</p>")
(local (xdoc::set-default-parents logops-definitions))
; [Jared] some trivial rules that are useful for the MBE substitutions
(local (defthm ash-1-n
(implies (natp n)
(equal (ash 1 n)
(expt 2 n)))))
(local (defthm logand-1
(implies (integerp i)
(equal (logand i 1)
(mod i 2)))))
(local (defthm ash-minus-1
(implies (integerp i)
(equal (ash i -1)
(floor i 2)))))
(local (defthm ash-plus-1
(implies (integerp i)
(equal (ash i 1)
(* 2 i)))))
(local (defthm ash-minus-n
(implies (and (integerp i)
(natp pos))
(equal (ash i (- pos))
(floor i (expt 2 pos))))))
(local (defthm ash-plus-n
(implies (and (integerp i)
(natp pos))
(equal (ash i pos)
(* i (expt 2 pos))))))
(local (defthm logand-positive
(implies (natp mask)
(<= 0 (logand i mask)))
:rule-classes ((:linear))))
(local
(encapsulate
()
(local (defun my-induct (i size)
(if (zp size)
(list size i)
(my-induct (ash i -1)
(- size 1)))))
(defthmd mod-of-expt-2-is-logand
(implies (and (integerp size)
(>= size 0)
(integerp i))
(equal (mod i (expt 2 size))
(logand i (1- (ash 1 size)))))
:hints(("Goal" :induct (my-induct i size))))))
(define zbp
:parents (logops-definitions bitp)
:short "Zero bit recognizer. @('(zbp x)') tests for zero bits. Any object
other than @('1') is considered to be a zero bit."
((x bitp))
:returns bool
:enabled t
:inline t
(mbe :logic (equal (bfix x) 0)
:exec (/= (the (unsigned-byte 1) x) 1)))
(define ifloor
:short "@('(ifloor i j)') is the same as @(see floor), except that it coerces
its arguments to integers."
((i integerp)
(j (and (integerp j)
(not (= 0 j)))))
:returns (int integerp
:rule-classes :type-prescription
:name ifloor-type)
:inline t
:enabled t
(mbe :logic (floor (ifix i) (ifix j))
:exec (floor i j)))
(define imod
:short "@('(imod i j)') is the same as @(see mod), except that it coerces its
arguments to integers."
((i integerp)
(j (and (integerp j)
(not (= 0 j)))))
:returns (int integerp
:rule-classes :type-prescription
:name imod-type)
:inline t
:enabled t
(mbe :logic (mod (ifix i) (ifix j))
:exec (mod i j)))
(define expt2
:short "@('(expt2 n)') is the same as @('(expt 2 n)'), except that it coerces
its argument to a natural."
((n natp))
:returns (nat natp
:rule-classes :type-prescription
:name expt2-type)
:enabled t
:inline t
(mbe :logic (expt 2 (nfix n))
:exec (the unsigned-byte
(ash 1 (the unsigned-byte n)))))
(define binary-minus-for-gl ((x acl2-numberp)
(y acl2-numberp))
:parents (binary--)
:short "Hack for implementing @(see binary--). Don't use this."
:long "<p>You should never need to use this, call @(see binary--) instead.</p>
<p>This is the logical definition for @(see binary--). It has a custom GL
symbolic counterpart. The only reason to make this a separate function,
instead of directly putting a symbolic counterpart on @('binary--') itself, is
to avoid infinite inlining problems when we define custom symbolic counterparts
for inlined functions on Lisps like SBCL.</p>"
:enabled t
(- x y))
(define binary--
:parents (logops-definitions)
:short "@('(binary-- x y)') is the same as @('(- x y)'), but may symbolically
simulate more efficiently in @(see gl)."
((x acl2-numberp)
(y acl2-numberp))
:enabled t
:inline t
:long "<p>This is an alias for @('(- x y)'). It should always be left
enabled and you should never prove any theorems about it.</p>
<p>In ACL2, @(see -) is a macro and @('(- x y)') expands to @('(+ x (unary--
y))'). This form is often not particularly good for symbolic simulation with
@(see gl): GL first has to negate @('y') and then carry out the addition.</p>
<p>In contrast, @('binary--') has a custom symbolic counterpart that avoids
this intermediate negation. This may result in fewer BDD computations or AIG
nodes. In the context of @(see hardware-verification), it may also help your
spec functions to better match the real implementation of subtraction circuits
in the hardware being analyzed.</p>"
(mbe :logic (binary-minus-for-gl x y)
:exec (- x y)))
(define logcar
:short "Least significant bit of a number."
