This file is indexed.

/usr/share/acl2-7.2dfsg/books/ihs/basic-definitions.lisp is in acl2-books-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
; basic-definitions.lisp  --  extensions to Common Lisp logical operations
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; basic-definitions.lisp
;;;
;;; [Jared]: This book is a lighter-weight version of "logops-lemmas.lisp"
;;; which only defines the basic logical operations on words and bits, and
;;; omits functions like bsp, wrb, and rdb, the guard macros, and macros such
;;; as defword, defbytetype, etc.  All of these functions were originally part
;;; of logops-lemmas.lisp, with credit as follows:
;;;
;;;    Large parts of this work were inspired by Yuan Yu's Nqthm
;;;    specification of the Motorola MC68020.
;;;
;;;    Bishop Brock
;;;    Computational Logic, Inc.
;;;    1717 West Sixth Street, Suite 290
;;;    Austin, Texas 78703
;;;    (512) 322-9951
;;;    brock@cli.com
;;;
;;;    Modified for ACL2 Version_2.6 by:
;;;    Jun Sawada, IBM Austin Research Lab. sawada@us.ibm.com
;;;    Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;;    Modified for ACL2 Version_2.7 by:
;;;    Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;;    Modified October 2014 by Jared Davis <jared@centtech.com>
;;;    Ported documentation to XDOC
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(in-package "ACL2")
(include-book "std/util/define" :dir :system)
(include-book "std/basic/defs" :dir :system)
(local (include-book "math-lemmas"))
(local (include-book "quotient-remainder-lemmas"))

(defxdoc logops
  :parents (ihs)
  :short "Definitions and lemmas about logical operations on integers."

  :long "<p>The books @(see logops-definitions) and @(see logops-lemmas)
contain a theory of the logical operations on numbers defined by CLTL (Section
12.7), and a portable implementation of the CLTL byte manipulation
functions (Section 12.8).  These books also extend the CLTL logical operations
and byte manipulation theory with a few new definitions, lemmas supporting
those definitions, and useful macros.</p>

<p>These books were developed as a basis for the formal specification and
verification of hardware, where integers are used to represent binary signals
and busses.  These books should be general enough, however, to be used as a
basis for reasoning about packed data structures, bit-encoded sets, and other
applications of logical operations on integers.</p>")

(defxdoc logops-definitions
  :parents (ihs)
  :short "A book a definitions of logical operations on numbers."

  :long "<p>This book, along with @(see logops-lemmas), includes a theory of
the Common Lisp logical operations on numbers, a portable implementation of the
Common Lisp byte operations, extensions to those theories, and some useful
macros.</p>

<p>This book contains only definitions, lemmas necessary to admit those
definitions, and selected type lemmas.  By \"type lemmas\" we mean any lemmas
about the logical operations that we have found necessary to verify the guards
of functions that use these operations.  We have separated these \"type
lemmas\" from the large body of other lemmas in @(see logops-lemmas) to allow a
user to use this book to define guard-verified functions without having to also
include the extensive theory in @('logops-lemmas').</p>

<p>The standard Common Lisp logical operations on numbers are defined on the
signed integers, and return signed integers as appropriate.  This allows a high
level, signed interpretation of hardware operations if that is appropriate for
the specification at hand.  We also provide unsigned versions of several of the
standard logical operations for use in specifications where fixed-length
unsigned integers are used to model hardware registers and busses.  This view
of hardware is used, for example, in Yuan Yu's Nqthm specification of the
Motorola MC68020.</p>")

(local (xdoc::set-default-parents logops-definitions))

; [Jared] some trivial rules that are useful for the MBE substitutions

(local (defthm ash-1-n
         (implies (natp n)
                  (equal (ash 1 n)
                         (expt 2 n)))))

(local (defthm logand-1
         (implies (integerp i)
                  (equal (logand i 1)
                         (mod i 2)))))

(local (defthm ash-minus-1
         (implies (integerp i)
                  (equal (ash i -1)
                         (floor i 2)))))

(local (defthm ash-plus-1
         (implies (integerp i)
                  (equal (ash i 1)
                         (* 2 i)))))

(local (defthm ash-minus-n
         (implies (and (integerp i)
                       (natp pos))
                  (equal (ash i (- pos))
                         (floor i (expt 2 pos))))))

