/usr/share/acl2-7.2dfsg/books/data-structures/structures.lisp is in acl2-books-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 | ; structures.lisp -- a book about typed structures
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Written by: Bishop Brock
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; structures.lisp
;;;
;;; Define and characterize a general purpose record structure with typed
;;; slots.
;;;
;;; The on-line documentation only contains examples and a formal syntax
;;; description. The complete documentation for DEFSTRUCTURE is a report
;;; entitled "DEFSTRUCTURE for ACL2." This report is available from the
;;; [Books and Papers about ACL2 and Its Applications] link on ACL2 home
;;; page:
;;;
;;; http://www.cs.utexas.edu/users/moore/acl2
;;;
;;; Bishop Brock
;;; Computational Logic, Inc.
;;; 1717 West 6th Street, Suite 290
;;; Austin, Texas 78703
;;; brock@cli.com
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; Package Note:
;;;
;;; The majority of the following code resides in the "STRUCTURES" package.
;;; The macro exported by this book, DEFSTRUCTURE, resides in the "ACL2"
;;; package.
;;;
;;; Among other reasons for placing this code in a separate package is that
;;; these macros often need to create variable names. As long as one does
;;; not attempt to define structures in the "STRUCTURES" package these names
;;; will not collide with the user's slot names.
;;;
;;; This book can only be loaded in an environment that includes the
;;; "STRUCTURES" package and the "U" package (from the utilities book).
;;; To define the "STRUCTURES" package:
; Modified by Jared Davis, October 2014, to port documentation to xdoc.
;;;
;;; Style Note:
;;;
;;; These macros generate a lot of Acl2 code, and backquote is used
;;; extensively to do this. You will see some cases where backquote is used
;;; to do simple stuff, like `(,x) as opposed to (LIST x). The convention
;;; is that every symbolic `result' created by these macros is created using
;;; backquote, to make it clear that this result is Acl2 code, and not just
;;; some internal data structure used by the macros and functions.
;;;
;;; All constant symbols are always uppercased, e.g., 'SYMBOL. This
;;; convention extends to backquoted forms, where constant symbols are
;;; uppercased, but forms in the scope of a comma are lowercased. This
;;; convention provides a visual clue as to what is constant and what is
;;; variable.
;;;
(in-package "DEFSTRUCTURE")
(include-book "utilities")
(program)
; (set-ignore-ok t) ; eliminated after ACL2 Version_3.2.1, since we made
; changes to eliminate compiler warnings
;;;****************************************************************************
;;;
;;; Documentation
;;;
;;;****************************************************************************
(defxdoc defstructure
:parents (acl2::data-structures)
:short "Define and characterize a general purpose record structure with typed
slots."
:long "<p>The on-line documentation only contains examples and a formal
syntax description. The complete documentation for DEFSTRUCTURE is a report
entitled \"DEFSTRUCTURE for ACL2.\" This report is distributed with the ACL2
release, and is also available from the <a
href='http://www.cs.utexas.edu/users/moore/acl2'>ACL2 home page</a>.</p>
<p>Examples:</p>
@({
(DEFSTRUCTURE SHIP X-POSITION Y-POSITION X-VELOCITY Y-VELOCITY MASS)
(DEFSTRUCTURE MC-STATE
\"The state of the MC68020.\"
(STATUS (:ASSERT (SYMBOLP STATUS) :TYPE-PRESCRIPTION))
(RFILE (:ASSERT (RFILEP RFILE) :REWRITE))
(PC (:ASSERT (LONGWORD-P PC) :REWRITE
(:TYPE-PRESCRIPTION (NATURALP PC))))
(CCR (:ASSERT (CCR-P CCR) :REWRITE
(:TYPE-PRESCRIPTION (NATURALP CCR))))
(MEM (:ASSERT (MEMORYP MEM) :REWRITE))
(:OPTIONS :GUARDS (:CONC-NAME MC-)))
(DEFSTRUCTURE S&ADDR
\"An MC68020 effective address abstraction.\"
(S (:ASSERT (MC-STATE-P S) :REWRITE))
(LOC (:ASSERT (SYMBOLP LOC) :TYPE-PRESCRIPTION))
(ADDR (:ASSERT ((LAMBDA (LOC ADDR)
(CASE LOC
((D A) (RN-NUMBERP ADDR))
((M I) (LONGWORD-P ADDR))
(OTHERWISE (NULL ADDR))))
LOC ADDR)
(:REWRITE
(IMPLIES
(OR (EQUAL LOC 'D) (EQUAL LOC 'A))
(RN-NUMBERP ADDR)))
(:REWRITE
(IMPLIES
(OR (EQUAL LOC 'M) (EQUAL LOC 'I))
(LONGWORD-P ADDR)))))
(:OPTIONS :GUARDS))
(DEFSTRUCTURE V&CVZNX
\"An MC68020 value abstraction.\"
(V (:ASSERT (LONGWORD-P V) :REWRITE
(:TYPE-PRESCRIPTION (NATURALP V))))
(CVZNX (:ASSERT (CCR-P CVZNX) :REWRITE
(:TYPE-PRESCRIPTION (NATURALP CVZNX))))
;; These options make this nothing more than a typed CONS.
(:OPTIONS :GUARDS (:REPRESENTATION (V . CVZNX)) (:DO-NOT :TAG)))
})
<p>Syntax:</p>
@({
DEFSTRUCTURE name [documentation] {slot-and-options}* [option-list]
option-list ::= (:OPTIONS [[options]])
options ::= guards-option |
verify-guards-option |
slot-writers-option |
inline-option
conc-name-option |
set-conc-name-option |
keyword-constructor-option |
keyword-updater-option |
predicate-option |
weak-predicate-option |
force-option |
representation-option |
do-not-option |
mv-intro-macro-option
update-method-option |
assertion-lemma-hints-option |
predicate-guard-hints-option |
prefix-option |
{assert-option}*
slot-and-options ::= slot-name | (slot-name [[slot-options]])
slot-options ::= default-option |
read-only-option |
{assert-option}*
default-option ::= :DEFAULT | (:DEFAULT) | (:DEFAULT slot-initform)
read-only-option ::= :READ-ONLY
assert-option ::= (:ASSERT assertion {assertion-rule-descriptor}*)
assertion-rule-descriptor ::= rule-token |
(rule-token corollary [other-rule-forms])
rule-token ::= NIL | :REWRITE | :LINEAR | :LINEAR-ALIAS |
:WELL-FOUNDED-RELATION | :BUILT-IN-CLAUSE |
:COMPOUND-RECOGNIZER | :ELIM | :GENERALIZE | :META |
:FORWARD-CHAINING | :EQUIVALENCE | :REFINEMENT |
:CONGRUENCE | :TYPE-PRESCRIPTION | :DEFINITION | :INDUCTION |
:TYPE-SET-INVERTER
guards-option ::= :GUARDS
verify-guards-option ::= :VERIFY-GUARDS | (:VERIFY-GUARDS) |
(:VERIFY-GUARDS T) | (:VERIFY-GUARDS NIL)
slot-writers-option ::= :SLOT-WRITERS
inline-option ::= :INLINE
conc-name-option ::= :CONC-NAME | (:CONC-NAME) | (:CONC-NAME conc-name)
set-conc-name-option ::= :SET-CONC-NAME | (:SET-CONC-NAME) |
(:SET-CONC-NAME set-conc-name)
keyword-constructor-option ::= :KEYWORD-CONSTRUCTOR |
(:KEYWORD-CONSTRUCTOR) |
(:KEYWORD-CONSTRUCTOR keyword-constructor)
keyword-updater-option ::= :KEYWORD-UPDATER | (:KEYWORD-UPDATER) |
(:KEYWORD-UPDATER keyword-updater)
predicate-option ::= :PREDICATE | (:PREDICATE) | (:PREDICATE predicate)
weak-predicate-option ::= :WEAK-PREDICATE | (:WEAK-PREDICATE) |
(:WEAK-PREDICATE weak-predicate)
force-option ::= :FORCE
do-not-option ::= (:DO-NOT [[do-not-options]])
do-not-options ::= :TAG | :READ-WRITE | :WRITE-WRITE
representation-option ::= :REPRESENTATION | (:REPRESENTATION) |
(:REPRESENTATION representation)
representation ::= :LIST | :MV | :DOTTED-LIST | :TREE | template
mv-intro-macro-option ::= :MV-INTRO-MACRO |
(:MV-INTRO-MACRO) |
(:MV-INTRO-MACRO mv-intro-macro)
update-method-option ::= :UPDATE-METHOD | (:UPDATE-METHOD) |
(:UPDATE-METHOD update-method)
update-method ::= :HEURISTIC | :SET | :COPY
assertion-lemma-hints-option ::=
:ASSERTION-LEMMA-HINTS | (:ASSERTION-LEMMA-HINTS) |
(:ASSERTION-LEMMA-HINTS hints)
predicate-guard-hints-option ::=
:PREDICATE-GUARD-HINTS | (:PREDICATE-GUARD-HINTS) |
(:PREDICATE-GUARD-HINTS hints)
prefix-option ::= :PREFIX | (:PREFIX) | (:PREFIX prefix)
})
<p>Arguments and Values:</p>
@({
assertion -- a slots-assertion.
corollary -- a slots-assertion.
conc-name -- a string-designator.
documentation -- a string; not evaluated.
hints -- an acl2-hints.
keyword-constructor -- a symbol.
keyword-updater -- a symbol.
name -- a symbol.
mv-intro-macro -- a symbol.
other-rule-forms -- Some acl2-rule-forms.
predicate -- a symbol.
prefix -- a string-designator.
read-write-lemma -- a symbol.
set-conc-name -- a string-designator.
slot-initform -- a form; not evaluated.
slot-name -- a valid-slot-name.
tag -- a symbol.
template -- A slots-template.
weak-predicate -- a symbol.
write-write-lemma -- a symbol.
})
<p>Definitions:</p>
@({
acl2-hints -- any form valid as the hints argument of defthm. See the
documentation for HINTS in the ACL2 documentation.
acl2-rule-forms -- Any forms that would be valid in an ACL2 rule-classes
form, except for the rule class itself, or a corollary and formula. See the
documentation for the DEFSTRUCTURE assertion theory in the DEFSTRUCTURE
document,and the ACL2 documentations for RULE-CLASSES.
slots-assertion -- DEFSTRUCTURE assertions are covered in the DEFSTRUCTURE
document.
slots-template -- A cons tree whose flattened form (by DEFSTRUCTURE::FLATTEN) is
a permutation of the list of slot names of the structure.
string-designator -- a character, string or symbol, it designates the string
obtained by (STRING STRING-DESIGNATOR) except that by convention the symbol
NIL designates the empty string.
valid-slot-name -- Any symbol valid for use as a formal parameter of a
function. This is any symbol not in the \"keyword\" package, neither T nor NIL,
neither beginning nor ending with `*', and not beginning with `&'. In
addition, no slot-name may be the same as the structure name, and all
slot-names must have unique print names, i.e., it is illegal to duplicate
slot names, and it is illegal to use symbols from different packages that
have the same print name.
})")
;;;****************************************************************************
;;;
;;; Importing
;;;
;;; The definition of DEFSTRUCTURE requires a few select routines from the
;;; Acl2 system code and the utilities package. To avoid having to prefix
;;; these names with the package name everywhere, we define these
;;; names in the "STRUCTURES" package as macros that expand into identical
;;; calls of the native things.
;;;
;;;****************************************************************************
;;; All imports moved to package declaration.