((i integerp))
:returns bit
:long "<p>@('(logcar i)') is the @(see car) of an integer conceptualized as a
bit-vector, where the least significant bit is at the head of the list.</p>
<p>In languages like C, this might be written as @('i & 1').</p>"
:enabled t
:inline t
(mbe :logic (imod i 2)
:exec (the (unsigned-byte 1) (logand (the integer i) 1)))
///
(defthm logcar-type
(bitp (logcar i))
:rule-classes ((:rewrite)
(:type-prescription :corollary (natp (logcar i)))
(:generalize :corollary
(or (equal (logcar i) 0)
(equal (logcar i) 1))))))
(define logcdr
:short "All but the least significant bit of a number."
((i integerp))
:returns (int integerp
:rule-classes :type-prescription
:name logcdr-type)
:long "<p>@('(logcdr i)') is the @(see cdr) of an integer conceptualized as a
bit-vector, where the least significant bit is at the head of the list.</p>
<p>In languages like C, this might be written as @('i >> 1').</p>"
:enabled t
:inline t
(mbe :logic (ifloor i 2)
:exec (the integer (ash (the integer i) -1))))
(define logcons
:short "@('(logcons b i)') is the @(see cons) operation for integers,
conceptualized as bit-vectors, where the least significant bit is at the head
of the list."
((b bitp "LSB of the result.")
(i integerp "All but the LSB of the result."))
:returns (int integerp
:rule-classes :type-prescription
:name logcons-type)
:long "<p>In languages like C, this might be written as @('(i << 1) + b').</p>
<p>See also @(see logcar) and @(see logcdr).</p>"
:inline t
:enabled t
(mbe :logic (let ((b (bfix b))
(i (ifix i)))
(+ b (* 2 i)))
:exec (the integer
(+ (the (unsigned-byte 1) b)
(the integer (ash i 1))))))
(define logbit
:parents (logops-definitions logbitp)
:short "@('(logbit pos i)') returns the bit of @('i') at bit-position @('pos')
as a @(see bitp), 0 or 1."
((pos natp)
(i integerp))
:returns bit
:long "<p>This is just like the Common Lisp function @('(logbitp pos i)'),
except that we return 1 or 0 (instead of t or nil).</p>
<p>In languages like C, this might be written as @('(i >> pos) & 1').</p>"
:enabled t
:inline t
:no-function t ;; Sigh, switching to :abbreviation breaks various proofs
(if (logbitp pos i)
1
0)
///
(defthm logbit-type
(bitp (logbit pos i))
:rule-classes ((:rewrite)
(:type-prescription :corollary (natp (logbit pos i))))
;; BOZO want a generalize rule like in logcar?
))
(define logmask
:short "@('(logmask size)') creates a low-order, @('size')-bit mask."
((size natp))
:returns (nat natp
:rule-classes :type-prescription
:name logmask-type)
:long "<p>In languages like C, this might be written as @('(1 << size) - 1').</p>"
:enabled t
:inline t
(mbe :logic (- (expt2 size) 1)
:exec (the unsigned-byte (1- (the unsigned-byte (ash 1 size))))))
(define logmaskp
:short "@('(logmaskp i)') recognizes positive bit-masks, i.e., numbers of the
form @($2^n - 1$)."
(i)
:returns bool
:enabled t
:long "<p>Note that this function explicitly checks @('(integerp i)'), which
means it doesn't satisfy an @(see int-equiv) congruence. See also @(see
bitmaskp), which fixes its argument and may execute slightly faster.</p>"
(mbe :logic (and (integerp i)
(>= i 0) ;; silly, this is implied by the equality below
(equal i (- (expt2 (integer-length i)) 1)))
:exec (and (integerp i)
(eql i (the unsigned-byte
(- (the unsigned-byte (ash 1 (integer-length i)))
1))))))
(define bitmaskp
:short "@('(bitmaskp i)') recognizes positive masks, i.e., numbers of the form
@($2^n - 1$). It is like @(see logmaskp) but properly treats non-integers as 0."