(local (defthm ash-plus-n
         (implies (and (integerp i)
                       (natp pos))
                  (equal (ash i pos)
                         (* i (expt 2 pos))))))

(local (defthm logand-positive
         (implies (natp mask)
                  (<= 0 (logand i mask)))
         :rule-classes ((:linear))))

(local
 (encapsulate
   ()
   (local (defun my-induct (i size)
            (if (zp size)
                (list size i)
              (my-induct (ash i -1)
                         (- size 1)))))

   (defthmd mod-of-expt-2-is-logand
     (implies (and (integerp size)
                   (>= size 0)
                   (integerp i))
              (equal (mod i (expt 2 size))
                     (logand i (1- (ash 1 size)))))
     :hints(("Goal" :induct (my-induct i size))))))


(define zbp
  :parents (logops-definitions bitp)
  :short "Zero bit recognizer.  @('(zbp x)') tests for zero bits.  Any object
other than @('1') is considered to be a zero bit."
  ((x bitp))
  :returns bool
  :enabled t
  :inline t
  (mbe :logic (equal (bfix x) 0)
       :exec (/= (the (unsigned-byte 1) x) 1)))

(define ifloor
  :short "@('(ifloor i j)') is the same as @(see floor), except that it coerces
  its arguments to integers."
  ((i integerp)
   (j (and (integerp j)
           (not (= 0 j)))))
  :returns (int integerp
                :rule-classes :type-prescription
                :name ifloor-type)
  :inline t
  :enabled t
  (mbe :logic (floor (ifix i) (ifix j))
       :exec (floor i j)))

(define imod
  :short "@('(imod i j)') is the same as @(see mod), except that it coerces its
  arguments to integers."
  ((i integerp)
   (j (and (integerp j)
           (not (= 0 j)))))
  :returns (int integerp
                :rule-classes :type-prescription
                :name imod-type)
  :inline t
  :enabled t
  (mbe :logic (mod (ifix i) (ifix j))
       :exec (mod i j)))

(define expt2
  :short "@('(expt2 n)') is the same as @('(expt 2 n)'), except that it coerces
  its argument to a natural."
  ((n natp))
  :returns (nat natp
                :rule-classes :type-prescription
                :name expt2-type)
  :enabled t
  :inline t
  (mbe :logic (expt 2 (nfix n))
       :exec (the unsigned-byte
                  (ash 1 (the unsigned-byte n)))))

(define binary-minus-for-gl ((x acl2-numberp)
                             (y acl2-numberp))
  :parents (binary--)
  :short "Hack for implementing @(see binary--).  Don't use this."
  :long "<p>You should never need to use this, call @(see binary--) instead.</p>

<p>This is the logical definition for @(see binary--).  It has a custom GL
symbolic counterpart.  The only reason to make this a separate function,
instead of directly putting a symbolic counterpart on @('binary--') itself, is
to avoid infinite inlining problems when we define custom symbolic counterparts
for inlined functions on Lisps like SBCL.</p>"
  :enabled t
  (- x y))

(define binary--
  :parents (logops-definitions)
  :short "@('(binary-- x y)') is the same as @('(- x y)'), but may symbolically
simulate more efficiently in @(see gl)."
  ((x acl2-numberp)
   (y acl2-numberp))
  :enabled t
  :inline t
  :long "<p>This is an alias for @('(- x y)').  It should always be left
enabled and you should never prove any theorems about it.</p>

<p>In ACL2, @(see -) is a macro and @('(- x y)') expands to @('(+ x (unary--
y))').  This form is often not particularly good for symbolic simulation with
@(see gl): GL first has to negate @('y') and then carry out the addition.</p>

<p>In contrast, @('binary--') has a custom symbolic counterpart that avoids
this intermediate negation.  This may result in fewer BDD computations or AIG
nodes.  In the context of @(see hardware-verification), it may also help your
spec functions to better match the real implementation of subtraction circuits
in the hardware being analyzed.</p>"

  (mbe :logic (binary-minus-for-gl x y)
       :exec (- x y)))

(define logcar
  :short "Least significant bit of a number."
  ((i integerp))
  :returns bit
  :long "<p>@('(logcar i)') is the @(see car) of an integer conceptualized as a
bit-vector, where the least significant bit is at the head of the list.</p>