#|
(u::import-as-macros ACL2::A-SYMBOL-UNIQUE-TO-THE-ACL2-PACKAGE)
(u::import-as-macros U::A-SYMBOL-UNIQUE-TO-THE-U-PACKAGE)
|#
;;;****************************************************************************
;;;
;;; Macros
;;;
;;;****************************************************************************
(defmacro acons-up (&rest forms)
(cond
((null forms) '())
(t `(ACONS$ ,(caar forms) ,(cadar forms)
(ACONS-UP ,@(cdr forms))))))
(defmacro bomb-from (where fmt &rest args)
`(ER HARD ,where ,fmt ,@args))
(defmacro bomb (fmt &rest args)
`(BOMB-FROM 'DEFSTRUCTURE ,fmt ,@args))
(mutual-recursion
(defun mlambda-fn-lst (args list)
(cond
((atom list) ())
(t (cons (mlambda-fn args (car list))
(mlambda-fn-lst args (cdr list))))))
(defun mlambda-fn (args form)
(declare (xargs :guard (symbol-listp args)))
(cond ((atom form) (cond ((member form args) form)
(t (list 'QUOTE form))))
((eq (car form) 'QUOTE) (list 'QUOTE form))
(t (cons 'LIST
(cons (list 'QUOTE (car form))
(mlambda-fn-lst args (cdr form))))))))
(defmacro mlambda (args form)
"A macro lambda that doesn't substitute function symbols or quoted
constants."
(declare (xargs :guard (symbol-listp args)))
(mlambda-fn args form))
;;;****************************************************************************
;;;
;;; Utility Functions
;;;
;;;****************************************************************************
(defun acons$ (key datum value)
(cons (cons key datum) value))
(defun ncars (n l)
"The 1st n CARs of l."
(cond
((= n 0) ())
((null l) ())
(t (cons (car l) (ncars (- n 1) (cdr l))))))
(defun fold (args)
"Folds a list into a somewhat balanced tree."
(cond
((null args) nil)
((null (cdr args)) (car args))
(t (cons (fold (ncars (truncate (length args) 2) args))
(fold (nthcdr (truncate (length args) 2) args))))))
(defun flatten (args)
"An `improper' list flattener. NIL is always flattened away."
(cond
((atom args) (cond
((null args) nil)
(t (list args))))
(t (append (flatten (car args))
(flatten (cdr args))))))
(defun dotify (l)
"Make the last CONS of l a `dotted pair' if possible."
(cond
((atom l) l)
((atom (cdr l)) l)
((atom (cdr (cdr l))) (cond
((null (cdr (cdr l))) (cons (car l) (cadr l)))
(t l)))
(t (cons (car l) (dotify (cdr l))))))
(defun duplicates-equal (lst)
(cond
((atom lst) nil)
((member-equal (car lst) (cdr lst))
(add-to-set-equal (car lst)
(duplicates-equal (cdr lst))))
(t (duplicates-equal (cdr lst)))))
(defun keywordify (string-designator)
(intern-in-package-of-symbol (string string-designator) :keyword))
(defloop keywordify-list (l)
(for ((x in l)) (collect (keywordify x))))
(defun keywordify-tree (tree)
(cond
((atom tree)
(cond
((not tree) nil)
((not (symbolp tree)) (bomb-from 'KEYWORDIFY-TREE "Bug. ~p0" tree))
(t (keywordify tree))))
(t (cons (keywordify-tree (car tree)) (keywordify-tree (cdr tree))))))
(defloop keywordp-listp (l)
(for ((x in l)) (always (keywordp x))))
(defloop list-all (l)
(for ((x in l))
(collect (list x))))
(defloop map-string (l)
(for ((x in l)) (collect (string x))))
(defloop remove-strings (l)
(for ((x in l)) (unless (stringp x) (collect x))))
(defun x-or-car-x (x) (if (atom x) x (car x)))
(defloop map-x-or-car-x (l)
(for ((x in l)) (collect (x-or-car-x x))))
(defun x-or-cadr-x (x)
(declare (xargs :guard (or (atom x) (and (consp x) (consp (cdr x))))))
(if (atom x) x (cadr x)))
(defloop map-x-or-cadr-x (l)
(for ((x in l)) (collect (x-or-cadr-x x))))
(defun designated-string (string-designator)
(cond
((null string-designator) "")
(t (string string-designator))))
;;; NB: Acl2 has the advantage of knowning that all terms have been
;;; translated, which we can't do here do to lack of access to STATE.
;;; So we define an `assertion' term, along with a free variable finder and a
;;; substituter for assertion terms.
(defun lambda-function-p (x)
(and (true-listp x)
(equal (length x) 3)
(equal (first x) 'ACL2::LAMBDA)
(true-listp (second x))))
(mutual-recursion
(defun assertion-termp (term)
(cond
((atom term) t)
((eq (car term) 'QUOTE) t)
(t (and (or (symbolp (car term))
(lambda-function-p (car term)))
(assertion-termp-list (cdr term))))))
(defun assertion-termp-list (l)
(cond
((atom l) (null l))
(t (and (assertion-termp (car l))
(assertion-termp-list (cdr l)))))))
(mutual-recursion
(defun reason-for-not-assertion-termp (term)
(cond
((atom term) nil)
((eq (car term) 'QUOTE) nil)
(t (if (or (symbolp (car term))
(lambda-function-p (car term)))
(reason-for-not-assertion-termp-list (cdr term))
(msg "the CAR of ~p0 is neither a symbol nor a LAMBDA function."
term)))))
(defun reason-for-not-assertion-termp-list (l)
(cond
((atom l) (or (null l)
(msg "it contains an `improper' list terminated by the atom ~
~p0." l)))
(t (or (reason-for-not-assertion-termp (car l))
(reason-for-not-assertion-termp-list (cdr l)))))))
(mutual-recursion
(defun free-vars1 (term ans)
"A free variable is a symbol that is not a constant, i.e., it excludes T,
NIL, and *CONST* etc."
(cond
((atom term) (if (and (symbolp term)
(not (eq (legal-variable-or-constant-namep term)
'CONSTANT)))
(add-to-set-eq term ans)
ans))
((eq (car term) 'QUOTE) ans)
(t (free-vars1-lst (cdr term) ans))))
(defun free-vars1-lst (terms ans)
(cond
((atom terms) ans)
(t (free-vars1-lst (cdr terms) (free-vars1 (car terms) ans))))))
(defun free-vars (term)
(free-vars1 term '()))
(mutual-recursion
(defun subst-expr (new old term)
(cond
((equal term old) new)
((atom term) term)
((eq (car term) 'QUOTE) term)
(t (cons (car term) (subst-expr-lst new old (cdr term))))))
(defun subst-expr-lst (new old args)
(cond
((null args) nil)
(t (cons (subst-expr new old (car args))
(subst-expr-lst new old (cdr args)))))))
(defun subst-expr-all (term new-list old-list)
(cond
((atom old-list) term)
(t (subst-expr-all
(subst-expr (car new-list) (car old-list) term)
(cdr new-list) (cdr old-list)))))
;;;****************************************************************************
;;;
;;; Lemmas
;;;
;;;****************************************************************************
(logic)
(defthm open-mv-nth
(implies
(syntaxp (and (consp n) (eq (car n) 'QUOTE)))
(equal (mv-nth n l)
(if (zp n)
(car l)
(mv-nth (1- n) (cdr l)))))
:hints
(("Goal"
:in-theory (enable mv-nth))))
(in-theory (disable open-mv-nth))
(program)
;;;****************************************************************************
;;;
;;; Data Base
;;;
;;; We maintain a `data base' of everything we need to know to process the
;;; DEFSTRUCTURE. This data base contains user command options, names,
;;; code fragments, etc. By convention the data-base is always bound to
;;; the variable DB, and always appears as the last argument of any
;;; function that needs it.
;;;
;;; The data base is an alist, and contains 2 kinds of entries:
;;;
;;; (<keyword> . <value>) -- A global entry, where <keyword> is a Lisp
;;; keyword.
;;;
;;; ((<slot> . <keyword>) . <value>) -- An entry for a particular slot.
;;;
;;; The macro DB can be used either as (DB <keyword>) to retrieve the
;;; first kind of entry, and (DB <slot> <keyword>) to retrieve the second.
;;; To help catch programming errors we insist that each requested field
;;; be in the data base, and DB enforces this restriction.
;;;
;;; The macro DB-LET, e.g., (DB-LET (NAME (slot READER)), expands into a
;;; LET that binds a variable with the same name as the keyword entry (or
;;; slot keyword entry for the given slot) to the appropriate entry.
;;;
;;; Normally keyword entries are put into DB by ACONS or ACONS-DB.
;;; Slot-keyword entries are often created by mapping the list of slot
;;; names, and are attached with APPEND or APPEND-DB. If the entry is the
;;; name of a function, macro, or lemma, then by convention a missing or
;;; NULL entry indicates that the function, macro, or lemma will not be
;;; generated.
;;;
;;; The following are lists of all possible entries in DB. Please keep
;;; them up to date as the code is modified. These lists are also stored as
;;; the constants *DB-FIELDS* and *DB-SLOT-FIELDS*. The phrase "user option"
;;; below means that this is a keyword option specified by the user either
;;; for the DEFSTRUCTURE as a whole or for a particular slot, and its
;;; meaning can be gleaned from the user documentation.
;;;
;;; Keyword Entries, accessed by (DB <keyword>) :
;;;
;;; :ACL2-COUNT-LEMMA -- The lemma describing the ACL2-COUNT of the
;;; structure.
;;; :ASSERTIONS -- A list of ASSERTION records recording each assertion
;;; about the structure.
;;; :ASSERTION-LEMMA -- The lemma capturing all assertions about the
;;; structure.
;;; :ASSERTION-LEMMA-HINTS -- User option.
;;; :CONC-NAME -- User option.
;;; :CONSTRUCTOR-CALL -- A symbolic call of the constructor.
;;; :DEFINITION-THEORY -- The theory of runes associated with the functions
;;; defined by the structure that will remain DISABLEd by default.
;;; :DOC -- The documentation string for the structure, or NIL.
;;; :ELIMINATION-LEMMA -- The :ELIM lemma for the constructor.
;;; :FORCE -- Boolean; true to force hypotheses.
;;; :GUARDS -- User option.
;;; :INLINE -- User option.
;;; :KEYWORD-CONSTRUCTOR -- User option.
;;; :KEYWORD-SLOT-NAMES -- Slot names mapped to equivalent keyword symbols.
;;; :KEYWORD-UPDATER -- User option.
;;; :LIFT-IF-LEMMA -- The name of a lemma that `lifts' IFs through
;;; accessor references.
;;; :LEMMA-THEORY -- The theory of all lemmas created by this DEFSTRUCTURE.
;;; :MV-INTRO-MACRO -- The name of a macro that generates a lemma that
;;; `introduces' MV constructors.
;;; :NAME -- The structure name.
#|
;;; :NORMALIZATION-LEMMA -- The lemma the normalizes symbolic writer calls
;;; to a constructor call.
;;; :NORMALIZE -- Boolean; true to generate NORMALIZATION-LEMMA (default).
|#
;;; :PREDICATE -- User option.
;;; :PREDICATE-CALL -- A symbolic call of the predicate.
;;; :PREDICATE-CONSTRUCTOR-LEMMA -- A lemma that show that how to satisfy
;;; the predicate given an explicit instance of the constructor.
;;; :PREDICATE-GUARD-HINTS -- User option.
;;; :PREDICATE-SLOT-WRITERS-LEMMA -- The lemma that shows when the
;;; slot-writers satisfy the predicate.
;;; :PREDICATE-WEAK-PREDICATE-LEMMA -- A lemma that shows that the
;;; predicate includes the weak predicate.
;;; :PREFIX -- User option.
;;; :READ-LEMMA -- A lemma that simplifies reading an explicit constructor.
;;; :READ-ONLY -- Derived from :SLOT-WRITERS option.
;;; :READ-WRITE -- Boolean; true to generate READ-WRITE-LEMMA (default).
;;; :READ-WRITE-LEMMA -- The READ-WRITE lemma.