((i integerp))
:returns bool
:inline t
(mbe :logic (logmaskp (mbe :logic (ifix i)
:exec i))
:exec (eql i (the unsigned-byte
(- (the unsigned-byte (ash 1 (integer-length i)))
1)))))
(define loghead
:short "@('(loghead size i)') returns the @('size') low-order bits of @('i')."
((size (and (integerp size)
(<= 0 size))
:type unsigned-byte)
(i integerp))
:returns (nat natp
:rule-classes :type-prescription
:name loghead-type)
:long "<p>In languages like C, this might be written as @('i & ((1 << size) -
1)').</p>
<p>By convention we define @('(loghead 0 i)') as 0. This definition is a
bit arbitrary but generally leads to nice lemmas.</p>"
:inline t
:enabled t
:split-types t
:guard-hints(("Goal" :in-theory (enable mod-of-expt-2-is-logand)))
(mbe :logic (imod i (expt2 size))
:exec
(the unsigned-byte
(logand i (the unsigned-byte
(1- (the unsigned-byte (ash 1 size))))))))
(define logtail
:short "@('(logtail pos i)') returns the high-order part of @('i'), starting
at bit position @('pos')."
((pos (and (integerp pos)
(<= 0 pos))
:type unsigned-byte)
(i integerp))
:returns (int integerp
:rule-classes :type-prescription
:name logtail-type)
:long "<p>In languages like C, this might be written as @('i >> pos').</p>"
:split-types t
:inline t
:enabled t
(declare (xargs :guard (and (integerp pos)
(>= pos 0)
(integerp i))))
(mbe :logic (ifloor i (expt2 pos))
:exec (ash i (- (the unsigned-byte pos)))))
(define logapp
:short "@('(logapp size i j)') is a binary append of i to j, where i
effectively becomes the 'low' bits and j becomes the 'high' bits."
((size (and (integerp size)
(<= 0 size))
:type unsigned-byte)
(i integerp)
(j integerp))
:returns (int integerp
:rule-classes :type-prescription
:name logapp-type)
:split-types t
:long "<p>@('logapp') is a specification for merging integers. Note that
@('i') is truncated to @('size') bits before merging with @('j'), and that @('j')
is shifted to the left by @('size') bits before the merge.</p>"
:enabled t
(mbe :logic (let ((j (ifix j)))
(+ (loghead size i) (* j (expt2 size))))
;; BOZO could do better than calling loghead with some work
;; Could probably use logior instead of +.
:exec (+ (loghead size i) (ash j size))))
(define logrpl
:short "Logical replace. @('(logrpl size i j)') replaces the @('size')
low-order bits of @('j') with the @('size') low-order bits of @('i')."
((size (and (integerp size)
(<= 0 size)))
(i integerp)
(j integerp))
:returns (int integerp
:rule-classes :type-prescription
:name logrpl-type)
:long "<p>@('logrpl') is a specification for the result of storing short
values into long words, i.e., the short value simply replaces the head of the
long word.</p>
<p>This function is equivalent to @('(WRB i (BSP size 0) j)').</p>"
:enabled t
(logapp size i (logtail size j)))
(define logext
:short "@('(logext size i)') sign-extends @('i') to a @('size')-bit signed
integer."
((size (and (integerp size)
(< 0 size))
:type unsigned-byte)
(i integerp))
:returns (int integerp
:rule-classes :type-prescription
:name logext-type)
:split-types t
:long "<p>@('logext') interprets the least significant @('size') bits of
@('i') as a signed, 2's complement integer.</p>
<p>Basic examples:</p>
@({
(logext 4 7) --> 7 Bottom four bits are 0111
Sign bit is 0
Sign extension creates {0000......0}111
2's complement interpretation: 7.
(logext 3 7) --> -1 Bottom 3 bits are 111
Sign bit is 1
Sign extension creates {1111.....1}111
2's complement interpretation: -1.