<p>In languages like C, this might be written as @('i & 1').</p>"
  :enabled t
  :inline t
  (mbe :logic (imod i 2)
       :exec (the (unsigned-byte 1) (logand (the integer i) 1)))
  ///
  (defthm logcar-type
    (bitp (logcar i))
    :rule-classes ((:rewrite)
                   (:type-prescription :corollary (natp (logcar i)))
                   (:generalize :corollary
                    (or (equal (logcar i) 0)
                        (equal (logcar i) 1))))))

(define logcdr
  :short "All but the least significant bit of a number."
  ((i integerp))
  :returns (int integerp
                :rule-classes :type-prescription
                :name logcdr-type)
  :long "<p>@('(logcdr i)') is the @(see cdr) of an integer conceptualized as a
bit-vector, where the least significant bit is at the head of the list.</p>

<p>In languages like C, this might be written as @('i >> 1').</p>"
  :enabled t
  :inline t
  (mbe :logic (ifloor i 2)
       :exec (the integer (ash (the integer i) -1))))

(define logcons
  :short "@('(logcons b i)') is the @(see cons) operation for integers,
conceptualized as bit-vectors, where the least significant bit is at the head
of the list."
  ((b bitp     "LSB of the result.")
   (i integerp "All but the LSB of the result."))
  :returns (int integerp
                :rule-classes :type-prescription
                :name logcons-type)
  :long "<p>In languages like C, this might be written as @('(i << 1) + b').</p>

<p>See also @(see logcar) and @(see logcdr).</p>"
  :inline t
  :enabled t
  (mbe :logic (let ((b (bfix b))
                    (i (ifix i)))
                (+ b (* 2 i)))
       :exec (the integer
                  (+ (the (unsigned-byte 1) b)
                     (the integer (ash i 1))))))

(define logbit
  :parents (logops-definitions logbitp)
  :short "@('(logbit pos i)') returns the bit of @('i') at bit-position @('pos')
as a @(see bitp), 0 or 1."
  ((pos natp)
   (i   integerp))
  :returns bit
  :long "<p>This is just like the Common Lisp function @('(logbitp pos i)'),
except that we return 1 or 0 (instead of t or nil).</p>

<p>In languages like C, this might be written as @('(i >> pos) & 1').</p>"
  :enabled t
  :inline t
  :no-function t ;; Sigh, switching to :abbreviation breaks various proofs
  (if (logbitp pos i)
      1
    0)

  ///
  (defthm logbit-type
    (bitp (logbit pos i))
    :rule-classes ((:rewrite)
                   (:type-prescription :corollary (natp (logbit pos i))))
    ;; BOZO want a generalize rule like in logcar?
    ))


(define logmask
  :short "@('(logmask size)') creates a low-order, @('size')-bit mask."
  ((size natp))
  :returns (nat natp
                :rule-classes :type-prescription
                :name logmask-type)
  :long "<p>In languages like C, this might be written as @('(1 << size) - 1').</p>"
  :enabled t
  :inline t
  (mbe :logic (- (expt2 size) 1)
       :exec (the unsigned-byte (1- (the unsigned-byte (ash 1 size))))))

(define logmaskp
  :short "@('(logmaskp i)') recognizes positive bit-masks, i.e., numbers of the
form @($2^n - 1$)."
  (i)
  :returns bool
  :enabled t
  :long "<p>Note that this function explicitly checks @('(integerp i)'), which
means it doesn't satisfy an @(see int-equiv) congruence.  See also @(see
bitmaskp), which fixes its argument and may execute slightly faster.</p>"
  (mbe :logic (and (integerp i)
                   (>= i 0) ;; silly, this is implied by the equality below
                   (equal i (- (expt2 (integer-length i)) 1)))
       :exec (and (integerp i)
                  (eql i (the unsigned-byte
                              (- (the unsigned-byte (ash 1 (integer-length i)))
                                 1))))))

(define bitmaskp
  :short "@('(bitmaskp i)') recognizes positive masks, i.e., numbers of the form
@($2^n - 1$).  It is like @(see logmaskp) but properly treats non-integers as 0."
  ((i integerp))
  :returns bool
  :inline t
  (mbe :logic (logmaskp (mbe :logic (ifix i)
                             :exec i))
       :exec (eql i (the unsigned-byte
                         (- (the unsigned-byte (ash 1 (integer-length i)))
                            1)))))