;;; :REPRESENTATION -- User option.
;;; :REQUIRED-SLOT-NAMES -- The slot names for which no :DEFAULT slot
;;; option was specified; required on every call
;;; of the keyword-constructor.
;;; :SET-CONC-NAME -- User option.
;;; :SLOT-NAMES -- List of slot names in the user-defined order.
;;; :TAG -- Either the structure name or NIL.
;;; :TEMPLATE -- A representation of the structure (including the optional
;;; :TAG) used to create the access/update forms.
;;; :UPDATE-METHOD -- User option.
;;; :VALUE-VARIABLE -- A variable which is not one of the slot names of the
;;; structure name, used as the symbolic variable in terms involving
;;; the slot writers.
;;; :VALUE-VARIABLE1 -- Another unique variable.
;;; :VERIFY-GUARDS -- User option -- T, NIL, or :DEFAULT.
;;; :WEAK-PREDICATE -- The name of the `weak' predicate on the structure.
;;; :WEAK-PREDICATE-CALL -- A symbolic call of the weak predicate .
;;; :WEAK-PREDICATE-CONSTRUCTOR-LEMMA -- The lemma that shows when the
;;; constructor satisfies the weak predicate.
;;; :WEAK-PREDICATE-SLOT-WRITERS-LEMMA -- The lemma that shows when the
;;; slot-writers satisfy the weak predicate.
;;; :WRITE-LEMMA -- A lemma that simplifies writes to an explicit
;;; constructor.
;;; :WRITE-WRITE -- Boolean; true to generate WRITE-WRITE-LEMMA (default).
;;; :WRITE-WRITE-LEMMA -- A lemma that normalizes multiple writes to a
;;; structure.
;;;
;;; Slot/Keyword entries, accessed by (DB <slot> <keyword>):
;;;
;;; :ASSERTIONS -- A list of ASSERTION records recording each assertion
;;; about the slot.
;;; :DEFAULT -- User option.
;;; :DEFAULT-SPECIFIED -- Indicates if the user entered a :DEFAULT option
;;; for the slot.
;;; :READER -- The reader function for the slot.
;;; :READER-CALL -- A symbolic call of the reader for the slot.
;;; :READ-ONLY -- User option.
;;; :WRITER -- The writer function for the slot.
;;; :WRITER-CALL -- A symbolic call of the writer for the slot.
(defconst *db-fields*
'(:ACL2-COUNT-LEMMA
:ASSERTIONS :ASSERTION-LEMMA :ASSERTION-LEMMA-HINTS
:CONC-NAME :CONSTRUCTOR-CALL :DEFINITION-THEORY :DOC
:ELIMINATION-LEMMA :FORCE :GUARDS :INLINE
:INTRO-MACRO
:KEYWORD-CONSTRUCTOR
:KEYWORD-SLOT-NAMES
:KEYWORD-UPDATER :LEMMA-THEORY :LIFT-IF-LEMMA :MV-INTRO-MACRO
:NAME #|:NORMALIZATION-LEMMA :NORMALIZE|# :PREDICATE
:PREDICATE-CALL
:PREDICATE-CONSTRUCTOR-LEMMA :PREDICATE-SLOT-WRITERS-LEMMA
:PREDICATE-GUARD-HINTS
:PREDICATE-WEAK-PREDICATE-LEMMA
:PREFIX :READ-LEMMA :READ-ONLY
:READ-WRITE :READ-WRITE-LEMMA
:REPRESENTATION
:REQUIRED-SLOT-NAMES
:SET-CONC-NAME :SLOT-NAMES
:TAG :TEMPLATE :UPDATE-METHOD :VALUE-VARIABLE :VALUE-VARIABLE1
:VERIFY-GUARDS
:WEAK-PREDICATE :WEAK-PREDICATE-CALL
:WEAK-PREDICATE-CONSTRUCTOR-LEMMA :WEAK-PREDICATE-SLOT-WRITERS-LEMMA
:WRITE-LEMMA
:WRITE-WRITE :WRITE-WRITE-LEMMA))
(defconst *db-slot-fields*
'(:ASSERTIONS
:DEFAULT :DEFAULT-SPECIFIED :READER :READER-CALL :READ-ONLY
:WRITER :WRITER-CALL))
(defconst *function-names*
`(:NAME :PREDICATE :WEAK-PREDICATE))
(defconst *slot-function-names*
'(:READER :WRITER))
(defconst *macro-names*
'(:KEYWORD-CONSTRUCTOR :KEYWORD-UPDATER))
(defconst *lemma-names*
'(:ACL2-COUNT-LEMMA
:ASSERTION-LEMMA
:ELIMINATION-LEMMA :LIFT-IF-LEMMA #|:NORMALIZATION-LEMMA|#
:PREDICATE-CONSTRUCTOR-LEMMA :PREDICATE-SLOT-WRITERS-LEMMA
:PREDICATE-WEAK-PREDICATE-LEMMA :READ-LEMMA :READ-WRITE-LEMMA
:WEAK-PREDICATE-CONSTRUCTOR-LEMMA :WEAK-PREDICATE-SLOT-WRITERS-LEMMA
:WRITE-LEMMA :WRITE-WRITE-LEMMA))
(defun db-fn (key form db)
(let
((pair (assoc key db)))
(cond
(pair (cdr pair))
(t (bomb-from 'DB-FN "Key not present at runtime: ~p0." form)))))
(defun db-slot-fn (slot key form db)
(let
((pair (assoc-equal (cons slot key) db)))
(cond
(pair (cdr pair))
(t (bomb-from 'DB-SLOT-FN "Key not present at runtime: ~p0." form)))))
(defmacro db (&whole form &rest args)
(case (length args)
(1 (cond
((not (member (car args) *DB-FIELDS*))
(bomb-from 'DB "Unrecognized field: ~p0" form))
(t `(DB-FN ,(car args) ',form DB))))
(2 (cond
((not (member (cadr args) *DB-SLOT-FIELDS*))
(bomb-from 'DB "Unrecognized slot field: ~p0" form))
(t `(DB-SLOT-FN ,(car args) ,(cadr args) ',form DB))))
(t (bomb-from "DB coded with wrong # of args: ~p0" form))))
(defmacro acons-db (&rest forms)
"Acons up a list of (<keyword> <value>) pairs, evaluting each successive
form in the context of the new DB."
(cond
((null forms) 'DB)
(t (cond
((not (member (caar forms) *DB-FIELDS*))
(bomb-from 'ACONS-DB "Unrecognized field: ~p0" (caar forms)))
(t `(LET ((DB (ACONS$ ,(caar forms) ,(cadar forms) DB)))
(ACONS-DB ,@(cdr forms))))))))
(defmacro append-db (&rest forms)
"APPEND new sublists to DB, evaluting each sucessive form in the context of
the new DB."
(cond
((null forms) 'DB)
(t `(LET ((DB (APPEND ,(car forms) DB)))
(APPEND-DB ,@(cdr forms))))))
(defmacro extend-db (&rest forms)
"Evaluate each form in the context of the DB that successive forms
created."
(cond
((null forms) 'DB)
(t `(LET ((DB ,(car forms)))
(EXTEND-DB ,@(cdr forms))))))
(defloop db-let-fn (fields)
(for ((field in fields))
(collect
(cond
((symbolp field) `(,field (DB ,(keywordify field))))
((and (consp field) (consp (cdr field)) (symbolp (cadr field)))
`(,(cadr field) (DB ,(car field) ,(keywordify (cadr field)))))
(t (bomb-from 'DB-LET-FN "Illegal field: ~p0" field))))))
(defmacro db-let (fields &rest forms)
"This macro is a shorthand way to bind fields of the DB to the like-named
variable. A field can be a field name, or (slot field)."
`(LET ,(db-let-fn fields) ,@forms))
(defloop map-slots-db (slot-names key db)
"Return a list in SLOT order of the indicated key."
(for ((slot in slot-names))
(collect (db-slot-fn slot key `(MAP-SLOTS-DB ON ,slot ,key) db))))
(defloop map-if-slots-db (slot-names key db)
"Return a list in SLOT order of the indicated key if non-NIL."
(for ((slot in slot-names))
(append
(let ((val (db-slot-fn slot key `(MAP-IF-SLOTS-DB ON ,slot ,key) db)))
(if val (list val) nil)))))
;;;****************************************************************************
;;;
;;; Code Generation
;;;
;;;****************************************************************************
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; Records
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;; An ASSERTION record records the assertion as provided by the user, the
;; slots bound by the assertion, the substituted assertion, the slot that
;; this assertion is associated with (or NIL if a DEFSTRUCTURE assertion),
;; and a list of RULE records.
(defrec assertion (assertion bound-slots subst-assertion slot rules) nil)
;; A RULE record contains an ASSERTION record and the ACL2 :RULE-CLASS form
;; that will implement the rule.
(defrec rule (assertion rule-class) nil)
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; Utilities, and MAKE-ers.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(defloop required-slot-names (slot-names db)
"A slot is required by the constructor macro if no default was specified."
(for ((slot in slot-names))
(unless (db slot :DEFAULT-SPECIFIED)
(collect (keywordify slot)))))
(defun make-corollary (assertion db)
"Create the :COROLLARY rule for the assertion."
(let*
((force (db :FORCE))
(predicate-call (db :PREDICATE-CALL))
(hyp (if force `(FORCE ,predicate-call) predicate-call)))
`(IMPLIES ,hyp ,(access ASSERTION assertion :SUBST-ASSERTION))))
(defmacro make-prefix-name (&rest names)
`(PACK-INTERN (DB :NAME) (DB :PREFIX) ,@names))
(defun make-template (db)
"Using the :SLOT-NAMES, :REPRESENTATION, and :TAG, make a template for
function generation. If the structure is tagged, the tag is always added
as the CAR. We know that the :TAG is a symbol, and that the
:REPRSENTATION is of the proper form."
(db-let (representation slot-names tag)
;; Preliminary template.
(let ((template
(case representation
((:MV :LIST) slot-names)
(:DOTTED-LIST (dotify slot-names))
(:TREE (fold slot-names))
(t representation))))
;; The final template.
(if tag (cons tag template) template))))
(defloop reader-names (slot-names db)
(for ((slot in slot-names))
(collect
(db-let (name conc-name)
(cons (cons slot :READER)
(pack-intern name conc-name slot))))))
(defloop writer-names (slot-names db)
"Generate the writer name, setting to NIL if either the slot or the
structure as a whole is :READ-ONLY."
(for ((slot in slot-names))
(collect
(db-let (name set-conc-name (slot read-only))
(cons (cons slot :WRITER)
(if (or read-only (db :READ-ONLY))
nil
(pack-intern name set-conc-name slot)))))))
(defloop reader-calls (slot-names db)
"Create a symbolic access form for a slot. The default access form for
slot A of structure FOO looks like (FOO-A FOO)."
(for ((slot in slot-names))
(collect
(db-let (name)
(cons (cons slot :READER-CALL)
`(,(db slot :READER) ,name))))))
(defloop writer-calls (slot-names db)
"Create a symbolic update form for a slot. The default update form for
slot A of structure FOO with slots A, B, and C looks like
(SET-FOO-A FOOABC FOO)."
(for ((slot in slot-names))
(collect
(db-let (name value-variable (slot writer))
(cons (cons slot :WRITER-CALL)
(if writer
`(,writer ,value-variable ,name)
nil))))))
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; Macro, Function, and Lemma generators.
;;;
;;; By convention all of these return a list of forms to be spliced into
;;; the set of events. They contain comment strings that will be removed
;;; by the CAPSULE macro.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(defun guard-declaration (guard verifyp db)
"If :GUARDS was specified, declare a guard and verify based on
:VERIFY-GUARDS. Note that the default is :DEFAULT."