(logext 4 8) --> -8 Bottom 4 bits are 1000
Sign bit is 1
Sign extension creates {1111.....1}1000
2's complement interpretation: -8.
})
<p>This function returns a (possibly negative) integer. For consistency with
@(see SIGNED-BYTE-P), @('size') must be strictly greater than 0. In contrast,
the related function @(see logextu) carries out a sign-extension but only
returns the low @('size') bits, i.e., it always returns a natural number.</p>
<p>We specify @('logext') in terms of the @('size') of the result instead of as
a bit position because we normally specify integer subranges by the number of
significant (including sign) bits.</p>
<p>See also @(see bitops::bitops/fast-logext) for a logically identical
function that is optimized for better performance.</p>"
:enabled t
(let* ((size-1 (- size 1)))
(declare (type unsigned-byte size-1))
(logapp size-1 i
(if (logbitp size-1 i)
-1
0))))
(define logrev1
:parents (logrev)
:short "Helper function for @(see logrev)."
((size (and (integerp size)
(<= 0 size)))
(i integerp)
(j integerp))
:returns (nat)
:split-types t
(declare (type unsigned-byte size)
(type integer i j))
:enabled t
(if (zp size)
(mbe :logic (ifix j)
:exec j)
(logrev1 (the unsigned-byte (- size 1))
(logcdr i)
(logcons (logcar i) j))))
(local (defthm logrev1-type
(implies (>= j 0)
(natp (logrev1 size i j)))
:rule-classes :type-prescription
:hints(("Goal" :in-theory (disable imod ifloor)))))
(define logrev
:short "Logical reverse. @('(logrev size i)') bit-reverses the @('size')
low-order bits of @('i'), discarding the high-order bits."
((size (and (integerp size)
(<= 0 size)))
(i integerp))
:returns (nat natp
:rule-classes :type-prescription
:name logrev-type)
:long "<p>Normally we don't think of bit-reversing as a logical operation,
even though its hardware implementation is trivial: simply reverse the wires
leading from the source to the destination.</p>
<p>@('logrev') is included as a logical operation to support the specification
of DSPs, which may provide bit-reversing in their address generators to improve
the performance of the FFT.</p>
<p>@('logrev') entails a recursive definition of bit-reversing via the helper
function @(see logrev1).</p>
<p>See also @(see bitops::bitops/fast-logrev) for some optimized definitions of
@(see logrev).</p>"
:inline t
:enabled t
(logrev1 size i 0))
(define logsat
:short "Signed saturation. @('(logsat size i)') coerces @('i') to a
@('size')-bit signed integer by saturation."
((size (and (integerp size)
(< 0 size))
:type unsigned-byte)
(i integerp))
:returns (int integerp
:rule-classes :type-prescription
:name logsat-type)
:long "<p>If @('i') can be represented as a @('size')-bit signed integer,
then @('i') is returned unchanged. Otherwise, @('(logsat size i)') returns
the @('size')-bit signed integer closest to @('i'). For positive i, this
will be @($2^{size-1} - 1$). For negative @('i'), this will be
@($-(2^{size-1}$).</p>
<p>This function returns a (possibly negative) integer. For consistency with
@(see signed-byte-p), size must be strictly greater than 0. In contrast, the
related @(see bitops::bitops/saturate) functions always return @('size')-bit
natural numbers.</p>"
:split-types t
:enabled t
(let* ((i (mbe :logic (ifix i) :exec i))
(val (expt2 (the unsigned-byte (1- size))))
(maxval (the unsigned-byte (1- (the unsigned-byte val))))
(minval (- val)))
(declare (type unsigned-byte val maxval)
(type integer i minval))
(if (>= i maxval)
maxval
(if (<= i minval)
minval
i))))
(define logextu
:short "Logical sign extension, unsigned version. @('(logextu final-size
ext-size i)') \"sign-extends\" i with @('(logext ext-size i)'), then truncates
the result to @('final-size') bits, creating an unsigned integer."
((final-size (and (integerp final-size)
(<= 0 final-size)))
(ext-size (and (integerp ext-size)
(< 0 ext-size)))
(i integerp))
:returns (nat natp
:rule-classes :type-prescription
:name logextu-type)
:enabled t
:inline t
(loghead final-size (logext ext-size i)))
(define lognotu
:short "Logical negation, unsigned version. @('(lognotu size i)') is an
unsigned logical @('not'). It just truncates @('(lognot i)') to @('size')
bits."