(define loghead
  :short "@('(loghead size i)') returns the @('size') low-order bits of @('i')."
  ((size (and (integerp size)
              (<= 0 size))
         :type unsigned-byte)
   (i    integerp))
  :returns (nat natp
                :rule-classes :type-prescription
                :name loghead-type)
  :long "<p>In languages like C, this might be written as @('i & ((1 << size) -
1)').</p>

<p>By convention we define @('(loghead 0 i)') as 0.  This definition is a
bit arbitrary but generally leads to nice lemmas.</p>"
  :inline t
  :enabled t
  :split-types t
  :guard-hints(("Goal" :in-theory (enable mod-of-expt-2-is-logand)))
  (mbe :logic (imod i (expt2 size))
       :exec
       (the unsigned-byte
            (logand i (the unsigned-byte
                           (1- (the unsigned-byte (ash 1 size))))))))

(define logtail
  :short "@('(logtail pos i)') returns the high-order part of @('i'), starting
  at bit position @('pos')."
  ((pos (and (integerp pos)
             (<= 0 pos))
        :type unsigned-byte)
   (i   integerp))
  :returns (int integerp
                :rule-classes :type-prescription
                :name logtail-type)
  :long "<p>In languages like C, this might be written as @('i >> pos').</p>"
  :split-types t
  :inline t
  :enabled t
  (declare (xargs :guard (and (integerp pos)
                              (>= pos 0)
                              (integerp i))))
  (mbe :logic (ifloor i (expt2 pos))
       :exec (ash i (- (the unsigned-byte pos)))))

(define logapp
  :short "@('(logapp size i j)') is a binary append of i to j, where i
  effectively becomes the 'low' bits and j becomes the 'high' bits."
  ((size (and (integerp size)
              (<= 0 size))
         :type unsigned-byte)
   (i    integerp)
   (j    integerp))
  :returns (int integerp
                :rule-classes :type-prescription
                :name logapp-type)
  :split-types t
  :long "<p>@('logapp') is a specification for merging integers.  Note that
@('i') is truncated to @('size') bits before merging with @('j'), and that @('j')
is shifted to the left by @('size') bits before the merge.</p>"
  :enabled t
  (mbe :logic (let ((j (ifix j)))
                (+ (loghead size i) (* j (expt2 size))))
       ;; BOZO could do better than calling loghead with some work
       ;; Could probably use logior instead of +.
       :exec (+ (loghead size i) (ash j size))))

(define logrpl
  :short "Logical replace.  @('(logrpl size i j)') replaces the @('size')
  low-order bits of @('j') with the @('size') low-order bits of @('i')."
  ((size (and (integerp size)
              (<= 0 size)))
   (i    integerp)
   (j    integerp))
  :returns (int integerp
                :rule-classes :type-prescription
                :name logrpl-type)
  :long "<p>@('logrpl') is a specification for the result of storing short
values into long words, i.e., the short value simply replaces the head of the
long word.</p>

<p>This function is equivalent to @('(WRB i (BSP size 0) j)').</p>"
  :enabled t
  (logapp size i (logtail size j)))

(define logext
  :short "@('(logext size i)') sign-extends @('i') to a @('size')-bit signed
integer."
  ((size (and (integerp size)
              (< 0 size))
         :type unsigned-byte)
   (i    integerp))
  :returns (int integerp
                :rule-classes :type-prescription
                :name logext-type)
  :split-types t
  :long "<p>@('logext') interprets the least significant @('size') bits of
@('i') as a signed, 2's complement integer.</p>

<p>Basic examples:</p>

@({
    (logext 4 7)  --> 7        Bottom four bits are 0111
                               Sign bit is 0
                               Sign extension creates {0000......0}111
                               2's complement interpretation: 7.

    (logext 3 7)  --> -1       Bottom 3 bits are 111
                               Sign bit is 1
                               Sign extension creates {1111.....1}111
                               2's complement interpretation: -1.