(db-let (guards verify-guards)
(if guards
(list
`(DECLARE (XARGS :GUARD ,guard
,@(cond
((or (null verifyp) (null verify-guards))
'(:VERIFY-GUARDS NIL))
((eq verify-guards t) '(:VERIFY-GUARDS T))))))
nil)))
;;; CONSTRUCTOR
(defun constructor-body (template)
"Use the template to create a large CONS expression that creates the new
tuple. The elements of the template are the argument names."
(cond
((atom template) template)
(t `(CONS ,(constructor-body (car template))
,(constructor-body (cdr template))))))
(defun template-cost (template)
(cond
((atom template) 0)
(t (+ 1 (template-cost (car template)) (template-cost (cdr template))))))
(defloop acl2-countify-slots (slots)
(for ((slot in slots))
(collect `(ACL2-COUNT ,slot))))
(defun constructor (db)
"If :REPRESENTATION is :MV, create an MV macro. Else create a function or
macro under control of the :INLINE option. For tagged structures the tag
is in the constructor-body as a free variable, so we need to bind it."
(db-let (name acl2-count-lemma constructor-call slot-names representation
tag doc template inline)
(cond
((eq representation :MV)
(list
"
; The constructor is defined as a macro that expands into an MV form for
; every slot.
"
`(DEFMACRO ,name ,slot-names ,@(if doc (list doc) nil)
(CONS 'MV (LIST ,@slot-names)))))
(inline
(list
"
; The constructor is defined as a macro that accepts every slot.
"
(if tag
`(DEFMACRO ,name ,slot-names ,@(if doc (list doc) nil)
(LET ((,tag '',tag))
(MLAMBDA (,tag ,@slot-names) ,(constructor-body template))))
`(DEFMACRO ,name ,slot-names ,@(if doc (list doc) nil)
(MLAMBDA ,slot-names ,(constructor-body template))))))
(t (list
"
; The constructor is defined as a function that accepts every slot.
"
(if tag
`(DEFUN ,name ,slot-names ,@(if doc (list doc) nil)
,@(guard-declaration T t db)
(LET ((,tag ',tag))
,(constructor-body template)))
`(DEFUN ,name ,slot-names ,@(if doc (list doc) nil)
,@(guard-declaration T t db)
,(constructor-body template)))
"
; This lemma justifies recursion on any slot of the structure. It is
; unlikely to be used unless the structure is itself recursive.
"
`(DEFTHM ,acl2-count-lemma
(EQUAL (ACL2-COUNT ,constructor-call)
(+ ,(template-cost template)
,@(acl2-countify-slots slot-names)))))))))
;;; WEAK-PREDICATE
(defun weak-predicate-body (template tree)
"Traverse the template, creating CONSP and NULL expressions wherever
needed. It is necessary for the read/write lemmas that if the template
contains a NULL entry, that entry must be NULL in every shell. This
is initialized with tree = <structure-name> which is the formal parameter
of the weak predicate."
(cond
((atom template) (cond ((null template) (list `(NULL ,tree)))))
(t (append (list `(CONSP ,tree))
(weak-predicate-body (car template) `(CAR ,tree))
(weak-predicate-body (cdr template) `(CDR ,tree))))))
(defun reader-body (slot template tree)
"Write a CA/DR form to get slot from a structure. Tree is initialized with
the structure name, which is the formal parameter of the reader."
(declare (xargs :guard (symbolp slot)))
(cond
((atom template) (cond ((eq slot template) tree)))
(t (or (reader-body slot (car template) `(CAR ,tree))
(reader-body slot (cdr template) `(CDR ,tree))))))
(defun weak-predicate (db)
"This is the predicate on the `structure' of the structure. If the
structure is named, then we include a test that the CAR of the structure
is the correct name. We also write a lemma that shows when the
constructor function satisfies this predicate."
(db-let (weak-predicate weak-predicate-constructor-lemma
constructor-call name template tag
inline)
;; Note that an untagged, 0-slot structure is defined to be NIL, and an
;; untagged 1-slot structure is a single object.
(let* ((wp-body (weak-predicate-body template name))
(body (cond
((null template) (list `(NULL ,name)))
((atom template) (list `(DECLARE (IGNORE ,name)) T))
(tag (list `(AND ,@wp-body (EQ (CAR ,name) ',tag))))
(t (list `(AND ,@wp-body))))))
(list*
"
; This predicate defines the `structure' of the structure, and is used as a
; weak guard on the readers and writers (if defined).
"
`(DEFUN ,weak-predicate (,name)
,@(guard-declaration T t db)
,@body)
(if inline
nil
(list
"
; The weak-predicate is satisfied by any explicit reference of the
; constructor. We also store this information as a :BUILT-IN-CLAUSE
"
`(DEFTHM ,weak-predicate-constructor-lemma
(EQUAL (,weak-predicate ,constructor-call)
T)
:RULE-CLASSES
((:REWRITE)
(:BUILT-IN-CLAUSE
:COROLLARY
(,weak-predicate ,constructor-call))))))))))
;;; PREDICATE
(defloop map-access-assertion-assertion (assertions)
(for ((assertion in assertions))
(collect (access ASSERTION assertion :ASSERTION))))
(defloop slot-assertions (slot-names db)
(for ((slot in slot-names))
(append (db-let ((slot assertions))
(map-access-assertion-assertion assertions)))))
(defloop map-access-assertion-subst-assertion (assertions)
(for ((assertion in assertions))
(collect (access ASSERTION assertion :SUBST-ASSERTION))))
(defloop slot-subst-assertions (slot-names db)
(for ((slot in slot-names))
(append (db-let ((slot assertions))
(map-access-assertion-subst-assertion assertions)))))
(defun predicate-body (db)
"The predicate body is a conjunction of the weak predicate, and all
assertions about the slots."
(db-let (weak-predicate-call slot-names assertions)
`(AND ,weak-predicate-call
,@(remove-duplicates-equal
(append (slot-subst-assertions slot-names db)
(map-access-assertion-subst-assertion assertions)))
T)))
(defun predicate-assertions-explicit (db)
"The predicate, as the set of assertions for explicit instances of the
constructor."
(db-let (slot-names assertions)
(let ((assertions
(remove-duplicates-equal
(append (slot-assertions slot-names db)
(map-access-assertion-assertion assertions)))))
;; Trying not to introduce redundant conjuncts.
(cond
(assertions `(AND ,@assertions T))
(t 'T)))))
(defun predicate (db)
(db-let (predicate name predicate-call weak-predicate-call
constructor-call predicate-weak-predicate-lemma
predicate-constructor-lemma inline)
(list*
"
; This is the predicate, which contains the weak predicate and every
; assertion made about the slots of the structure. The final T guarantees
; that all DEFSTRUCTURE predicates are Boolean.
"
`(DEFUN ,predicate (,name)
,@(guard-declaration T nil db)
,(predicate-body db))
(if inline
nil
;; At times it is excessive to require that we prove the entire type
;; predicate for a structure just to show that the weak predicate is
;; satisfied, but this is the most generally useful rule to have
;; around.
(list
"
; This lemma shows that the predicate includes the weak predicate, as
; :REWRITE, :FORWARD-CHAINING, and :BUILT-IN-CLAUSE rules. Note that the
; :REWRITE rule is sometimes implicated in thrashing in conjunction with the
; normalization lemmas.
"
`(DEFTHM ,predicate-weak-predicate-lemma
(IMPLIES
,predicate-call
,weak-predicate-call)
:RULE-CLASSES (:FORWARD-CHAINING :REWRITE :BUILT-IN-CLAUSE))
"
; This lemma rewrites the predicate on an explicit reference of
; the constructor.
"
`(DEFTHM ,predicate-constructor-lemma
(EQUAL (,predicate ,constructor-call)
,(predicate-assertions-explicit db))))))))
;;; KEYWORD-CONSTRUCTOR
;;;
;;; The function KEYWORD-CONSTRUCTOR-FN is not a code generator per se, but
;;; is a helper function for all keyword constructors defined by
;;; DEFSTRUCTURE. I had thought about generating a unique helper for each
;;; structure, thinking that it would be possible to eliminate the
;;; dependency on the STRUCTURES package. However, I now realize that at
;;; present any book that does a DEFSTRUCTURE will have to have a non-local
;;; INCLUDE-BOOK for this book. Therefore, all keyword constructors share
;;; the same helper. The same goes for KEYWORD-UPDATER.
(defloop default-alist (slot-names db)
(for ((slot in slot-names))
(collect (cons (keywordify slot) (db slot :DEFAULT)))))
(defloop keyword-constructor-body (args keyword-slot-names default-alist)
(for ((keyword-slot in keyword-slot-names))
(collect
(let ((tail (assoc-keyword keyword-slot args)))
(if tail (cadr tail) (cdr (assoc keyword-slot default-alist)))))))
(defun keyword-slot-checker (macro-name form args keyword-slot-names)
"Check keyword argument list for basic syntax and either bomb or return
NIL."
(cond
((not (keyword-value-listp args))
(bomb-from macro-name
"The argument list in the macro invocation ~p0 ~
does not match the syntax of a keyword argument ~
list because ~@1."
form (reason-for-non-keyword-value-listp args)))
((not (subsetp (evens args) keyword-slot-names))
(bomb-from macro-name
"The argument list in the macro invocation ~p0 is not ~
a valid keyword argument list because it contains the ~
~#1~[keyword~/keywords~] ~&1, which ~#1~[is~/are~] ~
not the keyword ~#1~[form~/forms~] of any of the ~
slot names ~&2."
FORM (set-difference-equal (evens args) keyword-slot-names)
keyword-slot-names))
(t nil)))
(defun keyword-constructor-fn (form args name keyword-constructor default-alist
keyword-slot-names required-slot-names)
(cond
((keyword-slot-checker keyword-constructor form args keyword-slot-names))
((not (subsetp required-slot-names (evens args)))
(bomb-from keyword-constructor
"The argument list in the macro invocation ~p0 is not ~
valid does not specify a value for the required ~
~#1~[keyword~/keywords~] ~&1. ~
Any slot which has no :DEFAULT option at ~
DEFSTRUCTURE time must be specified in every ~
invocation of the constructor macro."
form (set-difference-equal
required-slot-names (evens args))
keyword-slot-names))
(t `(,name ,@(keyword-constructor-body
args keyword-slot-names default-alist)))))
(defun keyword-constructor (db)
(db-let
(name keyword-constructor slot-names keyword-slot-names
required-slot-names)
(if keyword-constructor
(list
"
; This is the keyword constructor macro. It will expand into a call of the
; constructor, with appropriate defaulting.
"
`(DEFMACRO ,keyword-constructor (&WHOLE FORM &REST ARGS)
(KEYWORD-CONSTRUCTOR-FN
FORM ARGS ',name ',keyword-constructor
',(default-alist slot-names db)
',keyword-slot-names ',required-slot-names)))
nil)))
;;; READERS
(defloop reader-definitions (slot-names db)
(for ((slot in slot-names))
(collect
(db-let ((slot reader) name weak-predicate-call template inline)
(if inline
`(DEFMACRO ,reader (,name)
(MLAMBDA (,name) ,(reader-body slot template name)))
`(DEFUN ,reader (,name)
,@(guard-declaration weak-predicate-call t db)
,(reader-body slot template name)))))))
(defun readers (db)
"Define the reader functions"
(db-let (slot-names)
(if slot-names
(cons
"
; These are the `readers' for the structure.
"
(reader-definitions slot-names db))
nil)))
;;; WRITERS
(defconst *binding-variable* '|x|)
(defconst *binding-variable1* '|y|)
(defun writer-body (slot template var tree)
"Write a CONS form to put a new slot into a structure, given the slot,
the structure template, a variable name (a formal parameter) and the
`tree'."