((size (and (integerp size)
(<= 0 size)))
(i integerp))
:returns (nat natp
:rule-classes :type-prescription
:name lognotu-type)
:enabled t
:inline t
(loghead size (lognot i)))
(define ashu
:short "Arithmetic shift, unsigned version."
((size (and (integerp size)
(< 0 size)))
(i integerp)
(cnt integerp))
:returns (nat natp
:rule-classes :type-prescription
:name ashu-type)
:long "<p>@('ashu') is a fixed-width version of @(see ash). The integer
@('i') is first coerced to a @('size')-bit signed integer by sign-extension,
then shifted with @('ash'), and finally truncated back to a @('size')-bit
unsigned integer.</p>
<p>See also @(see lshu) for a logical (instead of arithmetic) shift.</p>"
:enabled t
(loghead size (ash (logext size i) cnt)))
(define lshu
:short "Logical shift, unsigned version."
((size (and (integerp size)
(<= 0 size)))
(i integerp)
(cnt integerp))
:returns (nat natp
:rule-classes :type-prescription
:name lshu-type)
:long "<p>@('lshu') is a fixed-width logical shift. It shifts @('i')
by @('cnt') bits by first coercing @('i') to an unsigned integer of @('size')
bits, performing the shift, and coercing the result to an @('size')-bit
unsigned integer.</p>
<p>For @('cnt >= 0'), @('(lshu size i cnt) = (ashu size i cnt)').</p>
<p>This is a model of a size-bit logical shift register.</p>"
:enabled t
(loghead size (ash (loghead size i) cnt)))
(defxdoc logops-bit-functions
:parents (logops-definitions bitp)
:short "Versions of the standard logical operations that operate on single bits."
:long "<p>We provide versions of the non-trivial standard logical operations
that operate on single bits.</p>
<p>One reason that it is useful to introduce these operations separately from
the standard operations is the fact that @(see lognot) applied to a @(see bitp)
object never returns a @(see bitp).</p>
<p>All arguments to these functions must be @(see bitp), and we prove that
each returns a @(see bitp) integer, i.e., 0 or 1. We define each function
explicitly in terms of 0 and 1 to simplify reasoning.</p>")
(local (xdoc::set-default-parents logops-bit-functions))
(define b-not ((i bitp))
:returns bit
:short "Negation for @(see bitp)s."
:inline t
:enabled t
(mbe :logic (if (zbp i) 1 0)
:exec (the (unsigned-byte 1)
(- 1 (the (unsigned-byte 1) i)))))
(define b-and ((i bitp) (j bitp))
:returns bit
:short "Conjunction for @(see bitp)s."
:inline t
:enabled t
(mbe :logic (if (zbp i) 0 (if (zbp j) 0 1))
:exec (the (unsigned-byte 1)
(logand (the (unsigned-byte 1) i)
(the (unsigned-byte 1) j)))))
(define b-ior ((i bitp) (j bitp))
:returns bit
:short "Inclusive or for @(see bitp)s."
:inline t
:enabled t
(mbe :logic (if (zbp i) (if (zbp j) 0 1) 1)
:exec (the (unsigned-byte 1)
(logior (the (unsigned-byte 1) i)
(the (unsigned-byte 1) j)))))
(define b-xor ((i bitp) (j bitp))
:returns bit
:short "Exclusive or for @(see bitp)s."
:enabled t
:inline t
(mbe :logic (if (zbp i) (if (zbp j) 0 1) (if (zbp j) 1 0))
:exec (the (unsigned-byte 1)
(logxor (the (unsigned-byte 1) i)
(the (unsigned-byte 1) j)))))
(define b-eqv ((i bitp) (j bitp))
:returns bit
:short "Equivalence (a.k.a. if and only if, xnor) for @(see bitp)s."