    (logext 4 8)  --> -8       Bottom 4 bits are 1000
                               Sign bit is 1
                               Sign extension creates {1111.....1}1000
                               2's complement interpretation: -8.
})

<p>This function returns a (possibly negative) integer.  For consistency with
@(see SIGNED-BYTE-P), @('size') must be strictly greater than 0.  In contrast,
the related function @(see logextu) carries out a sign-extension but only
returns the low @('size') bits, i.e., it always returns a natural number.</p>

<p>We specify @('logext') in terms of the @('size') of the result instead of as
a bit position because we normally specify integer subranges by the number of
significant (including sign) bits.</p>

<p>See also @(see bitops::bitops/fast-logext) for a logically identical
function that is optimized for better performance.</p>"
  :enabled t

  (let* ((size-1 (- size 1)))
    (declare (type unsigned-byte size-1))
    (logapp size-1 i
            (if (logbitp size-1 i)
                -1
              0))))

(define logrev1
  :parents (logrev)
  :short "Helper function for @(see logrev)."
  ((size (and (integerp size)
              (<= 0 size)))
   (i integerp)
   (j integerp))
  :returns (nat)
  :split-types t
  (declare (type unsigned-byte size)
           (type integer i j))
  :enabled t
  (if (zp size)
      (mbe :logic (ifix j)
           :exec j)
    (logrev1 (the unsigned-byte (- size 1))
             (logcdr i)
             (logcons (logcar i) j))))

(local (defthm logrev1-type
         (implies (>= j 0)
                  (natp (logrev1 size i j)))
         :rule-classes :type-prescription
         :hints(("Goal" :in-theory (disable imod ifloor)))))

(define logrev
  :short "Logical reverse.  @('(logrev size i)') bit-reverses the @('size')
  low-order bits of @('i'), discarding the high-order bits."
  ((size (and (integerp size)
              (<= 0 size)))
   (i    integerp))
  :returns (nat natp
                :rule-classes :type-prescription
                :name logrev-type)
  :long "<p>Normally we don't think of bit-reversing as a logical operation,
even though its hardware implementation is trivial: simply reverse the wires
leading from the source to the destination.</p>

<p>@('logrev') is included as a logical operation to support the specification
of DSPs, which may provide bit-reversing in their address generators to improve
the performance of the FFT.</p>

<p>@('logrev') entails a recursive definition of bit-reversing via the helper
function @(see logrev1).</p>

<p>See also @(see bitops::bitops/fast-logrev) for some optimized definitions of
@(see logrev).</p>"
  :inline t
  :enabled t
  (logrev1 size i 0))

(define logsat
  :short "Signed saturation.  @('(logsat size i)') coerces @('i') to a
  @('size')-bit signed integer by saturation."
  ((size (and (integerp size)
              (< 0 size))
         :type unsigned-byte)
   (i    integerp))
  :returns (int integerp
                :rule-classes :type-prescription
                :name logsat-type)

  :long "<p>If @('i') can be represented as a @('size')-bit signed integer,
then @('i') is returned unchanged.  Otherwise, @('(logsat size i)') returns
the @('size')-bit signed integer closest to @('i').  For positive i, this
will be @($2^{size-1} - 1$).  For negative @('i'), this will be
@($-(2^{size-1}$).</p>

<p>This function returns a (possibly negative) integer.  For consistency with
@(see signed-byte-p), size must be strictly greater than 0.  In contrast, the
related @(see bitops::bitops/saturate) functions always return @('size')-bit
natural numbers.</p>"

  :split-types t
  :enabled t
  (let* ((i      (mbe :logic (ifix i) :exec i))
	 (val    (expt2 (the unsigned-byte (1- size))))
	 (maxval (the unsigned-byte (1- (the unsigned-byte val))))
	 (minval (- val)))
    (declare (type unsigned-byte val maxval)
             (type integer i minval))
    (if (>= i maxval)
	maxval
      (if (<= i minval)
	  minval
	i))))

(define logextu
  :short "Logical sign extension, unsigned version.  @('(logextu final-size
 ext-size i)') \"sign-extends\" i with @('(logext ext-size i)'), then truncates
 the result to @('final-size') bits, creating an unsigned integer."
  ((final-size (and (integerp final-size)
                    (<= 0 final-size)))
   (ext-size   (and (integerp ext-size)
                    (< 0 ext-size)))
   (i          integerp))
  :returns (nat natp
                :rule-classes :type-prescription
                :name logextu-type)
  :enabled t
  :inline t
  (loghead final-size (logext ext-size i)))