(declare (xargs :guard (symbolp slot)))
(cond
((atom template) (cond ((eq slot template) var)))
(t (let
((car-side (writer-body slot (car template) var `(CAR ,tree)))
(cdr-side (writer-body slot (cdr template) var `(CDR ,tree))))
(cond
(car-side `(CONS ,car-side ,(cond
((null (cdr template)) nil)
(t `(CDR ,tree)))))
(cdr-side `(CONS (CAR ,tree) ,cdr-side)))))))
(defun writer-macro-fn (bind slot template value name)
(if bind
`(LET ((,*binding-variable*
(CHECK-VARS-NOT-FREE (,*binding-variable*) ,name)))
,(writer-body slot template value *binding-variable*))
(writer-body slot template value name)))
(defloop writer-definitions (slot-names db)
(for ((slot in slot-names))
(append
(db-let ((slot writer) name weak-predicate-call template
value-variable inline)
(if writer
(if inline
(list
`(DEFMACRO ,writer (,value-variable ,name)
(WRITER-MACRO-FN (NOT (ATOM ,name)) ',slot ',template
,value-variable ,name)))
(list
`(DEFUN ,writer (,value-variable ,name)
,@(guard-declaration weak-predicate-call t db)
,(writer-body slot template value-variable name))))
nil)))))
(defun writers (db)
"Define the writer functions."
(db-let (slot-names read-only)
(if read-only
nil
(cons
"
; These are the `writers' for the structure.
"
(writer-definitions slot-names db)))))
;;; KEYWORD-UPDATER
(defloop keyword-writer-map (slot-names db)
(for ((slot in slot-names))
(collect (db-let ((slot writer))
(cons (keywordify slot) writer)))))
(defloop keyword-reader-map (slot-names db)
(for ((slot in slot-names))
(collect (db-let ((slot reader))
(cons (keywordify slot) reader)))))
(defloop read-only-keyword-slots (slot-names db)
(for ((slot in slot-names))
(when (db slot :READ-ONLY)
(collect (keywordify slot)))))
(defun slot-cost (slot template accum)
"Compute the cost of reading (CAR/CDR) and writing (CONS) a slot."
(cond
((atom template) (cond
((eq slot template) accum)
(t nil)))
(t (or (slot-cost slot (car template) (1+ accum))
(slot-cost slot (cdr template) (1+ accum))))))
(defun set-cost (slots template)
(cond
((atom slots) 0)
(t (+ (slot-cost (car slots) template 0)
(set-cost (cdr slots) template)))))
(defun set-heuristic (keyword-set-slots template)
(let*
((keyword-template (keywordify-tree template))
(set-cost (set-cost keyword-set-slots keyword-template)))
(<= set-cost (template-cost keyword-template))))
(defun set-update (args keyword-writer-map struct)
(cond
((atom args) struct)
(t `(,(cdr (assoc (car args) keyword-writer-map)) ;Writer
,(cadr args) ;Value
,(set-update (cddr args) keyword-writer-map struct)))))
(defloop copy-update-fn
(keyword-slot-names args keyword-reader-map struct check)
(for ((keyword-slot in keyword-slot-names))
(collect
(let ((assigned? (assoc-keyword keyword-slot args)))
(if assigned?
(if check
`(CHECK-VARS-NOT-FREE
(,*binding-variable*)
,(cadr assigned?))
(cadr assigned?))
`(,(cdr (assoc keyword-slot keyword-reader-map))
,struct))))))
(defloop all-slots-assigned-p (keyword-slot-names args)
(for ((keyword-slot in keyword-slot-names))
(always (assoc-keyword keyword-slot args))))
(defun copy-update (name keyword-slot-names args keyword-reader-map struct)
"If all slots are assigned (equivalent to a constructor call), or the
updated thing is an atom (variable symbol), then we can simply do the
copy. Otherwise, bind the struct to a temp and then do the copy."
(if (or (atom struct)
(all-slots-assigned-p keyword-slot-names args))
`(,name ,@(copy-update-fn keyword-slot-names args
keyword-reader-map
struct nil))
`(LET ((,*binding-variable* ,struct))
(,name ,@(copy-update-fn keyword-slot-names args
keyword-reader-map
*binding-variable* t)))))
(defun inline-update-fn (args template tree check)
"Write a CONS form to update slots from args, given the structure template
and tree."
(cond
((atom template) (cond
((null template) (mv nil nil))
(t (let* ((keyword-slot (keywordify template))
(found (assoc-keyword keyword-slot args))
(val (cadr found)))
(cond
(found
(mv t (cond
(check `(CHECK-VARS-NOT-FREE
(,*binding-variable*)
,val))
(t val))))
(t (mv nil tree)))))))
(t (mv-let (car-found car-result)
(inline-update-fn args (car template) `(CAR ,tree) check)
(mv-let (cdr-found cdr-result)
(inline-update-fn args (cdr template) `(CDR ,tree) check)
(cond
((not (or car-found cdr-found)) (mv nil tree))
(t (mv
t
`(CONS
,(cond
(car-found car-result)
(t `(CAR ,tree)))
,(cond
(cdr-found cdr-result)
((null (cdr template)) nil)
(t `(CDR ,tree))))))))))))
(defun inline-update (args template struct keyword-slot-names)
(let ((bind (and (not (atom struct))
(not (all-slots-assigned-p keyword-slot-names args)))))
(mv-let (found form)
(inline-update-fn
args template (if bind *binding-variable* struct) bind)
(declare (ignore found))
(cond
(bind `(LET ((,*binding-variable* ,struct)) ,form))
(t form)))))
(defun keyword-updater-fn (form struct args name keyword-updater
keyword-slot-names read-only-keyword-slots
update-method template keyword-reader-map
keyword-writer-map)
(cond
((keyword-slot-checker keyword-updater form args keyword-slot-names))
((intersection-eq (evens args) read-only-keyword-slots)
(bomb-from keyword-updater
"The argument list in the macro invocation ~p0 is not ~
valid because it specifies ~#1~[a~/an~] update for the ~
~#1~[slot~/slots~] ~&1 which ~#1~[is a~/are~] ~
:READ-ONLY ~#1~[slot~/slots~]."
form (intersection-eq (evens args) read-only-keyword-slots)))
(t
;; Determine the kind of update we're going to do. The :HEURISTIC method
;; always chooses either :SET or :COPY.
(let*
((keyword-set-slots (evens args))
(method (if (eq update-method :HEURISTIC)
(if (set-heuristic keyword-set-slots template)
:SET
:COPY)
update-method)))
(case method
(:SET (set-update args keyword-writer-map struct))
(:COPY (copy-update name keyword-slot-names args
keyword-reader-map struct))
(:INLINE (inline-update args template struct keyword-slot-names))
(t (bomb-from 'KEYWORD-UPDATER-FN "Illegal method: ~p0."
method)))))))
(defun keyword-updater (db)
(db-let (keyword-updater name keyword-slot-names slot-names
update-method template)
(if keyword-updater
(list
"
; This is the macro that provides for updates of multiple slots of a
; structure.
"
`(DEFMACRO ,keyword-updater (&WHOLE FORM STRUCT &REST ARGS)
(KEYWORD-UPDATER-FN
FORM STRUCT ARGS ',name ',keyword-updater
',keyword-slot-names ',(read-only-keyword-slots slot-names db)
',update-method ',template ',(keyword-reader-map slot-names db)
',(keyword-writer-map slot-names db))))
nil)))
;;; READ-LEMMA
(defloop read-lemma-body (slot-names db)
(for ((slot in slot-names))
(collect (db-let ((slot reader) constructor-call)
`(EQUAL (,reader ,constructor-call) ,slot)))))
(defun read-lemma (db)
(db-let (slot-names read-lemma)
(if read-lemma
(list
"
; This lemma simplifies reads of an explicit constructor.
"
`(DEFTHM ,read-lemma
(AND ,@(read-lemma-body slot-names db))))
nil)))
;;; WRITE-LEMMA
(defloop write-lemma-body (slot-names db)
(for ((slot in slot-names))
(unless (db slot :READ-ONLY)
(collect
(db-let ((slot writer) constructor-call value-variable)
`(EQUAL (,writer ,value-variable ,constructor-call)
,(subst value-variable slot constructor-call)))))))
(defun write-lemma (db)
(db-let (slot-names write-lemma)
(if write-lemma
(list
"
; This lemma simplifies writes of an explicit constructor.
"
`(DEFTHM ,write-lemma
(AND ,@(write-lemma-body slot-names db))))
nil)))
;;; LIFT-IF-LEMMA
#|
The reasons for lifting IF out are as described below, but we always do it
rather than check for the SYNTAXP hyp. This was important for Alessandro's
work. Also added IF lifting for the slot writers, in the hope of winning
some simplifications in that way as well ( we do on his examples ).
(defun lift-if-syntaxp (left right constructor)
;; jared removed the doc section here to help with porting to xdoc... ":doc -section lift-if-syntaxp
Meta heuristic for `lifting' IF through structure accessors.
~/~/
The `LIFT-IF' lemma is introduced as a heuristic to speed certain proofs
about specifications involving conditional structure access. Here is the
idea. Imagine a generic structure defined by
(DEFSTRUCTURE FOO A B C).
Now imaging that the term
(FOO-A (IF test x y))
appears during a proof about a specification involving the structure.
This will happen because ACL2 does not normally move IF around during
simplification. Instead, ACL2 simplifies, with IF in place, and then
clausifies out the IFs to produce cases.
Now, if the term above is actually
(FOO-A (IF test (FOO a b c) (FOO a1 b1 c1))),
i.e., both the left and right branch of the IF are instances of the
constructor, then we can simplify this term to
(IF test a a1).
Even though we haven't eliminated the need to clausify away the IF, we have
at least reduced the size of the term, perhaps substantially. This is
important because if we had clausified away to cases involving
(FOO-A (FOO a b c)) and (FOO-A (FOO a1 b1 c1))
the prover is obligated to examine all of (FOO a b c) and (FOO a1 b1 c1)
before applying the simple `read lemma' for the structure. The sizes of
terms can also have a very significant impact on the amount of time spent on
I/O.
If it so happened that a = a1, e.g., this slot is invariant in a
specification, then this would be further simplified to simply
a,
which will potentially result in one less test during clausification.
The heuristic embodied in this lemma is to lift IF through calls of the
accessors if there is some hope that doing so will reduce the size of the
resulting term. If the left and right hand sides of the IF are both
instances of the constructor, then we know that this will work, thanks to the
`read lemma' for the structure. We also lift the IFs out if the left or
right hand sides are themselves IF, hoping to win further down. This
heuristic has been found to result in very significant proof speedups for
certain types of proofs. ~/"
(declare (xargs :guard t
:mode :logic))
(and (consp left)
(consp right)
(symbolp constructor)
(or (eq (car left) 'IF)
(eq (car left) constructor))
(or (eq (car right) 'IF)
(eq (car right) constructor))))
|#
(defloop lift-if-writers (slots test left right db)
(for ((slot in slots))
(when (db slot :WRITER)
(collect
(db-let (value-variable (slot writer))
`(EQUAL (,writer ,value-variable (IF ,test ,left ,right))
(IF ,test
(,writer ,value-variable ,left)
(,writer ,value-variable ,right))))))))
(defloop lift-if-readers (slots test left right db)
(for ((slot in slots))
(collect
(db-let ((slot reader))
`(EQUAL (,reader (IF ,test ,left ,right))
(IF ,test (,reader ,left) (,reader ,right)))))))
(defun lift-if-lemma-fn (slots test left right db)
(append (lift-if-readers slots test left right db)
(lift-if-writers slots test left right db)))
(defun lift-if-lemma (db)
(db-let (name lift-if-lemma slot-names)
(let ((test (pack-intern name name "-TEST")) ;Makes forms easer to read
(left (pack-intern name name "-LEFT")) ;w/o package marks.