:enabled t
:inline t
(mbe :logic (if (zbp i) (if (zbp j) 1 0) (if (zbp j) 0 1))
;; Goofy definition, Using logeqv or lognot of logxor would require
;; masking (they produce -1 for, e.g., (logeqv 0 0)). So I'll just xor
;; with 1 to invert the bit.
:exec (the (unsigned-byte 1)
(logxor (the (unsigned-byte 1)
(logxor (the (unsigned-byte 1) i)
(the (unsigned-byte 1) j)))
1))))
(define b-nand ((i bitp) (j bitp))
:returns bit
:short "Negated and for @(see bitp)s."
:enabled t
:inline t
(mbe :logic (if (zbp i) 1 (if (zbp j) 1 0))
;; Goofy :exec, similar to b-eqv for similar reasons
:exec (the (unsigned-byte 1)
(logxor (the (unsigned-byte 1)
(logand (the (unsigned-byte 1) i)
(the (unsigned-byte 1) j)))
1))))
(define b-nor ((i bitp) (j bitp))
:returns bit
:short "Negated or for @(see bitp)s."
:enabled t
:inline t
(mbe :logic (if (zbp i) (if (zbp j) 1 0) 0)
:exec (the (unsigned-byte 1)
(logxor (the (unsigned-byte 1)
(logior (the (unsigned-byte 1) i)
(the (unsigned-byte 1) j)))
1))))
(define b-andc1 ((i bitp) (j bitp))
:returns bit
:short "And of @(see bitp)s, complementing the first."
:enabled t
:inline t
(mbe :logic (if (zbp i) (if (zbp j) 0 1) 0)
:exec (the (unsigned-byte 1)
(logandc1 (the (unsigned-byte 1) i)
(the (unsigned-byte 1) j)))))
(define b-andc2 ((i bitp) (j bitp))
:returns bit
:short "And of @(see bitp)s, complementing the second."
:enabled t
:inline t
(mbe :logic (if (zbp i) 0 (if (zbp j) 1 0))
:exec (the (unsigned-byte 1)
(logandc2 (the (unsigned-byte 1) i)
(the (unsigned-byte 1) j)))))
(define b-orc1 ((i bitp) (j bitp))
:returns bit
:short "Inclusive or of @(see bitp)s, complementing the first."
:enabled t
:inline t
(mbe :logic (if (zbp i) 1 (if (zbp j) 0 1))
:exec (the (unsigned-byte 1)
(logior (the (unsigned-byte 1)
(logxor 1 (the (unsigned-byte 1) i)))
(the (unsigned-byte 1) j)))))
(define b-orc2 ((i bitp) (j bitp))
:returns bit
:short "Inclusive or of @(see bitp)s, complementing the second."
:enabled t
:inline t
(mbe :logic (if (zbp i) (if (zbp j) 1 0) 1)
:exec (the (unsigned-byte 1)
(logior (the (unsigned-byte 1) i)
(the (unsigned-byte 1)
(logxor 1 (the (unsigned-byte 1) j)))))))
(defsection bit-functions-type
:short "Basic type rules for the @(see logops-bit-functions)."
(defthm bit-functions-type
(and (bitp (b-not i))
(bitp (b-and i j))
(bitp (b-ior i j))
(bitp (b-xor i j))
(bitp (b-eqv i j))
(bitp (b-nand i j))
(bitp (b-nor i j))
(bitp (b-andc1 i j))
(bitp (b-andc2 i j))
(bitp (b-orc1 i j))
(bitp (b-orc2 i j)))
:rule-classes
((:rewrite)
(:type-prescription :corollary (natp (b-not i)))
(:type-prescription :corollary (natp (b-and i j)))
(:type-prescription :corollary (natp (b-ior i j)))
(:type-prescription :corollary (natp (b-xor i j)))
(:type-prescription :corollary (natp (b-eqv i j)))
(:type-prescription :corollary (natp (b-nand i j)))
(:type-prescription :corollary (natp (b-nor i j)))
(:type-prescription :corollary (natp (b-andc1 i j)))
(:type-prescription :corollary (natp (b-andc2 i j)))
(:type-prescription :corollary (natp (b-orc1 i j)))
(:type-prescription :corollary (natp (b-orc2 i j))))))
(defmacro loglist* (&rest args)
(xxxjoin 'logcons args))
|