(define lognotu
  :short "Logical negation, unsigned version.  @('(lognotu size i)') is an
 unsigned logical @('not').  It just truncates @('(lognot i)') to @('size')
 bits."
  ((size  (and (integerp size)
               (<= 0 size)))
   (i     integerp))
  :returns (nat natp
                :rule-classes :type-prescription
                :name lognotu-type)
  :enabled t
  :inline t
  (loghead size (lognot i)))

(define ashu
  :short "Arithmetic shift, unsigned version."
  ((size (and (integerp size)
              (< 0 size)))
   (i    integerp)
   (cnt  integerp))
  :returns (nat natp
                :rule-classes :type-prescription
                :name ashu-type)
  :long "<p>@('ashu') is a fixed-width version of @(see ash).  The integer
@('i') is first coerced to a @('size')-bit signed integer by sign-extension,
then shifted with @('ash'), and finally truncated back to a @('size')-bit
unsigned integer.</p>

<p>See also @(see lshu) for a logical (instead of arithmetic) shift.</p>"
  :enabled t
  (loghead size (ash (logext size i) cnt)))

(define lshu
  :short "Logical shift, unsigned version."
  ((size (and (integerp size)
              (<= 0 size)))
   (i   integerp)
   (cnt integerp))
  :returns (nat natp
                :rule-classes :type-prescription
                :name lshu-type)
  :long "<p>@('lshu') is a fixed-width logical shift.  It shifts @('i')
by @('cnt') bits by first coercing @('i') to an unsigned integer of @('size')
bits, performing the shift, and coercing the result to an @('size')-bit
unsigned integer.</p>

<p>For @('cnt >= 0'), @('(lshu size i cnt) = (ashu size i cnt)').</p>

<p>This is a model of a size-bit logical shift register.</p>"
  :enabled t
  (loghead size (ash (loghead size i) cnt)))



(defxdoc logops-bit-functions
  :parents (logops-definitions bitp)
  :short "Versions of the standard logical operations that operate on single bits."
  :long "<p>We provide versions of the non-trivial standard logical operations
that operate on single bits.</p>

<p>One reason that it is useful to introduce these operations separately from
the standard operations is the fact that @(see lognot) applied to a @(see bitp)
object never returns a @(see bitp).</p>

<p>All arguments to these functions must be @(see bitp), and we prove that
each returns a @(see bitp) integer, i.e., 0 or 1.  We define each function
explicitly in terms of 0 and 1 to simplify reasoning.</p>")

(local (xdoc::set-default-parents logops-bit-functions))

(define b-not ((i bitp))
  :returns bit
  :short "Negation for @(see bitp)s."
  :inline t
  :enabled t
  (mbe :logic (if (zbp i) 1 0)
       :exec (the (unsigned-byte 1)
               (- 1 (the (unsigned-byte 1) i)))))

(define b-and ((i bitp) (j bitp))
  :returns bit
  :short "Conjunction for @(see bitp)s."
  :inline t
  :enabled t
  (mbe :logic (if (zbp i) 0 (if (zbp j) 0 1))
       :exec (the (unsigned-byte 1)
               (logand (the (unsigned-byte 1) i)
                       (the (unsigned-byte 1) j)))))

(define b-ior ((i bitp) (j bitp))
  :returns bit
  :short "Inclusive or for @(see bitp)s."
  :inline t
  :enabled t
  (mbe :logic (if (zbp i) (if (zbp j) 0 1) 1)
       :exec (the (unsigned-byte 1)
               (logior (the (unsigned-byte 1) i)
                       (the (unsigned-byte 1) j)))))

(define b-xor ((i bitp) (j bitp))
  :returns bit
  :short "Exclusive or for @(see bitp)s."
  :enabled t
  :inline t
  (mbe :logic (if (zbp i) (if (zbp j) 0 1) (if (zbp j) 1 0))
       :exec (the (unsigned-byte 1)
               (logxor (the (unsigned-byte 1) i)
                       (the (unsigned-byte 1) j)))))

(define b-eqv ((i bitp) (j bitp))
  :returns bit
  :short "Equivalence (a.k.a. if and only if, xnor) for @(see bitp)s."
  :enabled t
  :inline t
  (mbe :logic (if (zbp i) (if (zbp j) 1 0) (if (zbp j) 0 1))
       ;; Goofy definition, Using logeqv or lognot of logxor would require
       ;; masking (they produce -1 for, e.g., (logeqv 0 0)).  So I'll just xor
       ;; with 1 to invert the bit.
       :exec (the (unsigned-byte 1)
               (logxor (the (unsigned-byte 1)
                         (logxor (the (unsigned-byte 1) i)
                                 (the (unsigned-byte 1) j)))
                       1))))