(right (pack-intern name name "-RIGHT")))
(if lift-if-lemma
(list
"
; This lemma lifts IF through calls of the slot accessors.
"
`(DEFTHM ,lift-if-lemma
(AND ,@(lift-if-lemma-fn slot-names test left right db))))
nil))))
;;; ELIMINATION-LEMMA
(defun elimination-lemma (db)
(db-let (elimination-lemma slot-names name force
weak-predicate-call)
(if elimination-lemma
(list
"
; This is the :ELIM lemma for the constructor.
"
`(DEFTHM ,elimination-lemma
(IMPLIES
,(if force
`(FORCE ,weak-predicate-call)
weak-predicate-call)
(EQUAL (,name ,@(map-slots-db slot-names :READER-CALL db))
,name))
:RULE-CLASSES (:REWRITE :ELIM)))
nil)))
#|
;;; NORMALIZATION LEMMA
(defloop normalize-equal-conjuncts (slot-names db)
(for ((slot in slot-names))
(collect `(EQUAL ,slot ,(db slot :reader-call)))))
(defloop normalization-rhs (slot-names written-slot db)
(for ((slot in slot-names))
(collect
(db-let (value-variable (slot reader) name)
(cond
((eq slot written-slot) value-variable)
(t `(,reader ,name)))))))
(defloop normalization-conjuncts (slot-names all-slot-names db)
(for ((slot in slot-names))
(unless (db slot :READ-ONLY)
(collect
(db-let ((slot writer) value-variable name)
`(EQUAL (,writer ,value-variable ,name)
(,name ,@(normalization-rhs all-slot-names slot db))))))))
(defun normalization-lemma (db)
(db-let (name constructor-call normalization-lemma slot-names force
weak-predicate-call)
;; Note: In the first conjunct below (the equality conjunct), if both the
;; LHS and RHS are explicit references of the constructor, then we can
;; rewrite w/o hypotheses. Rather than introducing 2 lemmas, however, we
;; simply introduce the most general one, assuming that one will be able
;; to relieve the weak predicate hypothesis.
(if normalization-lemma
(list
"
; This lemma normalizes symbolic writes by transforming the symbolic
; structure into an explicit reference of the constructor. The first
; conjunct is a lemma that will normalize equality tests for this structure
; when one of the objects is an explicit reference of the constructor.
"
`(DEFTHM ,normalization-lemma
(IMPLIES
,(if force
`(FORCE ,weak-predicate-call)
weak-predicate-call)
(AND
(EQUAL (EQUAL ,constructor-call ,name)
(AND ,@(normalize-equal-conjuncts slot-names db)))
,@(normalization-conjuncts slot-names slot-names db)))))
nil)))
|#
;;; SLOT-WRITERS-LEMMAS
; The slot writers always preserve the weak predicate on the structures they
; write. A more interesting case concerns the question of whether a write
; to a slot returns a structure that satisfies the predicate. In general,
; the predicate can involve complex relationships between the slots, thus it
; is necessary to normalize the structure being written to an explicit call
; of the constructor, and then the `predicate-constructor-lemma' will prove
; the conjecture. In the special case [ which is probably the most common ]
; that there are no complex interrelationships, we can prove the predicate
; by simply proving the particular assertion(s) about the slot.
(defloop weak-predicate-slot-writers-lemma-fn (weak-predicate writer-calls)
(for ((call in writer-calls))
(collect `(,weak-predicate ,call))))
(defloop normalization-rhs (slot-names written-slot db)
(for ((slot in slot-names))
(collect
(db-let (value-variable (slot reader) name)
(cond
((eq slot written-slot) value-variable)
(t `(,reader ,name)))))))
(defloop map-access-assertion-bound-slots (assertions)
(for ((assertion in assertions))
(collect (access ASSERTION assertion :BOUND-SLOTS))))
(defloop map-subst-assertions (assertions slot value-variable)
(for ((assertion in assertions))
(collect
(subst-expr-all assertion (list value-variable) (list slot)))))
(defloop all-bound-slots-fn (slot-names db)
(for ((slot in slot-names))
(append (map-access-assertion-bound-slots (db slot :ASSERTIONS)))))
(defun all-bound-slots (slot-names db)
(append (map-access-assertion-bound-slots (db :ASSERTIONS))
(all-bound-slots-fn slot-names db)))
(defun simple-slot-p (slot db)
(db-let ((slot assertions) slot-names)
(and (equal (remove-duplicates-equal
(map-access-assertion-bound-slots assertions))
(list (list slot)))
(not
(member slot
(flatten (all-bound-slots (remove slot slot-names) db)))))))
(defloop predicate-slot-writers-lemma-fn
(predicate slot-names all-slot-names db)
(for ((slot in slot-names))
(unless (db slot :READ-ONLY)
(collect
(db-let (name predicate-call weak-predicate-call
value-variable (slot writer-call))
(if (not (simple-slot-p slot db))
`(IMPLIES
,weak-predicate-call
(EQUAL (,predicate ,writer-call)
(,predicate
(,name
,@(normalization-rhs all-slot-names slot db)))))
(let* ((slot-assertions-assertions
(map-access-assertion-assertion (db slot :ASSERTIONS)))
(subst-assertions
(map-subst-assertions slot-assertions-assertions
slot value-variable)))
`(IMPLIES
,predicate-call
(IFF (,predicate ,writer-call)
,(if subst-assertions
(cond
((cdr subst-assertions)
`(AND ,@subst-assertions))
(t (car subst-assertions)))
'T))))))))))
(defun slot-writers-lemmas (db)
(db-let (weak-predicate-slot-writers-lemma
weak-predicate-call weak-predicate
predicate-slot-writers-lemma predicate
slot-names)
(append
(if weak-predicate-slot-writers-lemma
(list
"
; This lemma backchains the weak predicate through the slot writers.
"
`(DEFTHM ,weak-predicate-slot-writers-lemma
(IMPLIES
,weak-predicate-call
(AND ,@(weak-predicate-slot-writers-lemma-fn
weak-predicate (map-if-slots-db slot-names :WRITER-CALL
db))))))
nil)
(if predicate-slot-writers-lemma
(list
"
; This lemma proves the predicate on a slot writer call. For simple slots
; whose assertions (if any) only mention the slot itself one need only prove
; the assertion about the new slot. For more complex slot assertions, or if
; the structure as a whole has an assertion, it is necessary to normalize
; the slot writer call to an explicit instance of the constructor.
"
`(DEFTHM ,predicate-slot-writers-lemma
(AND ,@(predicate-slot-writers-lemma-fn
predicate slot-names slot-names db))))
nil))))
;;; READ-WRITE-LEMMA
(defloop read-write-conjuncts1 (slot-names write-slot db)
(for ((read-slot in slot-names))
(collect
(db-let (value-variable (read-slot reader) (write-slot writer) name)
(cond
((eq read-slot write-slot)
`(EQUAL (,reader (,writer ,value-variable ,name))
,value-variable))
(t `(EQUAL (,reader (,writer ,value-variable ,name))
(,reader ,name))))))))
(defloop read-write-conjuncts (slot-names all-slot-names db)
(for ((write-slot in slot-names))
(unless (db write-slot :READ-ONLY)
(append (read-write-conjuncts1 all-slot-names write-slot db)))))
(defun read-write-lemma (db)
(db-let (read-write-lemma slot-names)
(if read-write-lemma
(list
"
; This lemma normalizes symbolic reads of symbolic writes by `pushing'
; reads though nested writes until either 1) a symbolic write of the read
; slot is detected, or 2) something unrecognized is found.
"
`(DEFTHM ,read-write-lemma
(AND ,@(read-write-conjuncts slot-names slot-names db))))
nil)))
;;; WRITE-WRITE-LEMMA
(defloop write-write-conjuncts1 (deep-slot template db)
(for ((shallow-slot in template))
(unless (db shallow-slot :READ-ONLY)
(collect
(db-let (value-variable value-variable1 name)
(let ((deep-writer (db deep-slot :WRITER))
(shallow-writer (db shallow-slot :WRITER)))
(if (eq deep-slot shallow-slot)
`(EQUAL (,deep-writer ,value-variable
(,deep-writer ,value-variable1 ,name))
(,deep-writer ,value-variable ,name))
`(EQUAL (,deep-writer ,value-variable
(,shallow-writer ,value-variable1 ,name))
(,shallow-writer ,value-variable1
(,deep-writer ,value-variable ,name))))))))))
(defloop write-write-conjuncts (template db)
(for ((slot in template))
(unless (db slot :READ-ONLY)
(append (write-write-conjuncts1 slot template db)))))
(defun write-write-lemma (db)
(db-let (write-write-lemma template tag)
(if write-write-lemma
(let ((template (reverse (flatten (if tag (cdr template) template)))))
(list
"
; This lemma normalizes multiple nested writes of a structure by pushing
; writes for `deep' slots through writes to `shallow' slots, and reducing
; redundant writes to the same slot to a single write.
"
`(DEFTHM ,write-write-lemma
(AND ,@(write-write-conjuncts template db)))))
nil)))
;;; NAKED-PROOFS
(defloop map-rules-for-rule-classes (rules)
(for ((rule in rules)) (collect (access RULE rule :RULE-CLASS))))
(defloop map-assertions-for-rule-classes (assertions)
(for ((assertion in assertions))
(append (map-rules-for-rule-classes (access ASSERTION assertion :RULES)))))
(defloop map-slot-assertions-for-rule-classes (slot-names db)
(for ((slot in slot-names))
(append (db-let ((slot assertions))
(map-assertions-for-rule-classes assertions)))))
(defun all-rule-classes (db)
(db-let (assertions slot-names)
(append (map-slot-assertions-for-rule-classes slot-names db)
(map-assertions-for-rule-classes assertions))))
(defun naked-proofs (db)
(db-let (assertion-lemma predicate predicate-call
predicate-guard-hints
assertion-lemma-hints guards verify-guards)
(if (or assertion-lemma (and guards verify-guards))
(append
(list `(LOCAL (IN-THEORY (ENABLE ,predicate))))
(and guards verify-guards
(list
"
; The guard verification for the predicate is performed here since it may
; need the current environment. If it does not prove then you may need some
; hints. Any :PREDICATE-GUARD-HINTS option to DEFSTRUCTURE will be attached
; to this lemma.
"
`(VERIFY-GUARDS ,predicate
,@(and predicate-guard-hints
(list :HINTS predicate-guard-hints)))))
(and assertion-lemma
(list
"
; This lemma captures all assertions about the structure. This lemma is not
; guaranteed to prove. If it does not prove than you may have to provide
; some :HINTS. Any :ASSERTION-LEMMA-HINTS option to DEFSTRUCTURE will be
; attached to this lemma. Be sure that you have not specified
; unsatisfiable assertions.
"
`(DEFTHM ,assertion-lemma
(IMPLIES
,predicate-call
,(predicate-body db))
:RULE-CLASSES
,(all-rule-classes db)
,@(and assertion-lemma-hints
(list :HINTS assertion-lemma-hints))))))
nil)))
;;; MV-INTRO-MACRO
(defun mv-intro-macro-case-body (readers form n)
(cond
((atom readers) ())
(t (cons `(,n (,(car readers) ,form))
(mv-intro-macro-case-body (cdr readers) form (1+ n))))))
(defun mv-intro-macro-fn (name form event-name readers)
(let*
((event-name (if event-name
event-name
(pack-intern (car form) name "-MV-INTRO-" (car form))))
(n (car (unique-symbols 1 'MV-INTRO-MACRO-N (flatten form))))
(mv-nth-form `(MV-NTH ,n ,form)))
`(DEFTHM ,event-name
(EQUAL ,mv-nth-form
(CASE ,n
,@(MV-intro-macro-case-body readers form 0)
(T (HIDE ,mv-nth-form))))
:HINTS
(("Goal"
:IN-THEORY '(ZP OPEN-MV-NTH ,@readers)
:EXPAND (HIDE ,mv-nth-form))))))
(defun mv-intro-macro (db)
(db-let (name slot-names mv-intro-macro)
(if mv-intro-macro
(list
"
; This macro generates a lemma that will rewrite MV-NTH applied to any form
; as a call of the appropriate reader for this MV structure.
"
`(DEFMACRO ,mv-intro-macro (FORM &KEY EVENT-NAME)
(DECLARE (XARGS :GUARD (AND FORM
(SYMBOL-LISTP FORM)
(SYMBOLP EVENT-NAME))))
(MV-INTRO-MACRO-FN ',name FORM EVENT-NAME
',(map-slots-db slot-names :READER db))))
nil)))
;;; DEFINITION-THEORY
; At one time we DISABLEd all :TYPE-PRESCRIPTION runes, just to make the theory
; as abstract as possible. However a user had an example where it was
; advantageous to use the type information. They had a spec that returned
; either a structure or a symbol that represeted a `meta-error'. One can now
; prove that specifications like this don't return non-structure values by type
; reasoning. I suppose that people might also want to use a structure as a
; template that they may also access by CAR and CDR for example, so they'll
; need the type info.
; At one time we also had DISABLEd the executable counterpart of the
; constructor. This lead to problems when trying to compare constant
; structures defined with DEFCONST, which always evaluates, to constant
; structures generated during a proof.
#|
(defloop r/w-type-prescriptions-fn (fns)
(for ((fn in fns))
(collect `(:TYPE-PRESCRIPTION ,fn))))
(defun r/w-type-prescriptions (db)
(db-let (slot-names)
(r/w-type-prescriptions-fn
(append (map-if-slots-db slot-names :READER db)
(map-if-slots-db slot-names :WRITER db)))))
|#
(defun definition-theory (db)
(db-let (name weak-predicate predicate definition-theory slot-names
representation inline)
(if inline
nil
(list
"
; This theory consists of all :DEFINITION runes associated with the
; constructor, predicates, and slot readers/writers. Only the
; :TYPE-PRESCRIPTIONS and :EXECUTABLE-COUNTERPARTS remain ENABLEd.
"
`(DEFTHEORY ,definition-theory
'(
;; Note that for :MV structures the constructor is a macro.
,@(if (eq representation :MV)
nil
(list name))
,weak-predicate
,predicate
,@(map-if-slots-db slot-names :READER db)
,@(map-if-slots-db slot-names :WRITER db)))
`(IN-THEORY (DISABLE ,definition-theory))))))
;;; LEMMA-THEORY
(defloop lemma-theory-names (lemma-names db)
(for ((lemma-key in lemma-names))
(append
(let ((lemma-name (db-fn lemma-key `(LEMMA-THEORY ,lemma-key) db)))
(if lemma-name (list lemma-name) nil)))))
(defun lemma-theory (db)
(db-let (lemma-theory inline)
(if inline
nil
(list
"
; This theory lists every lemma generated by this DEFSTRUCTURE. These are
; normally to remain ENABLEd.
"
`(DEFTHEORY ,lemma-theory
'(,@(lemma-theory-names *lemma-names* db)))))))
;;;****************************************************************************
;;;
;;; Parsing
;;;
;;;****************************************************************************
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; Constants
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(defconst *update-methods* '(:HEURISTIC :SET :COPY))
(defconst *keyword-representations* '(:LIST :MV :DOTTED-LIST :TREE))
(defconst *options*
'(:ASSERT :ASSERTION-LEMMA-HINTS :CONC-NAME :DO-NOT
:FORCE :GUARDS :MV-INTRO-MACRO :KEYWORD-CONSTRUCTOR
:KEYWORD-UPDATER :PREDICATE :PREDICATE-GUARD-HINTS :PREFIX
:INLINE :READ-WRITE-LEMMA :REPRESENTATION :SET-CONC-NAME
:SLOT-WRITERS :WEAK-PREDICATE :UPDATE-METHOD :VERIFY-GUARDS
:WRITE-WRITE-LEMMA)
"The valid options for DEFSTRUCTURE options.")
(defconst *duplicate-options*
'(:ASSERT :DO-NOT)
"Only these options may be duplicated.")
(defconst *do-not-options* '(:TAG #|:NORMALIZE|# :READ-WRITE :WRITE-WRITE)
"Things done by default, they can be undone by a :DO-NOT option.")
(defconst *slot-options*
'(:DEFAULT :READ-ONLY :ASSERT)
"The valid options for DEFSTRUCTURE <slot-and-options>.")
(defconst *duplicate-slot-options*
'(:ASSERT)
"Options for DEFSTRUCTURE <slot-and-options> that can be duplicated.")
(defconst *rule-tokens*
'(:BUILT-IN-CLAUSE :COMPOUND-RECOGNIZER :CONGRUENCE :DEFINITION :ELIM
:EQUIVALENCE :FORWARD-CHAINING :GENERALIZE :INDUCTION
:LINEAR :LINEAR-ALIAS :META NIL :REFINEMENT :REWRITE
:TYPE-PRESCRIPTION :TYPE-SET-INVERTER
:WELL-FOUNDED-RELATION)
"The valid Acl2 rule-tokens. These may need to be updated from time to
time.")
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; Assertion and Rule Checking
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(defun check-assertion (assertion slot context db)
"Check the assertion for syntax, and return an ASSERTION record containing
the assertion, its bound slots, its substitution, and its associated slot."
(db-let (slot-names)
(cond
;; If not a LAMBDA, make sure that it is at least a `vanilla' term.
((not (assertion-termp assertion))
(bomb "Assertions are required to satisfy DEFSTRUCTURE::ASSERTION-TERMP, ~
and ~p0 does not because ~@1."
assertion (reason-for-not-assertion-termp assertion)))
;; This is an assertion term whose free variables are (hopefully!)
;; indicated by FREE-VARS.
(t (let*
((bound-slots (free-vars assertion))
(err
(cond
((not (subsetp bound-slots slot-names))
(msg "is not a subset of the slot names ~p0." slot-names))
((and slot (not (member slot bound-slots)))
(msg "does not contain the current slot ~p0." slot)))))
(if err
(bomb "The putative assertion ~p0 in the context ~p1 is not ~
a valid assertion because the free variable list of the ~
assertion (as defined by DEFSTRUCTURE::FREE-VARS), ~p2, ~
~@3 If you feel that this message is incorrect, ~
then restate your assertion as a LAMBDA function ~
and try again." assertion context bound-slots err)
;; Here, the `subst-assertion' is made by substitution of the
;; access forms for the free variables.
(make ASSERTION
:assertion assertion
:bound-slots bound-slots
:subst-assertion
(subst-expr-all assertion
(map-slots-db bound-slots :READER-CALL db)
bound-slots)
:slot slot
:rules NIL)))))))
(defun parse-rule (rule default-assertion context slot db)
"Check rule syntax and return a RULE record."
(let ((rule-token (if (atom rule) rule (car rule))))
(if (or (not (symbolp rule-token))
(not (member rule-token *rule-tokens*)))
(bomb "The putative rule descriptor ~p0 in the context ~
~p1 is not valid because ~#2~[it~/its CAR~] ~
is not one of the allowable rule tokens ~v3."
rule context (if (equal rule rule-token) 0 1) *rule-tokens*)
(cond
;; A symbolic rule inherits everything from the default-assertion.
((or (atom rule) (null (cdr rule)))
(make RULE
:assertion default-assertion
:rule-class
`(,rule-token
:COROLLARY
,(make-corollary default-assertion db))))
((not (true-listp rule))
(bomb "The putative atomic rule descriptor ~p0 in the context ~
~p1 is not valid because it is not a true list."
rule context))
;; This is (rule-token assertion . other-rule-stuff). We parse the
;; assertion and append the other-rule-stuff to make the rule-class.
(t (let
((assertion (check-assertion (second rule) slot rule db)))
(make RULE
:assertion assertion
:rule-class
(append
`(,rule-token
:COROLLARY ,(make-corollary assertion db))
(rest (rest rule))))))))))
(defloop parse-rule-list (rule-list default-assertion context slot db)
(for ((rule in rule-list))
(collect (parse-rule rule default-assertion context slot db))))
(defloop parse-assert-options (assert-options slot db)
"Traverse the assert-options (which *only* consist of :ASSERT options),
and check the syntax and collect a list of ASSERTION records."
(for ((option in assert-options))
(collect
(if (or (atom option)
(atom (rest option))
(not (true-listp option)))
(bomb "The :ASSERT option ~p0 needs an assertion and optional ~
rule-descriptors, or it is not a true list.")
(let*
((assertion (check-assertion (second option) slot option db))
(rule-list
(parse-rule-list
(rest (rest option)) ;The rules.
assertion ;The default assertion.
option ;Context
slot ;Required slot.
db)))
(change ASSERTION assertion :RULES rule-list))))))
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; PARSE-SLOT-OPTIONS
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(defloop parse-slot-options (slots db)
"We know that the slot is either a valid symbol, or a CONS whose CAR is a
valid symbol. Check all of the rest of the syntax and return an extension
to be APPENDed to the DB."
(for ((slot-and-options in slots))
(append
(let*
((slot-name (if (symbolp slot-and-options)
slot-and-options
(car slot-and-options)))
(options (if (symbolp slot-and-options) nil (cdr slot-and-options))))
(acons-up
((cons slot-name :READ-ONLY)
(get-option-as-flag 'DEFSTRUCTURE :READ-ONLY options))
((cons slot-name :DEFAULT-SPECIFIED)
(get-option-entry :DEFAULT options))
((cons slot-name :DEFAULT)
(get-option-argument 'DEFSTRUCTURE :DEFAULT options
:FORM nil nil))
((cons slot-name :ASSERTIONS)
(parse-assert-options
(get-option-entries :ASSERT options) slot-name db)))))))
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;; PARSE-DEFSTRUCTURE
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(defun get-string-designator (key options default)
(designated-string
(get-option-argument 'DEFSTRUCTURE key options :STRING-DESIGNATOR
default default)))
(defun get-symbol (key options default)
(get-option-argument 'DEFSTRUCTURE key options :SYMBOL default default))
(defloop parse-do-not-options (do-not-options)
"We allow any number of :DO-NOT options. We return an alist to append to
the DB that resets the defaults."
(for ((options on do-not-options))
(append
(let
((do-nots (get-option-subset 'DEFSTRUCTURE :DO-NOT options
*do-not-options* nil)))
(pairlis$ do-nots (make-list (length do-nots) :initial-element
nil))))))
(defun get-representation (options slot-names)
"The :REPRESENTATION has a special syntax."
(let ((opt (get-option-entry :REPRESENTATION options))
(default :LIST))
(cond
(opt (cond
((consp opt)
(cond
((null (cdr opt)) default)
(t (if (and (true-listp opt)
(null (cddr opt))
(or (member (cadr opt) *keyword-representations*)
(let ((l (flatten (cadr opt))))
(and (subsetp l slot-names)
(subsetp slot-names l)
(equal (length l)
(length slot-names))))))
(cadr opt)
(bomb "The :REPRESENTATION option descriptor must be either ~
:REPRESENTATION, (:REPRESENTATION), ~
or (:REPRESENTATION representation), where ~
representation is either one of ~v0, or a CONS ~
tree which when flattened according to ~
DEFSTRUCTURE::FLATTEN yields a permutation of the ~
slot names ~p1, but ~p2 is not."
*keyword-representations* slot-names opt)))))
(t default)))
(t default))))
(defun parse-defstructure (name doc-and-slots)
"Parse the DEFSTRUCTURE arguments, returning the DB"
(let*
((name
(if (and name (symbolp name))
name
(bomb "The <name> argument of DEFSTRUCTURE must be a ~
non-NIL symbol, but ~p0 is not." name)))
;; Since doc-and-slots is an &REST arg, we know it's TRUE-LISTP.