(define b-nand ((i bitp) (j bitp))
  :returns bit
  :short "Negated and for @(see bitp)s."
  :enabled t
  :inline t
  (mbe :logic (if (zbp i) 1 (if (zbp j) 1 0))
       ;; Goofy :exec, similar to b-eqv for similar reasons
       :exec (the (unsigned-byte 1)
               (logxor (the (unsigned-byte 1)
                         (logand (the (unsigned-byte 1) i)
                                 (the (unsigned-byte 1) j)))
                       1))))

(define b-nor ((i bitp) (j bitp))
  :returns bit
  :short "Negated or for @(see bitp)s."
  :enabled t
  :inline t
  (mbe :logic (if (zbp i) (if (zbp j) 1 0) 0)
       :exec (the (unsigned-byte 1)
               (logxor (the (unsigned-byte 1)
                         (logior (the (unsigned-byte 1) i)
                                 (the (unsigned-byte 1) j)))
                       1))))

(define b-andc1 ((i bitp) (j bitp))
  :returns bit
  :short "And of @(see bitp)s, complementing the first."
  :enabled t
  :inline t
  (mbe :logic (if (zbp i) (if (zbp j) 0 1) 0)
       :exec (the (unsigned-byte 1)
               (logandc1 (the (unsigned-byte 1) i)
                         (the (unsigned-byte 1) j)))))

(define b-andc2 ((i bitp) (j bitp))
  :returns bit
  :short "And of @(see bitp)s, complementing the second."
  :enabled t
  :inline t
  (mbe :logic (if (zbp i) 0 (if (zbp j) 1 0))
       :exec (the (unsigned-byte 1)
               (logandc2 (the (unsigned-byte 1) i)
                         (the (unsigned-byte 1) j)))))

(define b-orc1 ((i bitp) (j bitp))
  :returns bit
  :short "Inclusive or of @(see bitp)s, complementing the first."
  :enabled t
  :inline t
  (mbe :logic (if (zbp i) 1 (if (zbp j) 0 1))
       :exec (the (unsigned-byte 1)
               (logior (the (unsigned-byte 1)
                         (logxor 1 (the (unsigned-byte 1) i)))
                       (the (unsigned-byte 1) j)))))

(define b-orc2 ((i bitp) (j bitp))
  :returns bit
  :short "Inclusive or of @(see bitp)s, complementing the second."
  :enabled t
  :inline t
  (mbe :logic (if (zbp i) (if (zbp j) 1 0) 1)
       :exec (the (unsigned-byte 1)
               (logior (the (unsigned-byte 1) i)
                       (the (unsigned-byte 1)
                         (logxor 1 (the (unsigned-byte 1) j)))))))

(defsection bit-functions-type
  :short "Basic type rules for the @(see logops-bit-functions)."

  (defthm bit-functions-type
    (and (bitp (b-not i))
         (bitp (b-and i j))
         (bitp (b-ior i j))
         (bitp (b-xor i j))
         (bitp (b-eqv i j))
         (bitp (b-nand i j))
         (bitp (b-nor i j))
         (bitp (b-andc1 i j))
         (bitp (b-andc2 i j))
         (bitp (b-orc1 i j))
         (bitp (b-orc2 i j)))
    :rule-classes
    ((:rewrite)
     (:type-prescription :corollary (natp (b-not i)))
     (:type-prescription :corollary (natp (b-and i j)))
     (:type-prescription :corollary (natp (b-ior i j)))
     (:type-prescription :corollary (natp (b-xor i j)))
     (:type-prescription :corollary (natp (b-eqv i j)))
     (:type-prescription :corollary (natp (b-nand i j)))
     (:type-prescription :corollary (natp (b-nor i j)))
     (:type-prescription :corollary (natp (b-andc1 i j)))
     (:type-prescription :corollary (natp (b-andc2 i j)))
     (:type-prescription :corollary (natp (b-orc1 i j)))
     (:type-prescription :corollary (natp (b-orc2 i j))))))


(defmacro loglist* (&rest args)
  (xxxjoin 'logcons args))