(doc (if (stringp (car doc-and-slots)) (car doc-and-slots) nil))
(slots-and-options (if doc (cdr doc-and-slots) doc-and-slots))
(last-car (car (last slots-and-options)))
(options? (and (consp last-car) (eq (car last-car) :OPTIONS)))
(options (if options? (cdr last-car) nil))
(slots (if options? (butlast slots-and-options 1) slots-and-options))
(slot-names (map-x-or-car-x slots)))
;; Build and return the DB. First, the user options.
(extend-db
() ;Initialize
(acons-db
(:NAME name)
(:DOC doc)
(:SLOT-NAMES slot-names)
(:GUARDS (get-option-as-flag 'DEFSTRUCTURE :GUARDS options))
(:VERIFY-GUARDS
(get-option-member 'DEFSTRUCTURE :VERIFY-GUARDS options
'(T NIL) :DEFAULT :DEFAULT))
(:INLINE (get-option-as-flag 'DEFSTRUCTURE :INLINE options))
(:CONC-NAME
(get-string-designator
:CONC-NAME options (concatenate 'STRING (string name) "-")))
(:SET-CONC-NAME
(get-string-designator
:SET-CONC-NAME options (concatenate 'STRING "SET-" (string name) "-")))
(:KEYWORD-CONSTRUCTOR
(get-symbol
:KEYWORD-CONSTRUCTOR options (pack-intern name "MAKE-" name)))
(:KEYWORD-UPDATER
(get-symbol :KEYWORD-UPDATER options (pack-intern name "UPDATE-" name)))
(:PREDICATE
(get-symbol :PREDICATE options (pack-intern name name "-P")))
(:WEAK-PREDICATE
(get-symbol :WEAK-PREDICATE options
(pack-intern name "WEAK-" name "-P")))
(:FORCE
(get-option-as-flag 'DEFSTRUCTURE :FORCE options))
(:REPRESENTATION (get-representation options slot-names))
;; Note: The original default was to always generate :SLOT-WRITERS,
;; but this was changed, so the code is all written in terms of a
;; :READ-ONLY flag.
(:READ-ONLY
(let ((slot-writers
(get-option-as-flag 'DEFSTRUCTURE :SLOT-WRITERS options)))
(cond
((and slot-writers (eq (db :REPRESENTATION) :MV))
(bomb ":MV structures can't have :SLOT-WRITERS."))
(t (not slot-writers)))))
(:MV-INTRO-MACRO
(if (eq (db :REPRESENTATION) :MV)
(get-symbol :MV-INTRO-MACRO options
(pack-intern name name "-INTRO"))
(let ((entry (get-option-entry :MV-INTRO-MACRO options)))
(if (and entry (or (atom entry) (atom (cdr entry)) (cadr entry)))
(bomb "The :MV-INTRO-MACRO option is illegal unless the ~
(:REPRESENTATION :MV) option is chosen.")
NIL))))
(:UPDATE-METHOD
(let* ((default (if (db :READ-ONLY) :COPY :HEURISTIC))
(method (get-option-member 'DEFSTRUCTURE :UPDATE-METHOD options
*update-methods* default default)))
(if (and (db :READ-ONLY) (not (eq method :COPY)))
(bomb "The only valid :UPDATE-METHOD for structures without ~
:SLOT-WRITERS is :COPY.")
(if (db :INLINE)
:INLINE
method))))
(:ASSERTION-LEMMA-HINTS
(get-option-argument 'DEFSTRUCTURE :ASSERTION-LEMMA-HINTS options
:FORM nil nil))
(:PREDICATE-GUARD-HINTS
(get-option-argument 'DEFSTRUCTURE :PREDICATE-GUARD-HINTS options
:FORM nil nil))
(:PREFIX (get-string-designator :PREFIX options "DEFS-"))
;; Set defaults to possibly be overidden.
(:TAG name)
#|(:NORMALIZE T)|#
(:READ-WRITE T)
(:WRITE-WRITE t))
;; Override defaults.
(append-db
(parse-do-not-options (get-option-entries :DO-NOT options)))
;; Still extending we add the forms necessary to complete parsing, and
;; parsing the :ASSERT options and the slot descriptors, returning the
;; DB.
(acons-db
(:VALUE-VARIABLE (car (unique-symbols 2 (pack-intern name "VALUE")
(cons name slot-names))))
(:VALUE-VARIABLE1 (cadr (unique-symbols 2 (pack-intern name "VALUE")
(cons name slot-names))))
(:PREDICATE-CALL `(,(db :PREDICATE) ,name)))
(append-db
(reader-names slot-names db)
(reader-calls slot-names db))
(acons-db
(:ASSERTIONS (parse-assert-options
(get-option-entries :ASSERT options) nil db)))
(append-db (parse-slot-options slots db)))))
;;;****************************************************************************
;;;
;;; DEFSTRUCTURE
;;;
;;;****************************************************************************
(defloop nullify-lemmas (lemma-names)
(for ((lemma in lemma-names))
(collect (cons lemma nil))))
(defun prepare-for-code-gen (db)
(db-let (slot-names representation name predicate read-only tag
#|normalize|# read-write write-write
weak-predicate inline set-conc-name)
(cond
;; A few error checks.
((and (eq representation :MV)
(< (len slot-names) 2)
(bomb "An :MV structure must have at least 2 slots in order ~
to be valid according to the syntax of Acl2, but ~
the current structure has ~#0~[one slot~/no slots~]."
slot-names)))
((not weak-predicate)
(bomb "You have apparently tried to suppress the generation of the
weak predicate on the structure, which is currently illegal."))
((not predicate)
(bomb "You have apparently tried to suppress the generation of the
predicate on the structure, which is currently illegal."))
(t
(extend-db
(acons-db
(:KEYWORD-SLOT-NAMES (keywordify-list slot-names))
(:REQUIRED-SLOT-NAMES (required-slot-names slot-names db))
;; We force :READ-ONLY if all slots were :READ-ONLY, or the
;; representation is :MV
(:READ-ONLY (or read-only
(equal (read-only-keyword-slots slot-names db)
(db :KEYWORD-SLOT-NAMES))
(eq representation :MV)))
;; We force :MV records to be untagged. After settling the :TAG
;; question we can build the template.
(:TAG (if (eq representation :MV) nil tag))
(:TEMPLATE (make-template db)))
(db-let (read-only keyword-updater)
(extend-db
(acons-db
;; Define function,macro, and lemma names, and code fragments. We
;; use the convention that if a name is NIL, then it is a flag to
;; the appropriate code generator not to generate that thing.
(:CONSTRUCTOR-CALL `(,name ,@slot-names))
(:ACL2-COUNT-LEMMA (if (eq representation :mv)
nil
(make-prefix-name "ACL2-COUNT-" name)))
;; Weak Predicate.
(:WEAK-PREDICATE-CALL `(,weak-predicate ,name))
(:WEAK-PREDICATE-CONSTRUCTOR-LEMMA
(make-prefix-name weak-predicate "-" name))
;; Predicate.
(:PREDICATE-WEAK-PREDICATE-LEMMA
(make-prefix-name predicate "-INCLUDES-" weak-predicate))
(:PREDICATE-CONSTRUCTOR-LEMMA (make-prefix-name predicate "-" name))
;; We suppress the keyword-updater if it's an :MV or there
;; aren't any slots.
(:KEYWORD-UPDATER (if (or (eq representation :MV) (not slot-names))
nil
keyword-updater))
(:READ-LEMMA (if slot-names (make-prefix-name "READ-" name) nil))
(:WRITE-LEMMA (if (or read-only (not slot-names))
nil
(make-prefix-name "WRITE-" name)))
(:LIFT-IF-LEMMA (if slot-names
(make-prefix-name name "-LIFT-IF")
nil))
(:ELIMINATION-LEMMA (if (or (eq representation :MV)
(not slot-names))
nil
(make-prefix-name "ELIMINATE-" name)))
#|
(:NORMALIZATION-LEMMA (if (and normalize slot-names (not read-only))
(make-prefix-name "NORMALIZE-" name)
nil))
|#
(:WEAK-PREDICATE-SLOT-WRITERS-LEMMA
(if (and slot-names (not read-only))
(make-prefix-name weak-predicate "-" set-conc-name)
nil))
(:PREDICATE-SLOT-WRITERS-LEMMA
(if (and slot-names (not read-only))
(make-prefix-name predicate "-" set-conc-name)
nil))
(:READ-WRITE-LEMMA (if (and read-write
(not read-only)
slot-names)
(make-prefix-name "READ-WRITE-" name)
nil))
(:WRITE-WRITE-LEMMA (if (and write-write
(not read-only)
slot-names)
(make-prefix-name "WRITE-WRITE-" name)
nil))
(:ASSERTION-LEMMA (if (and predicate (all-rule-classes db))
(make-prefix-name name "-ASSERTIONS")
nil))
(:DEFINITION-THEORY (make-prefix-name name "-DEFINITION-THEORY"))
(:LEMMA-THEORY (make-prefix-name name "-LEMMA-THEORY")))
;; In :INLINE mode we simply NULL out all lemma names to suppress
;; their generation. This could be done more cleanly perhaps,
;; i.e., there was no reason to even generate them above, but
;; this simple and is guaranteed to work.
(append-db
(writer-names slot-names db)
(writer-calls slot-names db)
(if inline
(nullify-lemmas *lemma-names*)
nil)))))))))
#|
For debugging.
(defmacro capsule (&rest args)
`(QUOTE ,args))
(defmacro defstructure (name-and-options &rest doc-and-slots)
(let ((db (prepare-for-code-gen
(parse-defstructure name-and-options doc-and-slots))))
`(QUOTE ,db)))
|#
(defmacro capsule (&rest args)
"Remove documentation strings and recast as an ENCAPSULATE."
`(ENCAPSULATE () ,@(remove-strings args)))
(encapsulate ()
(logic)
(deftheory minimal-theory-for-defstructure
(append *EXPANDABLE-BOOT-STRAP-NON-REC-FNS*
(list-all *BUILT-IN-EXECUTABLE-COUNTERPARTS*)
'(IFF CAR-CONS CDR-CONS CAR-CDR-ELIM EQLABLEP MV-NTH ZP TRUE-LISTP
OPEN-MV-NTH O< ACL2-COUNT
(:TYPE-PRESCRIPTION ACL2-COUNT) INTEGER-ABS))))
(defmacro defstructure (name &rest doc-and-slots)
(let ((db (prepare-for-code-gen (parse-defstructure name doc-and-slots))))
(db-let (inline guards)
`(PROGN
(CAPSULE
"
; We define the structure and all of the events (except the assertion theory)
; in the absoulte minimum theory possible in order to expedite the proofs
; and guarantee that they will always work. If you ever find a case where
; one of these proof fails (except due to user syntax errors) please
; report it as a bug in DEFSTRUCTURE.
"
(LOCAL (IN-THEORY (THEORY 'MINIMAL-THEORY-FOR-DEFSTRUCTURE)))
,@(constructor db)
,@(weak-predicate db)
,@(readers db)
,@(writers db)
,@(predicate db)
,@(keyword-constructor db)
,@(keyword-updater db)
#|,@(normalization-lemma db)|#
,@(slot-writers-lemmas db)
,@(read-write-lemma db)
,@(write-write-lemma db)
,@(read-lemma db)
,@(write-lemma db)
,@(lift-if-lemma db)
,@(elimination-lemma db)
,@(mv-intro-macro db)
,@(definition-theory db))
,@(if (and inline (not guards))
nil
(list
`(CAPSULE
,@(naked-proofs db)
,@(lemma-theory db))))))))
|